
CS205: Computing Foundations for Computational Science, Spring 2021

Guide: OpenACC on AWS
Ignacio M. Llorente, David Sondak, Simon Warchol

v3.0 - February 16, 2020

Abstract

This is a guideline document to show the necessary actions to set up the system to use OpenACC in
GPU-base accelerated computing instances on AWS.

Requirements

● First you should have followed the Guide “First Access to AWS”. It is assumed you already
have an AWS account and a key pair, and you are familiar with the AWS EC2 environment.

● Take into account that GPU-powered instances are expensive.

Acknowledgments

The author is grateful for constructive comments and suggestions from David Sondak, Charles Liu,
Matthew Holman, Keshavamurthy Indireshkumar, Kar Tong Tan, Zudi Lin and Nick Stern.

1

CS205: Computing Foundations for Computational Science, Spring 2021

1. Configure the VM

● Launch an instance with “Ubuntu Server 18.04” as AMI and “g3.4xlarge” as instance type. This
is an instance powered by one NVIDIA Tesla M60 GPU with 8 GiB of GPU memory and 2048
parallel processing cores. [Your default account may not allow you to use any GPUs (including
g3.4xlarge). In that case, via “support” on AWS dashboard, request access to g3.4xlarge.]

● You should include the internal hostname and IP to /etc/hosts. You will find these under
Description once the instance is up and running. In my specific case:

$ cat /etc/hosts
127.0.0.1 localhost
172.30.4.157 ip-172-30-4-157

● Check the availability of the GPU within the running instance

$ lspci | grep -i nvidia

00:1e.0 VGA compatible controller: NVIDIA Corporation
GM204GL [Tesla M60] (rev a1)

● By default the EBS volume is only 8GiB and we need 128GiB.

$ df -h

Filesystem Size Used Avail Use% Mounted on
udev 60G 0 60G 0% /dev
tmpfs 12G 8.7M 12G 1% /run
/dev/xvda1 8G 6G 4.0G 69% /

● Go to the AWS control panel and in the Volumes section of the EC2 dashboard find your EBS
partition and resize its volume.

2

CS205: Computing Foundations for Computational Science, Spring 2021

● Then within the running system you have to extend the Linux File System.

$ sudo growpart /dev/xvda 1

CHANGED: disk=/dev/xvda partition=1: start=4096 old:
size=16773086,end=16777182 new: size=73396190,end=73400286

● A look at the lsblk output confirms that the partition /dev/xvda1 now fills the available
space on the volume /dev/xvda:

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
...
xvda 202:80 0 128G 0 disk
└─xvda1 202:81 0 128G 0 part

● Use a file system-specific command to resize each file system to the new volume capacity. For a
Linux ext2, ext3, or ext4 file system, use the following command, substituting the device name
to extend:

$ sudo resize2fs /dev/xvda1

● Make sure we have some basic packages installed on Ubuntu

$ sudo apt-get update

$ sudo apt-get install build-essential

● The gcc version I'm using is 7.x

$ gcc --version

gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0

2. Install CUDA

● Use wget from the EC2 instance

$ wget

http://developer.download.nvidia.com/compute/cuda/repos/ubu

ntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb

3

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb

CS205: Computing Foundations for Computational Science, Spring 2021

● We should now have a deb file called

cuda-repo-ubuntu1804_10.0.130-1_amd64.deb in the home directory. Run the
following commands to install CUDA:

$ sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb

You may receive a “The public CUDA GPG key does not appear to be installed.”

error. Please paste and run the command it recommends, which will look

something like

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ub

untu1804/x86_64/7fa2af80.pub

● Continue your installation with the following commands:

$ sudo apt-get update

$ sudo apt-get install cuda

● Now you can check the CUDA installation:

$ nvidia-smi

Wed Feb 17 05:07:39 2021
+---+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla M60 Off	00000000:00:1E.0 Off	0
N/A 28C P0 38W / 150W	0MiB / 7618MiB	98% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

4

CS205: Computing Foundations for Computational Science, Spring 2021

● This command may take a few seconds to run due to the default configurations being
suboptimal. You can follow the steps below to re-configure the GPU settings:

○ Configure the GPU settings to be persistent

$ sudo nvidia-smi -pm 1

○ Disable the autoboost feature for all GPUs on the instance

$ sudo nvidia-smi --auto-boost-default=0

○ Set all GPU clock speeds to their maximum frequency

$ sudo nvidia-smi -ac 2505,875

● Running nvidia-smi may now be faster!

3. Install NVIDIA HPC SDK

The NVIDIA HPC SDK includes a no-cost license to a recent release of the Fortran, C and C++
compilers and tools for multicore CPUs and NVIDIA Tesla GPUs, including all OpenACC, OpenMP
and CUDA Fortran features.

● Install NVIDIA HPC SDK Version 21.1 with the following

$ wget
https://developer.download.nvidia.com/hpc-sdk/21.1/nvhpc_2021
_211_Linux_x86_64_cuda_11.2.tar.gz

$ tar xpzf nvhpc_2021_211_Linux_x86_64_cuda_11.2.tar.gz

$ sudo nvhpc_2021_211_Linux_x86_64_cuda_11.2/install

During install you will need to go through the following steps:

1. You will then be asked if you want to do a single system install or a network. Choose 1 for
single system

2. Then you will be asked which directory you would like to install in. Press enter to keep the
default /opt/nvidia/hpc_sdk

● Configure your shell environment.

$ export PGI=/opt/nvidia/hpc_sdk;
$ export
PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.1/compilers/bin:$PATH;
$ export
MANPATH=$MANPATH:/opt/nvidia/hpc_sdk/Linux_x86_64/21.1/compiler

5

CS205: Computing Foundations for Computational Science, Spring 2021

s/man;

● Run pgaccelinfo to see that your GPU and drivers are properly installed and available. For

NVIDIA, you should see output that looks something like the following:

$ pgaccelinfo
CUDA Driver Version: 11020
NVRM version: NVIDIA UNIX x86_64 Kernel Module

460.32.03 Sun Dec 27 19:00:34 UTC 2020

Device Number: 0
Device Name: Tesla M60
Device Revision Number: 5.2
Global Memory Size: 7988903936
Number of Multiprocessors: 16
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 65536
Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: 873 MHz
Execution Timeout: No
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: Yes
Memory Clock Rate: 2505 MHz
Memory Bus Width: 256 bits
L2 Cache Size: 2097152 bytes
Max Threads Per SMP: 2048
Async Engines: 2
Unified Addressing: Yes
Managed Memory: Yes
Concurrent Managed Memory: No
Default Target: cc50

4. Our First OpenACC Program

● Upload to the VM the acc_sc.c code,compile it with pgcc, and run the code on the GPU. Use

6

https://harvard-iacs.github.io/2021-CS205/labs/I5/acc_sc.c

CS205: Computing Foundations for Computational Science, Spring 2021

options -acc to support OpenACC and -Minfo to provide verbose info:

$ pgcc -acc -Minfo acc_sc.c -o acc_sc

vecaddgpu:
4, Generating copyin(a[:n])

Generating copyout(r[:n])
Generating copyin(b[:n])

5, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code

5, #pragma acc loop gang, vector(128)/* blockIdx.x threadIdx.x */

● Run the code

$./acc_sc

● You should see the output

0 errors found

● You can enable additional output by setting environment variables.

$ export PGI_ACC_NOTIFY=1

● Run the code again and you should see the output

launch CUDA kernel file=/home/ubuntu/acc_sc.c
function=vecaddgpu line=5 device=0 threadid=1 num_gangs=782
num_workers=1 vector_length=128 grid=782 block=128

0 errors found

● The extra output tells you that the program launched a kernel for the loop at line 5, with a
CUDA grid of size 782, and a thread block of size 128.

● if you set the environment variable PGI_ACC_NOTIFY to 3, the output will include information
about the data transfers as well:

upload CUDA data file=/home/ubuntu/acc_sc.c function=vecaddgpu
line=3 device=0 threadid=1 variable=a bytes=400000

upload CUDA data file=/home/ubuntu/acc_sc.c function=vecaddgpu
line=3 device=0 threadid=1 variable=b bytes=400000

launch CUDA kernel file=/home/ubuntu/acc_sc.c
function=vecaddgpu line=5 device=0 threadid=1 num_gangs=782
num_workers=1 vector_length=128 grid=782 block=128

7

CS205: Computing Foundations for Computational Science, Spring 2021

download CUDA data file=/home/ubuntu/acc_sc.c
function=vecaddgpu line=5 device=0 threadid=1 variable=r
bytes=400000

0 errors found

● If you set the environment variable PGI_ACC_TIME to 1 (export PGI_ACC_TIME=1),

the runtime summarizes the time taken for data movement between the host and GPU, and
computation on the GPU.

Accelerator Kernel Timing data

/home/ubuntu/acc_sc.c

vecaddgpu NVIDIA devicenum=0

time(us): 149

3: compute region reached 1 time

5: kernel launched 1 time

grid: [782] block: [128]

device time(us): total=8 max=8 min=8 avg=8

elapsed time(us): total=679 max=679 min=679 avg=679

3: data region reached 2 times

3: data copyin transfers: 2

device time(us): total=93 max=51 min=42 avg=46

5: data copyout transfers: 1

device time(us): total=48 max=48 min=48 avg=48

● This tells you that the program entered one accelerator region and spent a total of about 149
microseconds in that region. It copied two arrays to the device, launched one kernel and
brought one array back to the host.

Stop your instances when are done for the day to avoid

8

CS205: Computing Foundations for Computational Science, Spring 2021

incurring charges
Terminate them when you are sure you are done with your

instance

9

