

CS205: Computing Foundations for Computational Science, Spring 2021

Guide: Performance Optimization on AWS

Ignacio M. Llorente, David Sondak, Simon Warchol v3.0 - February 16, 2021

Abstract

This is a guideline document to show the necessary actions to set up and use gcc to evaluate its performance optimization support on Ubuntu (18.04).

Acknowledgments

The author is grateful for constructive comments and suggestions from David Sondak, Charles Liu, Matthew Holman, Keshavamurthy Indireshkumar, Kar Tong Tan, Zudi Lin and Nick Stern.

1. Spin up EC2 instance

- 1. Using Lab 1 as a reference, please spin up a **t2.2xlarge** EC2 instance running Ubuntu 18.04, with your CS205-key
- 2. Connect to this instance w/ ssh (or putty on Windows), again using your CS205-key.

2. Install gcc

3. Install gcc via the toolchain PPA

```
$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt-get update
$ sudo apt-get install gcc
```

4. To check the goo installation is successful run following command in the terminal

```
$ gcc -v
```

3. Evaluate Performance Flags

This section includes a simple optimization session aimed at verifying the correct installation of the gcc compiler.

• Upload to the VM the seq mm.c code and compile with several optimization flags (you also need timing.c and timing.h). This simple code performs a 1,500 by 1,500 matrix multiplication. See that by default the matrices are created in the stack of the process (8MB), you should use ulimit
-s 64000 to increase the stack to < 64MB, which is the hard limit for the stack size.

Stop your instances when are done for the day to avoid incurring charges

CS205: Computing Foundations for Computational Science, Spring 2021

Terminate them when you are sure you are done with your instance