
CS205: Computing Foundations for Computational Science, Spring 2021

Guide: Spark Cluster on AWS
Ignacio M. Llorente, Simon Warchol

v3.0 - 4 April 2021

Abstract

This is a screenshot document of how to run an EMR Spark cluster andSpark scripts in the AWS
environment.

Requirements

● First you should have followed the Guide “First Access to AWS”. It is assumed you already have
an AWS account and a key pair, and you are familiar with the AWS EC2 environment.

● Its is strongly recommended to firstly follow the Guide “Install Spark in Local Mode” in order to
get familiar with the Spark environment.

● We strongly recommend cluster instances with at least 4 vCPUs (m4.xlarge) to be able to evaluate
parallel implementation within each node.

Acknowledgments

The author is grateful for constructive comments and suggestions from David Sondak, Charles Liu,
Matthew Holman, Keshavamurthy Indireshkumar, Kar Tong Tan, Zudi Lin, Nick Stern, Dylan Randle,
Hayoun Oh, Zhiying Xu and Zijie Zhao.

1

CS205: Computing Foundations for Computational Science, Spring 2021

1. Launch Hadoop EMR cluster

● Go to the EMR dashboard and click “Create cluster”. We recommend the following configuration
○ ClusterName: MySpark
○ Launch mode “Cluster”
○ Release: 5.29.0
○ Applications: Spark
○ Instance type: m4.xlarge
○ Number of Instances: 3
○ Key pair: course-key (or any other key you want to use, see Guide “First Access to AWS”)

● Make sure to select EMR release 5.29.0

● Click on “Create Cluster”

2

CS205: Computing Foundations for Computational Science, Spring 2021

● Wait for the cluster to be ready. The cluster is ready when its state is “Waiting” and the Master and
Core under the Networks and hardware section are both in “Running” state

3

CS205: Computing Foundations for Computational Science, Spring 2021

2. Login to the cluster

● Copy the “Master public DNS” SSH into the machine using your CS205-key. Note that the user you
are logging into is hadoop not ubuntu

$ ssh -i ~/.ssh/CS205-key.pem hadoop@ec2-100-24-206-111.compute-1.amazonaws.com

● If you could not login then make sure that the security groups (firewalls) of the EMR cluster opens
the port 22 to the outside world (see Guide “First Access to AWS”)

3. Submit a Spark Script

● This section shows how to submit spark jobs to a hadoop-powered spark framework using the
command line interface from the master (front-end) node. See that in this case the Spark
framework reads from and writes to a hadoop file system.

● Upload to the master VM the Spark wordcount.py script and the input.txt file with the ebook
of Moby Dick used in the MapReduce labs

● Upload the input.txt file to the Hadoop file system

4

https://harvard-iacs.github.io/2021-CS205/labs/I10/wordcount.py
https://harvard-iacs.github.io/2021-CS205/labs/I10/input.txt

CS205: Computing Foundations for Computational Science, Spring 2021

$ hadoop fs -put input.txt

$ hadoop fs -ls
Found 2 items
drwxr-xr-x - hadoop hadoop 0 2017-09-07 15:38 .sparkStaging
-rw-r--r-- 1 hadoop hadoop 16668 2017-09-07 16:26 input.txt

● Submit the job

$ spark-submit wordcount.py
17/09/07 16:52:42 INFO SparkContext: Running Spark version 2.2.0
17/09/07 16:52:42 INFO SparkContext: Submitted application: WordCount
17/09/07 16:52:42 INFO SecurityManager: Changing view acls to: hadoop
17/09/07 16:52:42 INFO SecurityManager: Changing modify acls to: hadoop
17/09/07 16:52:42 INFO SecurityManager: Changing view acls groups to:
17/09/07 16:52:42 INFO SecurityManager: Changing modify acls groups to:
…

● When the program finishes, check the hadoop file system again and look for the output.txt file
(actually it is a folder containing the output files). Note that if we run the program again, it will fail
unless output.txt is removed first. To remove output.txt use: hadoop fs -rm -R -f
output.txt

$ hadoop fs -ls
Found 3 items
drwxr-xr-x - hadoop hadoop 0 2017-09-07 15:38 .sparkStaging
-rw-r--r-- 1 hadoop hadoop 16668 2017-09-07 16:26 input.txt
drwxr-xr-x - hadoop hadoop 0 2017-09-07 16:55 output.txt

● Download the file from hadoop file system to the local file system and check the content

$ hadoop fs -get output.txt

$ cat output.txt/*
('swimming', 1)
('seemed', 1)
('pilot', 1)
('told', 3)
('balaene', 1)
('more', 4)
('history', 3)
('man', 2)
('wine', 1)
('speak', 1)
('quantity', 2)
('out', 7)
('davenant', 1)

● You have just executed the job on the master node but however you have NOT used the worker

5

CS205: Computing Foundations for Computational Science, Spring 2021

nodes yet.

4. Parallel Execution on Multiple Nodes

Firstly see discussion about partitions, tasks and executors in the Guide “Start Spark in Local Mode”.
When using the Yarn Cluster Mode:

● The number of cores (threads within each executor) can be specified with the --executor-cores
flag when invoking spark-submit, spark-shell, and pyspark from the command line, or by
setting the spark.executor.cores property in the spark-defaults.conf file or on a
SparkConf object. The cores property controls the number of concurrent tasks an executor can
run.

● The number of executors (worker nodes) can be specified with the --num-executors
command-line flag or spark.executor.instances configuration property.

For example, the following command will execute the script on 2 executors (worker nodes) with 4
threads per executor, achieving the execution of 8 simultaneous tasks (when running a job on multiple
nodes do NOT use the setMaster property with local in the SparkConf configuration).

$ spark-submit --num-executors 2 --executor-cores 4 script

● Upload to the VM the Spark pi.py script, remove the setMaster property in the SparkConf
configuration to avoid local execution, increase N to 100000000 to increase the CPU demand,
and modify the code to use 16 partitions.

print sc.parallelize(xrange(N),16).map(...

● Execute the code in the cluster, and calculate the speedup for 2 executors and 1, 2 and 4 threads
per executor.

spark-submit --num-executors 2 --executor-cores 1 pi.py

● Resize the cluster (Hardware option) to have 4 worker nodes and calculate the speedup for 4
executors and 1, 2 and 4 threads per executor.

As sequential time to calculate the speed-up you can run the same code in local mode with only one
thread (you should use .setMaster("local[1]") in the Spark configuration of the code.

6

https://harvard-iacs.github.io/2021-CS205/labs/I10/pi.py

CS205: Computing Foundations for Computational Science, Spring 2021

Terminate the cluster when you are sure you are done for the
day to avoid incurring charges

7

