
CS205: Computing Foundations for Computational Science, Spring 2020

HW: B. Parallel Computing

Due Monday, March 22, 2021 (11:59 PM EDT)

Abstract

The objective in this homework is to develop practical skills in parallel computing for computational
and data science. The focus is on developing compute-intensive applications on high performance
systems based on GPUs, and shared- and distributed-memory parallel architectures.

Contributors

Ignacio Illorente, David Sondak, Zhiying Xu, Dylan Randle, Hayoun Oh, Zijie Zhao, Charles Liu, Matthew
Holman, Zudi Lin, Nicholas Stern and Kar-Tong Tan

Guidelines

● The files needed to do the exercises are available for download from the course Canvas.

● AWS

○ First you should have followed the Guide “First Access to AWS”. It is assumed you already have
an AWS account and a key pair, and you are familiar with the AWS EC2 environment.

● Performance Optimization

○ For the performance optimization exercises you can use Cannon, a VM instance on AWS, or

1

If you are using AWS, we strongly recommend you use the same instance type for all the experiments
(t2.2xlarge) so you can compare the performance results achieved with the different programming

models and platforms

CS205: Computing Foundations for Computational Science, Spring 2020

your own Mac OS or Linux system with gcc or a commercial compiler.

○ If you are using AWS, we recommend you use a t2.2xlarge instance and first follow the Guide
“Performance Optimization and OpenMP on AWS” in order to set-up gcc and get familiar with
its optimization flags. Ensure you stop the instance after the homework.

○ The codes include calls to timing functions to write on screen the elapsed execution time of
their compute part.

● Accelerated Computing

○ For the GPU programming exercises you can use a VM instance on AWS.

○ If you are using AWS, we recommend you use a g3.4xlarge instance and first follow the

Guide “OpenACC on AWS” in order to install CUDA and the PGI tools, and get familiar with its
OpenACC support. Ensure you stop the instance after the homework (GPU-based
Accelerated Computing instances are very expensive!).

○ The codes include calls to timing functions to write on screen the elapsed execution time of
their compute part. If you set the environment variable PGI_ACC_TIME to 1, the GPU
runtime summarizes the time taken for data movement between the host and GPU, and
computation on the GPU.

● Shared-Memory Parallel Programming

○ For the shared-memory parallel programming exercises you can use Cannon, a VM instance on
AWS, or your own Mac OS or Linux system with gcc or a commercial compiler.

○ If you are using AWS, we recommend you use a t2.2xlarge instance and first follow the Guide
“Performance Optimization and OpenMP on AWS” in order to set-up gcc and get familiar with
its OpenMP support and automatic parallelization functionality. Ensure you stop the instance

after the homework.

○ The codes include calls to timing functions to write on screen the elapsed execution time of
their compute part.

● Distributed-Memory Parallel Programming

○ For the distributed-memory parallel programming exercises you can use Cannon or an MPI
cluster on AWS.

○ Install a local version of MPI, by following the first section of the Guide “MPI on AWS”, to test
your programs on your local computer before running on a MPI cluster. Programs written and
tested locally can be run on a cluster with just a few additional steps.

○ If you are using MPI on an AWS VM cluster, we recommend you use a cluster with at least two
t2.2xlarge instances and first follow the Guide “MPI on AWS” in order to set-up the cluster and
install the MPICH library. Ensure you stop the instance after the homework.

● Submission

2

CS205: Computing Foundations for Computational Science, Spring 2020

○ Your performance results should be replicable results. Sometimes the equivalent term 1

Repeatability is used for this experimental property, so you should provide ALL the
information of the system and the environment needed to repeat your tests. At the
beginning of each PDF answering each specific exercise you must provide, at least:

- Specs of the system (model, number of CPUs, number of cores per cpu, clock rate, cache
memory, and main memory)

- If using a cluster, number of systems and specs of networking (latency and bandwidth)
- Operating System (Linux distro and kernel version)
- Compiler (name and version, and flags)
- Libraries (name and version)
- Any other configuration needed to replicate the experiments and achieve exactly the same

result and performance?

○ Upload on Canvas the files specified in each assignment.

○ The grade on this assignment is 15% (150 points) of the final grade.

Table of Contents

1. Python Multiprocessing Module (20 points)

1.1. Count to Ten (10 points)

1.2. How Much Faster? (10 points)

2. Performance Optimization (25 points)

2.1. Optimization of Basic Codes (10 points)

2.2. Optimization of Matrix Multiplication (15 points)

3. Accelerated Computing (35 points)

3.1. Acceleration of Basic Code (20 points)

3.2. Acceleration of Matrix Multiplication (15 points)

4. Shared-Memory Parallel Processing (35 points)

4.1. Parallelization of Basic Code (20 points)

4.2. Scheduling Policies (15 points)

5. Distributed-Memory Parallel Processing (35 points)

5.1. Parallelization of Basic Code (20 points)

5.2. Hybrid Parallel Processing (15 points)

1 The attribute Replicability describes the ability to repeat a computer based experiment and to come
to the same results and performance.

3

Any computing experiment that cannot be replicated cannot be considered as a valid submission

CS205: Computing Foundations for Computational Science, Spring 2020

1. Python Multiprocessing Module (20 points)

One of the simplest ways to do things in parallel in Python is through the multiprocessing module.
Here, you’ll reason through two simple examples that show the oddities of parallelism.

1.1. Count to Ten (10 points)

The multiprocessing module allows a pool of processes to complete a batch of jobs in parallel. The
script P11.py demonstrates this functionality. If you run the code a number of times, you may see
some unexpected results.

1. Explain these results.
2. How could this affect how we program in parallel?
3. Describe a scenario where this would be important.

1.2. How Much Faster? (10 points)

In P12.py, the burnTime has been changed to simply sleep for a parameterized amount of time.

1. Using the Pool.map functionality, call burnTime 16 times in parallel using 4 processes and 16
times in serial using a standard loop. Use time.time() to determine how many seconds each
takes and use various sleep times (ranging from 10−6 to 100 seconds) for each timing.

2. Plot the ratio of serial to parallel execution time against sleep time.
3. Try to explain the trend you observe.
4. Is it possible that a parallel program could take longer than it’s serial version? If so, under what

conditions does this occur?

4

Submission
● P11.pdf: Answers and discussion

Submission
● P12.pdf: Answers (including the plot) and discussion
● P12.py: Source code

CS205: Computing Foundations for Computational Science, Spring 2020

2. Performance Optimization (25 points)

2.1. Optimization of Basic Codes (10 points)

The aim of this exercise is to compile two codes with an optimization flag and to try different
optimization techniques.

● dotprod_serial.c performs a simple dot product calculation

 Use the following to compile dotprod_serial.c:

 gcc -DUSE_CLOCK dotprod_serial.c timing.c -o dotprod_serial

● jacobi1d.c is a serial implementation of a 1D Poisson problem using Jacobi iteration. The basic
syntax of the serial executable is

jacobi1d [ncells] [nsteps] [fname]

The ncells and nsteps arguments define the number of cells in the Poisson discretization and the
number of steps in the Jacobi iteration, respectively. The argument fname is the name of a file to
which the final solution vector is written. Each row in this file consists of the coordinate for a point
in the discretization and the corresponding solution value; for example, after 1000 steps on a
100000-cell discretization, we have

0 0

1e-05 5e-13

2e-05 1e-12

...

If ncells or nsteps are omitted, the default value of 100 is used. If the file name fname is
omitted, the program simply prints out the timings, and does not save the solution.

Use the following command to compile jacobi1d

gcc -DUSE_CLOCK jacobi1d.c timing.c -o jacobi1d

If you use any aggressive optimization, you should check the correctness of your implementation by
comparing the solution output files to the solution output files from the code with no optimization.

5

Submission
● P21.pdf: Report the improvements in elapsed execution time when using separately -O0, -O1,

-O2, -O3, -Os and -Ofast flags, and 2x and 4x loop unrolling technique on a single core for both
codes. Results should be presented in tabular form. For example, each column should
correspond to a different optimization flag or technique and each row will be the code being run
(either jacobi1d.c or dotprod_serial.c). The entries of the table should be the run times
returned by the timing function provided in timing.c. For jacobi1d.c, use cells and 10001 8

CS205: Computing Foundations for Computational Science, Spring 2020

2.2. Optimization of Matrix Multiplication (15 points)

This exercise is intended to show how the reuse of data that has been loaded into cache by previous
instructions can save time and thus increase the performance of your code.

seq_mm.c is a simple code that performs a 1,500 by 1,500 matrix multiplication. Develop a new version
of the code that uses blocking to improve its temporal locality.

Use the following command to compile seq_mm

gcc -DUSE_CLOCK seq_mm.c timing.c -o seq_mm

6

steps.
● P21a.c: Source code for the version of dotprod_serial.c with one level of loop unrolling
● P21b.c: Source code for the version of jacobi1d.c with loop unrolling

Note: we assume n is even.

Submission
● P22.pdf: Report with replicability information (see Submission note above), the improvements

in elapsed execution time when using separately -O0, -O3, loop unrolling, blocking and
unrolling/blocking. Please report your results in tabular form with columns corresponding to
optimization flags or techniques as appropriate

● P22.c: Source code for the combined version of the code with loop unrolling and blocking. In
your source code, please add comments to highlight where you have applied unrolling and
blocking

Note: for "loop unrolling/blocking", unroll the blocking version OR unroll the innermost layer for x2
or x4.

CS205: Computing Foundations for Computational Science, Spring 2020

3. Accelerated Computing (35 points)

3.1. Acceleration of Basic Code (20 points)

The goal of this exercise is to familiarize you with OpenACC and make your first accelerated code.
Develop an OpenACC version of the jacobi code used in section 2.1. Your task is to parallelize the for
loops in the function jacobi using OpenACC. You should do this by copying over the corresponding
code from jacobi1d.c and putting OpenACC #pragmas in appropriate places. You should develop
two versions:

A. One with a copy of data in each iteration and
B. One with a single copy of data.

1. Run both codes with ncells equal to 10k, for k = 6, 7, and 8, and 100 steps. Plot the execution
times of both codes and the sequential execution (with no acceleration) as a function of k. Consider
the elapsed time provided by the application and the GPU runtime provided by the driver.

2. Run the second, enhanced version of the code, with ncells of , 100 steps and multiple values
(32, 64, 128, 256, 512, 1024) for the number of threads per block (vector length). Which value for
the number of threads is faster and why?

3.2. Acceleration of Matrix Multiplication (15 points)

Develop an OpenACC version of seq_mm.c and compare it with the optimized sequential execution of
section 2.2.

7

Submission
● P31.pdf: Answer the questions and discuss the implementations
● P31a.c: First version source code
● P31b.c: Second version source code, with vector lengths specified

Submission
● P32.pdf: Discuss the implementation, its performance and the default block grid created by the

system
● P32.c: Source code

https://www.codecogs.com/eqnedit.php?latex=10%5E%7B8%7D%0

CS205: Computing Foundations for Computational Science, Spring 2020

4. Shared-Memory Parallel Processing (35 points)

4.1. Parallelization of Basic Code (20 points)

The goal of this exercise is to familiarize you with OpenMP and make your first parallel code. Develop 2

an OpenMP version of the jacobi code used in section 2.1 by completing jacobi1d_omp.c. Your task
is to parallelize the for loops in the function jacobi using OpenMP. You should do this by copying over
the corresponding code from jacobi1d.c and putting OpenMP #pragmas in appropriate places. You
should start by putting a #pragma parallel inside the outer loop in order to start a parallel section,
and then parallelize the inner loops with #pragma for directives.

You should do two experiments:
1. Run your parallel codes on a system with at least 4 cores with ncells equal to 10k, for k = 5, 6, 7,

and 8, and 100 steps. Plot the ratio of your parallel run times to the serial code run time as a
function of k. Calculate the Speed-up and explain why it increases or decreases with the problem
size. Use -Ofast to compile the code in all cases.

2. Run your codes with ncells of and and 100 steps on 2-8 cores and produce a speedup plot.
Explain why it increases or decreases with the number of cores.

You should check the correctness of your implementation by comparing the solution output files to the
solution output files from the serial code.

4.2. Scheduling Policies (15 points)

The goal of this exercise is to illustrate the impact of the scheduling algorithm in performance. The
code mandelbrot_omp.c generates an ASCII Portable Pixel Map (PPM) image of the Mandelbrot set
using OpenMP.

Run the parallel code and take the execution time for a growing number of threads. Record the timing
in a table. Try with the three scheduling algorithms. To change the schedule, you can either change the
environment variable with export OMP_SCHEDULE=type where type can be any of static, dynamic,
or guided. Alternatively, you can change the schedule in the source code as omp parallel for

schedule(type).

Note: if you change the environment, then you don’t have to change anything inside the code.

2 http://www.cs.cornell.edu/~bindel/class/cs5220-f11/hw2.html

8

Submission
● P41.pdf: Explain your results in terms of a simple performance model that takes into account

the time spent on both computation (which is proportional to the number of points per
processor) and communication/synchronization.

○ Hint: No need to present a mathematical model. Just describe using words. You can
think about concepts such as granularity and synchronization overhead.

● P41.c: Complete source code

https://www.codecogs.com/eqnedit.php?latex=10%5E8%0

CS205: Computing Foundations for Computational Science, Spring 2020

5. Distributed-Memory Parallel Processing (35 points)

5.1. Parallelization of Basic Code (20 points)

The goal of this exercise is to familiarize you with MPI and make your first parallel code. Develop a MPI 3

version of the jacobi code used in section 1.1 by completing jacobi1d_mpi.c. The structure of
jacobi1d_mpi.c is somewhat more complicated. In this code, no processor holds the entire solution
vector; instead, each processor has a local piece of the vector, and these pieces overlap slightly at the
ends. No variable is directly updated by more than one processor; the overlap is simply to
accommodate ghost cells. As a concrete example, suppose we discretize the interval [0,1] into 10 cells
of size 0.1. Then there are 11 points in our mesh, including the endpoints subject to boundary
conditions. If we partition these points among three processors, we have the following picture:

 4

In this picture, the active variables are colored blue and the white boxes at the end correspond to
storage for ghost cells or boundary data. For example, consider the storage on the second processor
(P1). Entries 1, 2, and 3 in this processor's local vector correspond to entries 4, 5, and 6 in the global
indexing of variables. However, in order to update these entries, P1 must know about the entries 3 and
7 in the global vector. P1 has storage for these variables in 0 and 4 of its local vector; but rather than
computing these variables, P1 must be sent the information from the neighboring processor. Thus, at
each step,

● P0 sends entry 3 of its local vector to P1 and receives entry 4;
● P1 sends entry 1 of its local vector to P0 and receives entry 0;
● P1 sends entry 3 of its local vector to P2 and receives entry 4;
● P2 sends entry 1 of its local vector to P1 and receives entry 0

3 http://www.cs.cornell.edu/~bindel/class/cs5220-f11/hw2.html
4 In fact, the provided skeleton code splits global indices in a particular way and - as some of you might
have noticed - the picture for your execution of n=10 will look more like this:
https://harvard-iacs.github.io/2021-CS205/homeworks/HWB/guide/indices_table.png.
This does not result in a perfectly even distribution, but will be reasonably efficient when the size of n is
sufficiently large. Your portion of the code will also not be affected, so you can disregard this particularity.

9

Submission
● P42.pdf: with replicability information (see Submission note above), Explain your results, what is

the scheduling that provides the best performance? What is the reason for that?
● P42.c: Complete source code

https://harvard-iacs.github.io/2021-CS205/homeworks/HWB/guide/indices_table.png

CS205: Computing Foundations for Computational Science, Spring 2020

In jacobi1d_mpi.c, the code that implements this exchange of ghost cell information is left out. You
should fill this code in. Your code should be correct for any number of processors, not just two or three.
The solution uses MPI_Send, and MPI_Recv in two phases: one that sends data to the processor to the
left, and one that sends data to the processor to the right. However, if you would prefer to use a
different organization, you are welcome to do so.

You should do the following experiments:

1. Run your code with 1 to 4 tasks on one node with ncells equal to 108 and 100 steps.
2. Run your code with 8 tasks on two nodes with ncells equal to 10k, for k = 5, 6, 7, and 8 and 100

steps. Plot the ratio of your parallel run times to the serial code run time as a function of k.
Calculate the Speed-up and explain why it increases or decreases with the problem size. Make sure
to change your instance type to t2.2xlarge when running k = 8.

3. Run your codes with ncells of 100,000,000 and 100 steps with 2-8 tasks on two nodes and
produce a speedup plot. Explain why it increases or decreases with the number of cores.

4. Compare the performance results with those obtained with OpenMP.

You should check the correctness of your implementation by comparing the solution output files to the
solution output files from the serial code.

5.2. Hybrid Parallel Processing (15 points)

OpenMP by itself is constrained to a single node. In the world of very large scale infrastructures, the
motivation for using OpenMP is possible performance gains when combined with MPI. Develop a hybrid
version of jacobi1d_mpi.c by including OpenMP directives to parallelize the two main execution
loops. Include one #pragma for each loop. Compile and execute the code on multiple nodes and
threads per node. Compare execution time in these three scenarios:

● SMP Nodes
○ Single MPI task launched per node
○ Parallel Threads share all node memory
○ For example: 4 threads/task and 1 task/node on system based on nodes with one 4-core CPU

● SMP Sockets (CPUs)
○ Single MPI task launched on each socket (CPU)
○ Parallel Thread set shares socket (CPU) memory, e.g. 4 threads/socket
○ For example: 2 threads/task and 2 tasks/node on system based on nodes with two 2-core CPUs

● No Shared Memory (all MPI)
○ Each core on a node is assigned an MPI task
○ For example: 1 thread/task and 4 tasks/node on system based on nodes with 4 cores

10

Submission
● P51.pdf: with replicability information (see Submission note above), Explain your results in

terms of a simple performance model that takes into account the time spent on both
computation (which is proportional to the number of points per processor) and
communication/synchronization

● P51.c: Complete source code. In your source code, please insert comments to explain what you
are using each of the MPI functions for

CS205: Computing Foundations for Computational Science, Spring 2020

If you are using a 2-node MPI cluster on AWS you can emulate the three scenarios by running 4
threads/task and 1 task/node in the SMP Nodes mode; 2 threads/task and 2 tasks/node in the SMP
Sockets (CPUs) mode, and 1 thread/task and 4 tasks/node in the No Shared Memory mode.

11

Submission
● P52.pdf: with replicability information (see Submission note above), Discussion of the results
● P52.c: Complete source code. Please insert comments in your source code to explain the type of

parallelization you are applying

