
CS205: Computing Foundations for Computational Science, Spring 2018

Solutions HW: B. Parallel Computing

1. Python Multiprocessing Module (20%)

1.1. Count to Ten (10%)

1. There doesn’t appear to be any order to when jobs finish. It looks like some processors
finish before other processors.

2. We should do our best to balance the computations to try to minimize downtime.
3. A scenario where this would be important is some computation that is sensitive to idle

processes.

1.2. How Much Faster? (10%)

1. See accompanying solution file (P12.py).

2.
3. As the computing time increases, the ratio asymptotes to 4. More time spent computing

(and less communicating) will result in a 4x speed-up.

1

CS205: Computing Foundations for Computational Science, Spring 2018

4. Yes. Depending on the granularity of the tasks. If a parallel program is spending all it’s
time communicating, then a serial program that is performing computations could
feasibly finish before the parallel program.

2

CS205: Computing Foundations for Computational Science, Spring 2018

2. Performance Optimization (20%)

COMPUTING EXPERIMENT ENVIRONMENT

System: t2.2xlarge at AWS

CPU Specs

Model: Intel(R) Xeon(R) CPU E5-2686 v
Clock: 2.30 GHz
Number of vCPUs: 8
Main Memory: 32 GiB

Operating System

Distro: Ubuntu 16.04 LTS

Compiler

Name: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9)
Version: 5.4.0 20160609

2.1. Optimization of Basic Codes (10%)

O0 O1 O2 O3 Ofast Os

Dotprod_serial.
c
VECLEN = 100

1e-06 2e-06 1e-06 1e-06 1e-06 1e-06

Dotprod_serial.
c
VECLEN = 10000

3.5e-05 3.5e-05 1.2e-05 1.2e-05 7e-06 1.3e-05

Dotprod_serial.
c
VECLEN = 1e8

3.40329 3.40663 1.4515 1.46696 1.37251 1.46542

jacobi1d.c 44.9531 22.4818 23.013 23.471 23.0274 22.9424

3

CS205: Computing Foundations for Computational Science, Spring 2018

2x unrolling 4x unrolling

Dotprod_serial.
c
VECLEN = 1e8

3.40308 3.38768

jacobi1d.c 26.939 25.3912

2.2. Optimization of Matrix Multiplication (5%)

See an example here

https://github.com/EvanPurkhiser/CS-Matrix-Multiplication/blob/master/report.md

O0 O3 Loop Unrolling Blocking Loop Unrolling +
Blocking

Notes Instructions = 4 Blocksize = 25 Blocksize = 150
Instructions = 2

seq_mm.c 17.1956 2.50667 16.3225 11.781 7.51579

Note: The students should provide source code for the combined version of the code with
loop unrolling and blocking.

To estimate the optimal size of block remember to use sqrt(M/3), where M is the size of the cache
(usually L3 size).

4

https://github.com/EvanPurkhiser/CS-Matrix-Multiplication/blob/master/report.md

CS205: Computing Foundations for Computational Science, Spring 2018

3. Accelerated Computing (20%)

COMPUTING EXPERIMENT ENVIRONMENT

System: g3.4xlarge at AWS

CPU Specs (not relevant for this exercise because it only uses the GPU part)

Model: Intel Xeon E5-2686 v4 (Broadwell)
Clock: 2.7 GHz
Number of vCPUs: 16
Main Memory: 122 GiB
EBS Bandwidth: 3.5 Gbps
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K

GPU Specs

Model: NVIDIA Tesla M60 GPU
Number of GPUs: 1
Number of cores per GPU: 2,048
Memory per GPU: 8 GiB
Driver: NVIDIA-SMI 390.12

Operating System

Distro: Ubuntu 16.04 LTS
Kernel: 4.4.0-1047-aws

Compiler

Name: PGI Community Edition
Version: 17.10

5

CS205: Computing Foundations for Computational Science, Spring 2018

CUDA Driver Version: 9010

3.1. Acceleration of Basic Code (15%)

A. SEQUENTIAL EXECUTION

Compilation

gcc -DUSE_CLOCK jacobi1d.c timing.c -o jacobi1d

Execution

./jacobi1d 100000000 100
n: 100000000
nsteps: 100
Elapsed time: 44.3638 s

Compilation with -O3

gcc -DUSE_CLOCK -O3 jacobi1d.c timing.c -o jacobi1d

Execution

./jacobi1d 100000000 100
n: 100000000
nsteps: 100
Elapsed time: 23.1418 s

B. ACCELERATED (FIRST VERSION)

Code

for (sweep = 0; sweep < nsweeps; sweep += 2) {

/* Old data in u; new data in utmp */
#pragma acc kernels loop independent

for (i = 1; i < n; ++i)
utmp[i] = (u[i-1] + u[i+1] + h2*f[i])/2;

/* Old data in utmp; new data in u */
#pragma acc kernels loop independent

for (i = 1; i < n; ++i)
u[i] = (utmp[i-1] + utmp[i+1] + h2*f[i])/2;

6

CS205: Computing Foundations for Computational Science, Spring 2018

Compile

pgcc -DUSE_CLOCK -acc -Minfo jacobi1d_oacc_a.c timing.c -o
jacobi1d_oacc_a

30, Generating implicit copyin(u[:n+1])
Generating implicit copyout(utmp[1:n-1])
Generating implicit copyin(f[1:n-1])

31, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
31, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
31, FMA (fused multiply-add) instruction(s) generated
35, Generating implicit copyin(f[1:n-1],utmp[:n+1])

Generating implicit copyout(u[1:n-1])
36, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
36, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
36, FMA (fused multiply-add) instruction(s) generated

Indicates 128 threads per block

Execute

./jacobi1d_oacc_a 100000000 100

n: 100000000
nsteps: 100
Elapsed time: 50.371 s

Accelerator Kernel Timing data
/home/ubuntu/jacobi1d_oacc_a.c

jacobi NVIDIA devicenum=0
time(us): 23,640,216
30: compute region reached 50 times

31: kernel launched 50 times
grid: [65535] block: [128]
device time(us): total=1,028,721 max=20,598 min=20,548

avg=20,574

7

CS205: Computing Foundations for Computational Science, Spring 2018

elapsed time(us): total=1,030,884 max=20,639 min=20,588
avg=20,617

30: data region reached 100 times
30: data copyin transfers: 4800

device time(us): total=7,204,952 max=1,566 min=1,027
avg=1,501

35: data copyout transfers: 2400
device time(us): total=3,586,598 max=1,520 min=1,032

avg=1,494
35: compute region reached 50 times

36: kernel launched 50 times
grid: [65535] block: [128]
device time(us): total=1,028,768 max=20,599 min=20,557

avg=20,575
elapsed time(us): total=1,030,894 max=20,643 min=20,599

avg=20,617
35: data region reached 100 times

35: data copyin transfers: 4800
device time(us): total=7,204,671 max=1,665 min=1,026

avg=1,500
38: data copyout transfers: 2400

device time(us): total=3,586,506 max=1,520 min=1,032
avg=1,494

2.2 seconds in processing and 22 seconds in data transfer

C. ACCELERATED (SECOND ENHANCED VERSION)

Code

#pragma acc data copy(u[0:n]) create(utmp[0:n]) copyin(f[0:n])

for (sweep = 0; sweep < nsweeps; sweep += 2) {

/* Old data in u; new data in utmp */
#pragma acc kernels loop independent

for (i = 1; i < n; ++i)
utmp[i] = (u[i-1] + u[i+1] + h2*f[i])/2;

/* Old data in utmp; new data in u */
#pragma acc kernels loop independent

for (i = 1; i < n; ++i)
u[i] = (utmp[i-1] + utmp[i+1] + h2*f[i])/2;

8

CS205: Computing Foundations for Computational Science, Spring 2018

}

Compile

pgcc -DUSE_CLOCK -acc -Minfo jacobi1d_oacc_b.c timing.c -o
jacobi1d_oacc_b

27, Generating copyin(f[:n])
Generating create(utmp[:n])
Generating copy(u[:n])

33, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
33, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
33, FMA (fused multiply-add) instruction(s) generated
38, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
38, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
38, FMA (fused multiply-add) instruction(s) generated

Indicates 128 threads per block

Execute

./jacobi1d_oacc_b 100000000 100

n: 100000000
nsteps: 100
Elapsed time: 2.77933 s

Accelerator Kernel Timing data
/home/ubuntu/jacobi1d_oacc_b.c

jacobi NVIDIA devicenum=0
time(us): 2,367,934
27: data region reached 2 times

27: data copyin transfers: 96
device time(us): total=143,565 max=2,221 min=1,031

avg=1,495
42: data copyout transfers: 48

9

CS205: Computing Foundations for Computational Science, Spring 2018

device time(us): total=71,617 max=1,507 min=1,038
avg=1,492

32: compute region reached 50 times
33: kernel launched 50 times

grid: [65535] block: [128]
device time(us): total=1,076,496 max=21,566 min=21,478

avg=21,529
elapsed time(us): total=1,077,723 max=21,596 min=21,502

avg=21,554
37: compute region reached 50 times

38: kernel launched 50 times
grid: [65535] block: [128]
device time(us): total=1,076,256 max=21,555 min=21,488

avg=21,525
elapsed time(us): total=1,077,523 max=21,600 min=21,525

avg=21,550

num_gangs=65535 num_workers=1 vector_length=128 grid=65535 block=128

2.2 seconds in processing and 1.3 in data transfer

C. COMPARE EXECUTION TIME OF BOTH CODES

TABLE

k
A B

6 0.66 0.16
7 5.3 0.4
8 50 2.7

D. TUNING CHANGING NUMBER OF THREADS PER BLOCK

About OpenACC tuning

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0517B-Monday-P
rogramming-GPUs-OpenACC.pdf

Code

#pragma acc kernels loop independent vector(1024)

OPTIMAL FOR 1024 (maximum allowed by PGI compilers)

10

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0517B-Monday-Programming-GPUs-OpenACC.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0517B-Monday-Programming-GPUs-OpenACC.pdf

CS205: Computing Foundations for Computational Science, Spring 2018

n: 100000000
nsteps: 100
Elapsed time: 2.61042 s

Accelerator Kernel Timing data
/home/ubuntu/jacobi1d_oacc_c.c

jacobi NVIDIA devicenum=0
time(us): 2,195,183
27: data region reached 2 times

27: data copyin transfers: 96
device time(us): total=145,028 max=1,568 min=1,036

avg=1,510
42: data copyout transfers: 48

device time(us): total=71,878 max=1,510 min=1,040
avg=1,497

32: compute region reached 50 times
33: kernel launched 50 times

grid: [65535] block: [1024]
device time(us): total=989,300 max=19,800 min=19,768

avg=19,786
elapsed time(us): total=990,549 max=19,859 min=19,792

avg=19,810
37: compute region reached 50 times

38: kernel launched 50 times
grid: [65535] block: [1024]
device time(us): total=988,977 max=19,795 min=19,765

avg=19,779
elapsed time(us): total=990,182 max=19,854 min=19,787

avg=19,803

WHY?

The programmer divides work into threads, threads into thread blocks, and thread blocks into
grids. The compute work distributor allocates thread blocks to Streaming Multiprocessors (SMs).
Once a thread block is distributed to a SM the resources for the thread block are allocated
(warps and shared memory) and threads are divided into groups of 32 threads called warps.

In this particular case, the larger the vector length the lower the number of blocks, and given
that each grid has 65,535 blocks, this reduces the management overhead.

100.000.000 / 128 => 781.250 blocks
100.000.000 / 1024 => 97.565 blocks

11

CS205: Computing Foundations for Computational Science, Spring 2018

3.2. Acceleration of Matrix Multiplication (5%)

A. SEQUENTIAL CODE

Sequential optimized code

gcc -DUSE_CLOCK -O3 seq_mm.c timing.c -o seq_mm

Execution

Elapsed time: 2.4834 s

B. ACCELERATED VERSION

Accelerated code

#pragma acc kernels loop independent copyout(c) copyin(a,b)
for (i=0; i<N; i++)

{
for(j=0; j<N; j++)

for (k=0; k<N; k++)
c[i][j] += a[i][k] * b[k][j];

}

Compile

pgcc -DUSE_CLOCK -acc -Minfo seq_mm_oacc.c timing.c -o seq_mm_oacc

Execute

Elapsed time: 0.913734 s

Accelerator Kernel Timing data
/home/ubuntu/seq_mm_oacc.c

main NVIDIA devicenum=0
time(us): 216,659
26: compute region reached 1 time

12

CS205: Computing Foundations for Computational Science, Spring 2018

30: kernel launched 1 time
grid: [12x1500] block: [128]
device time(us): total=211,947 max=211,947 min=211,947

avg=211,947
elapsed time(us): total=211,990 max=211,990 min=211,990

avg=211,990
26: data region reached 2 times

26: data copyin transfers: 4
device time(us): total=3,257 max=1,503 min=122 avg=814

34: data copyout transfers: 2
device time(us): total=1,455 max=1,339 min=116 avg=727

C. DISCUSSION

See the GPU part is only 0.2, (compared with 2.4 from the optimized sequential execution).
However there is an overhead in set-up and overall time is 0.9. We can reduce transfer time by
creating the a and b arrays in the GPUs

The system by default assigns 128 threads per block and a 12x1500 block grid that work
columnwise with the matrix.

13

CS205: Computing Foundations for Computational Science, Spring 2018

4. Shared-Memory Parallel Processing (20%)

COMPUTING EXPERIMENT ENVIRONMENT

System: t2.2xlarge at AWS

CPU Specs

Model: Intel(R) Xeon(R) CPU E5-2686 v4
Clock: 2.3 GHz
Number of vCPUs: 8
Main Memory: 16 GiB
EBS Bandwidth: 3.5 Gbps
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K

Operating System

Distro: Ubuntu 16.04 LTS
Kernel: 4.4.0-1047-aws

Compiler

Name: gcc
Version: 5.4.1 20160904 (Ubuntu 5.4.1-2ubuntu1~16.04)

4.1. Parallelization of Basic Code (10%)

A. SEQUENTIAL EXECUTION

Compilation with -O3

gcc -DUSE_CLOCK -O3 jacobi1d.c timing.c -o jacobi1d

Execution

./jacobi1d 100000000 100

n: 100000000
nsteps: 100
Elapsed time: 23.2348 s

B. PARALLELIZED

Code

14

CS205: Computing Foundations for Computational Science, Spring 2018

for (sweep = 0; sweep < nsweeps; sweep += 2) {

#pragma omp parallel shared(u, utmp, f, h2,n) private(i)
{

/* Old data in u; new data in utmp */
#pragma omp for

for (i = 1; i < n; ++i)
utmp[i] = (u[i-1] + u[i+1] + h2*f[i])/2;

/* Old data in utmp; new data in u */
#pragma omp for

for (i = 1; i < n; ++i)
u[i] = (utmp[i-1] + utmp[i+1] + h2*f[i])/2;

}
}

Compile

gcc -DUSE_CLOCK -fopenmp -O3 jacobi1d_omp.c timing.c -o jacobi1d_omp

Execute with 4 cores

export OMP_NUM_THREADS=4

./jacobi1d_omp 100000000 100

Threads: 4
n: 100000000
nsteps: 100
Elapsed time: 7.05428 s

C. PERFORMANCE TABLES

1. Execution times for different problem sizes 10^k, where k=5 to 8

Time Parallel (4 cores)

5 0.004
6 0.03
7 0.71

15

CS205: Computing Foundations for Computational Science, Spring 2018

8 7.05

Time Sequential

5 0.009
6 0.094
7 2.3
8 24.8

Speedup (4 cores)

5 2.25
6 3.13
7 3.24
8 3.52

The speedup grows with the size of the problem because the granularity also grows. As
problem size increases, the synchronization overhead due to creation/control of threads
becomes lower compared with the computing in each time step.

2. Run your codes with ncells of 100,000 on 2-8 cores and produce a speedup plot.

Time Parallel (10^8 and growing number of cores)

Cores Time Speedup

1 24 1.00

2 12.3 1.95

3 8.7 2.76

4 7.1 3.38

5 6.3 3.81

6 6 4.00

7 6.02 3.99

8 7 3.43

As problem size per core decreases, the synchronization overhead due to creation/control of
threads becomes dominant. I think this behaviour is because these instances only allow 4

16

CS205: Computing Foundations for Computational Science, Spring 2018

simultaneous threads. We will see that with MPI on multiple nodes we can continue
reducing the execution time.

4.2. Scheduling Policies (10%)

I took the code from

https://people.sc.fsu.edu/~jburkardt/c_src/mandelbrot_openmp/mandelbrot_openmp.html

Compile

gcc -O3 -fopenmp mandelbrot_omp.c -o mandelbrot_omp -lm

Execution time

1 0.30
2 0.15
4 0.15
8 0.12

This is because by default schedule is static and assign a chunk of 500/4 contiguous iterations
to each thread. Because computing is concentrated in some of the pixels, the distribution of
work is unbalanced.

Now if you specify schedule(static,1), chunk is 1, which is the number of contiguous iterations
assigned to each thread, and the work gets balanced.

1 0.30
2 0.15
4 0.08
8 0.04

In the first case, the first thread executes iterations 1 to 125, next 126 to 500…. And with chunk
equal to 1, the first executes iterations, 1,5,9… the second 2,6,10…

And with dynamic and default chunk (which is one)

1 0.30
2 0.15
4 0.08
8 0.04

17

https://people.sc.fsu.edu/~jburkardt/c_src/mandelbrot_openmp/mandelbrot_openmp.html

CS205: Computing Foundations for Computational Science, Spring 2018

5. Distributed-Memory Parallel Processing (20%)

COMPUTING EXPERIMENT ENVIRONMENT

Distributed Memory

Nodes: 2
Type: t2.2xlarge at AWS
Network: Shared 1 Gbit/sec

CPU Specs

Model: Intel(R) Xeon(R) CPU E5-2686 v4
Clock: 2.3 GHz
Number of vCPUs: 8
Main Memory: 16 GiB
EBS Bandwidth: 3.5 Gbps
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K

Operating System

Distro: Ubuntu 16.04 LTS
Kernel: 4.4.0-1047-aws

Compiler

mpicc MPICH version 3.2
gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.6)

5.1. Parallelization of Basic Code (10%)

A. SEQUENTIAL EXECUTION

Compilation with -O3

gcc -DUSE_CLOCK -O3 jacobi1d.c timing.c -o jacobi1d

Execution

./jacobi1d 100000000 100

n: 100000000
nsteps: 100
Elapsed time: 19.5775 s

B. PARALLELIZED

18

CS205: Computing Foundations for Computational Science, Spring 2018

Code

/* YOUR SOLUTION HERE */

/* SEND RIGHT */

if (rank != size-1)

MPI_Send(&u[n-1], 1, MPI_DOUBLE, rank+1,
1, MPI_COMM_WORLD);

/* RECEIVE FROM RIGHT */

if (rank != 0)

MPI_Recv(&u[0], 1, MPI_DOUBLE, rank-1,
1, MPI_COMM_WORLD, &status);

/* SEND LEFT */

if (rank != 0)

MPI_Send(&u[1], 1, MPI_DOUBLE, rank-1,
1, MPI_COMM_WORLD);

/* RECEIVE FROM RIGHT */

if (rank != size-1)

MPI_Recv(&u[n], 1, MPI_DOUBLE, rank+1,
1, MPI_COMM_WORLD, &status);

Compile

mpicc -O3 jacobi1d_mpi.c -o jacobi1d_mpi

Try in one node with 4 processes

mpirun -np 4 ./jacobi1d_mpi 100000000 100
Processes: 4
n: 100000000

19

CS205: Computing Foundations for Computational Science, Spring 2018

nsteps: 100
Elapsed time: 7.81268 s

Try in one node with 8 processes

mpirun -np 8 ./jacobi1d_mpi 100000000 100
Processes: 8
n: 100000000
nsteps: 100
Elapsed time: 7.28838 s

Same behaviour with OpenMP, no improvement from 4 tasks.

Now 8 on two nodes

mpirun -np 8 -hosts master,node1 ./jacobi1d_mpi 100000000 100
Processes: 8
n: 100000000
nsteps: 100
Elapsed time: 3.87772 s

C. PERFORMANCE TABLES

Should be very similar to those obtained with OpenMP. But in this case because we have two
nodes we can achieve 8-grade parallelism.

5.2. Hybrid Parallel Processing (10%)

New Code

for (sweep = 0; sweep < nsweeps; sweep += 2) {

/* Exchange ghost cells */
ghost_exchange(u, n, rank, size);
utmp[0] = u[0];
utmp[n] = u[n];

/* Sweep */
#pragma omp parallel for shared(u, utmp, f, h2,n) private(i)

for (i = 1; i < n; ++i)
utmp[i] = (u[i-1] + u[i+1] + h2*f[i])/2;

20

CS205: Computing Foundations for Computational Science, Spring 2018

/* Exchange ghost cells */
ghost_exchange(utmp, n, rank, size);
u[0] = utmp[0];
u[n] = utmp[n];

/* Old data in utmp; new data in u */
#pragma omp parallel for shared(u, utmp, f, h2,n) private(i)

for (i = 1; i < n; ++i)
u[i] = (utmp[i-1] + utmp[i+1] + h2*f[i])/2;

}

Compile

mpicc -O3 -fopenmp jacobi1d_mpi_omp.c -o jacobi1d_mpi_omp

Evaluate

2 tasks with 4 threads each

mpirun -np 2 -hosts master,node1 -genv OMP_NUM_THREADS 4
./jacobi1d_mpi_omp 100000000 100

Processes: 2
n: 100000000
nsteps: 100
Elapsed time: 4.00473 s

4 tasks with 2 threads each

mpirun -np 4 -hosts master,node1 -genv OMP_NUM_THREADS 2
./jacobi1d_mpi_omp 100000000 100

Processes: 4
n: 100000000
nsteps: 100
Elapsed time: 3.96339 s

8 tasks with 1 thread each

mpirun -np 8 -hosts master,node1 -genv OMP_NUM_THREADS 1
./jacobi1d_mpi_omp 100000000 100

21

CS205: Computing Foundations for Computational Science, Spring 2018

Processes: 8
n: 100000000
nsteps: 100
Elapsed time: 3.88561 s

Discuss

No difference in performance in this case.

22

