
CS205: Computing Foundations for Computational Science, Spring 2019

Solutions HW: A. Parallel Processing
Fundamentals

1. Introduction to Parallel Thinking

1.1. Revenge on the Campus Store

1.

256 seconds (or 255 if the initialization of bag 1 does not take time).

2.

They can divide the number of bags among them and count them, this leads to: (256/8)-1 = 31 seconds,

They then have to combine their numbers, which can be done in 3 steps (8 numbers to 4 numbers to 2
numbers to 1 number) so: (256/8)-1 +3 = 34s.

3.

The total time (T) it takes to count 256 bags with E employees can be expressed as:

T = ceiling(256/E)-1 +ceiling(log2(E))

Because of the ceiling functions, this cannot be solved algebraically. Trying integers 1-256 for E in the
equation for T gives a minimum time of T = 8. The lowest number of employees to realize this time with
is 128.

4.

The time it takes for N bags is given by: T = ceiling(N/E)-1 +ceiling(log2E)

Which means the optimal number of employees is given by: E = N/2 and the optimal time is given by T =
1+ceiling(log2(E)). Meanwhile, for the lone employee, T = N-1.

1

CS205: Computing Foundations for Computational Science, Spring 2019

PLOT

5.

If communication takes 1s then the time equation changes to: T = ceiling(256/E)-1 +2 ceiling(log2E)

Numerically solving this problem shows that the minimum time spent is 15s, which is reached with 128
employees.

6.

Handing over the bags at the start of the process would add E interactions. What makes this
problematic is that part of the counting could already start while the handing over of bags is still taking
place. Here, it is assumed this is not the case.

If one bag is transferred from the student to the cashiers at one time, it would simply add 256s, giving a
total of 8+256 = 264s. If two bags were taken at once, it would be 8+128 = 136s. The number of bags
given to an employee can be set equal to the number of bags they have to count, and as such be
included in the optimization, giving the time equation: T = E + ceiling(256/E) -1+2*ceiling(log2E)

2

CS205: Computing Foundations for Computational Science, Spring 2019

1.2. Graph Parallelization

1. Maximum degree of concurrency => the maximum number of tasks that can be executed in parallel

a. 8

b. 8

c. 8

d. 8

2. Critical path length => The longest directed path between any pair of start and finish nodes

a. 4

b. 4

c. 7

d. 8

3. The minimum number of processors needed to obtain the maximum speed-up

a. Work: 15 => Max Speed-up: 15/4 => Min. Num. Proc.: 8

b. Work: 15 => Max Speed-up: 15/4 => Min. Num. Proc.: 8

c. Work: 14 => Max Speed-up: 14/7 => Min. Num. Proc.: 3

d. Work: 15 => Max Speed-up: 15/8 => Min. Num. Proc.: 2

4. The maximum achievable speed-up if the number of processors is limited to (i) 2 and (ii) 5

a. I: 15/8 ii: 15/5

b. i: 15/8 ii: 15/5

c. i: 14/8 ii: 14/7

d. i: 15/8 ii: 15/8

3

CS205: Computing Foundations for Computational Science, Spring 2019

2. Parallel Processing Architectures

2.1. Basic Concepts

1.

Incorrect: The number of transistors continued doubling approximately every two years (slowing of
Moore’s Law started later, in 2012 approx.). However because single processor speed is limited by
memory latency, instruction level parallelism and an exponential growth of power consumption, the
extra transistors started to be used to offer more cores.

2.

Correct: Basically it means that cooling is becoming prohibitively expensive

3.

Incorrect. Having new programming models for parallel computing does not mean that any code can be
parallelized. Many algorithms are sequential and we should use alternative algorithms with more
parallelism level that solve the same problem

4.

Incorrect. Multi-core CPU is something relatively new, but there have been shared-memory parallel
systems since the 70s.

2.2. Superscalar Processors

Modern CPUs contain multiple cores and each core has multiple copies of the same physical resources,
such as execution units, issue control or data paths. This allows the execution of more than 1
instruction per core and CPU cycle. For example, the new Intel(R) Core(TM) i9-7900X CPU contains 10
cores, where each core allows the execution of 2 simultaneous threads. Its CPU Core Pipeline
functionality is based on the Skylake Microarchitecture with a 6-wide superscalar design per thread.

1.

In each cycle: 6 operations/thread * 2 threads/core * 10 cores/cpu => 120 operations/cpu; * 3.3 GHz =>
396 Gflops

2.

Matrix multiplication flops is 2 n3 => 2 1012 flops => on 396 109 flops/second => 5 seconds

It could be more accurate (n^2)(2n - 1), or n^2.807 as given by wikipedia

4

CS205: Computing Foundations for Computational Science, Spring 2019

3.

Bandwidth demand: In each cycle 120 instructions/cpu => 12 store instructions/cpu => 96 bytes /cpu =>
316.8 GB/sec => 2 CPUs!

2.3. Top500 Showing Signs of Stagnation

1. Students should provide a graph built by themselves

2.

Slowing of Moore’s Law and reduction of investment (financial crisis).

3.

5

CS205: Computing Foundations for Computational Science, Spring 2019

3. Parallel Processing on the Cloud

3.1. Public Cloud Pricing and SLAs

You can go to the next article for a complete pricing comparison (some data are outdated)

https://www.rightscale.com/blog/cloud-cost-analysis/comparing-cloud-instance-pricing-aws-vs-azure-vs

-google-vs-ibm

About SLAs

https://aws.amazon.com/ec2/sla/
https://cloud.google.com/compute/sla
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_6/
http://www.softlayer.com/sites/default/files/softlayer_service_level_agreement_-_standard_services_f
inal_may_2016.pdf

Provider Price
($/hour)

SLA Penalty (Service Credit)

Amazon
AWS

m3.large
0.133 99.99%

Google
Compute

n1.standard-2
0.095 99.95%

Microsoft
Azure

D2 v3
0.096

99.99%1

IBM Cloud BL1.2x8.200
0.137

99.95%2

The nines are a tempting target for setting availability goals. As shown in below table, the nines consist
of having all numeral nines in a percentage that represents the time the system is available.

2 https://www-03.ibm.com/software/sla/sladb.nsf/pdf/6605-15/$file/i126-6605-15_01-2019_en_US.pdf

1 https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

6

https://www-03.ibm.com/software/sla/sladb.nsf/pdf/6605-15/$file/i126-6605-15_01-2019_en_US.pdf
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

CS205: Computing Foundations for Computational Science, Spring 2019

3.2. Linpack on a Single AWS Node

For installation see document (this should be explained in the second lab session)

https://docs.google.com/document/d/1txrg_1Gfl8_IwEqVKE0R2MuiQcdkYcjjNLGHURNGtqk/edi
t

My results

==
========
T/V N NB P Q Time Gflops
--
WR00C2C2 30000 256 2 2 459.46 3.918e+01
HPL_pdgesv() start time Wed Jan 16 04:38:13 2019

HPL_pdgesv() end time Wed Jan 16 04:45:52 2019

--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0012625 PASSED

7

CS205: Computing Foundations for Computational Science, Spring 2019

4. Designing Parallel Programs

8

CS205: Computing Foundations for Computational Science, Spring 2019

4.1 Time Complexity Plots

4.2. Amdahl’s Law

1.

0.6 = 1 / (0.08p+0.92) => 9 processing elements

2.

S = (n2 tsmooth)/((n2/p) tsmooth+n tcomm) => E = (n tsmooth)/(n tsmooth+p tcomm) => p < n (tsmooth/tcomm)

3.

Gustafson's law addresses the shortcomings of Amdahl's law, which is based on the assumption of a
fixed problem size, that is of an execution workload that does not change with respect to the
improvement of the resources. Gustafson's law instead proposes that programmers tend to set the size
of problems to fully exploit the computing power that becomes available as the resources improve.
Therefore, if faster equipment is available, larger problems can be solved within the same time.

Both can be used to measure performance and scalability. The one to use depends on the type of
scaling we want to measure, fixed problem size and reduce execution time, or fixed size per processor
and keep execution time.

9

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Problem_size

