
1

Lecture 33: Introduction to Reinforcement
Learning 3

CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

2

Review: Policy Itera1on vs Value Itera1on
Includes: finding op1mal value func1on +
one policy extrac1on. There is no repe33on of
the two because once the value func3on is
op3mal, then the policy out of it should also be
op3mal

Includes: policy evalua1on + policy
improvement, and the two are repeated
itera3vely un3l policy converges.

Each step gives a new value func3on. There is
no explicit policy computed each step.

The computa3on alternates between value and
policy.

Each intermediate may not correspond to any
valid policy .

v
π

Every from the loop corresponds to a valid
policy .

v
π

It is based on the Bellman Op3mality equa3onIt is based on the Bellman Expecta3on equa3on

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
3

Contents

• Temporal Difference (TD) Learning

• Mo1va1on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
4

5

Un3l this point we have seen situa3ons where we know the environment completely.

The mouse knew the states, the transi3on probability of the states and the rewards.

6

Un3l this point we have seen situa3ons where we know the environment completely.

The mouse knew the states, the transi3on probability of the states and the rewards.

But, it is highly unlikely for an agent to know the en3re Markov Decision Process (MDP).

7

Instead of a mouse, consider a Panda in a similar grid-like environment.

The goal remains the same, get the snack without geSng an electric shock.

The difference is in the fact, that the Panda is smart but a tad-bit lazy, hence it will be using a
hoverboard to navigate to the goal.

8

Now consider that the hoverboard has been tampered with. So if the Panda wants to go Up, it
does so with a certain probability and goes in the other 3 direc3ons, with a probability

.

p
(1 − p)

3

Let’s try going left.

9

Now consider that the hoverboard has been tampered with. So if the Panda wants to go Up, it
does so with a certain probability and goes in the other 3 direc3ons, with a probability

.

The problem is the value of is unknown.

p
(1 − p)

3

p

What is up with this
board? It goes
everywhere.

10

We cannot use dynamic programming here as its basis is that the transi3on probability is
known.

P

We need an alterna3ve that works for model-free environments.

11

The simplest way is to just try the environment and learn from experience.

Fine by me, if you say I
have infinite lives.

Temporal Difference Learning

12

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc1on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
13

14

Unlike dynamic programming, the TD methods learn directly from episodes of experience, as it is
model-free.

Our aim now is to find the op3mal policy, , given a policy .

The TD methods use the Generalized Policy Itera3on (GPI) - i.e. policy evalua3on and policy
improvement strategy which was used for dynamic programming.

π * π

Temporal Difference (TD) Learning

We first evaluate the given policy, , and then improve greedily to get the op3mal policy.π

v = vπ

π = greedy(v)

Start v*, π *

Policy evalua3on

Policy improvement

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic1on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
15

16

TD Predic3on is a policy evalua3on method, that finds the value func3on given a policy, .

For each state, , we update the value func3on of the state, , immediately a\er transi3oning
to state .

π

st v(st)
st+1

TD Prediction

v(st) ← v(st) + α [(rt+1 + γv(st+1)) − v(st)]

Value func3on of the current state, S

Value func3on of the next state
according to policy

St+1
π

Reward for going from state to state St St+1

Updated value func3on of
the current state, S

Learning rate - How much of the error should we
accept and therefore adjust our es3mates towards

 is the expected return based on the policy.

The term is called the TD error.

rt+1 + γv(st+1)

(rt+1 + γv(st+1)) − v(st)

17

INPUT - The policy to be evaluated

Ini3alize , for all , arbitrarily except

Loop for each episode:

Ini3alize s

Loop for each step of episode:

ac3on given by for

Take ac3on , observe

un3l is terminal

π
v(s) s ∈ S v[terminal] = 0

a ← π s
a r, s′

v(s) ← v(s) + α [(r + γv(s′)) − v(s)]
s ← s′

s

PS
U

E
D

O
 C

O
D

E

PO
LIC

Y
 E

VA
LU

ATIO
N

18

π
a

St

r

St+1

Temporal Difference Backup

v(st) ← v(st) + α [(rt+1 + γv(st+1)) − v(st)]

The TD methods can be used for non-episodic tasks as well.

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
19

20

There is one major problem with this approach, if we use the state-value func3on, , then
greedy improvement over requires the model of MDP.

v(s)
v(s)

TD Control
TD Control is a policy improvement method, that finds the op3mal policy, , by ac3ng greedily
with the given value func3on based on a policy, .

π *
π

π′ (s) = argmax
a ∈ A

rs,a + p({s′ , r} |s, a) v(s′)

But, for a model-free environment, is unknown.

Thus, we can only evaluate the model but not improve it.

P

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
21

22

Use, the ac3on-value func3on for both policy evalua3on and improvement.

The steps remain the same, except we use the ac3on-value instead of the state value.

Q(s, a)

TD Control - SARSA (state–action–reward–state–action)

SOLUTION

π′ (s) = argmax
a ∈ A

Q(s, a)

Policy Improvement

23

Q = qπ

π = greedy(Q)

Start
Q π

 q*
π*

Policy evalua3on

Policy improvement

POLICY EVALUATION with

POLICY IMPROVEMENT with

Q

greedy(Q)

24

Q = qπ

π = greedy(Q)

Start
Q π

 q*
π*

Policy evalua3on

Policy improvement

POLICY EVALUATION with

POLICY IMPROVEMENT with

Q

greedy(Q)

Finally, there is a way for
me to figure out the best

route to reach my bamboo.

25

Q = qπ

π = greedy(Q)

Start
Q π

 q*
π*

Policy evalua3on

Policy improvement

POLICY EVALUATION with

POLICY IMPROVEMENT with

Q

greedy(Q)

Finally, there is a way for
me to figure out the best

route to reach my bamboo.

Hehe… not so fast

26

One major issue with this greedy approach is that, for a determinis3c policy, we may never visit
some state-ac3on pairs.

Hence, the ac3on-value func3on will not be updated, because of which the policy will not
improve with experience.

27

One major issue with this greedy approach is that, for a determinis3c policy, we may never visit
some state-ac3on pairs.

Hence, the ac3on-value func3on will not be updated, because of which the policy will not
improve with experience.

SOLUTION

28

One major issue with this greedy approach is that, for a determinis3c policy, we may never visit
some state-ac3on pairs.

Hence, the ac3on-value func3on will not be updated, because of which the policy will not
improve with experience.

SOLUTION
Use explora3on!

29

One major issue with this greedy approach is that, for a determinis3c policy, we may never visit
some state-ac3on pairs.

Hence, the ac3on-value func3on will not be updated, because of which the policy will not
improve with experience.

SOLUTION
Use explora3on!

With probability choose the greedy ac3on.

With probability choose a random ac3on.

1 − ϵ

ϵ

- GREEDY ALGORITHMϵ

30

In on-policy TD learning, the agent learns the value of the policy , that is used to make the
decisions.

The value func3ons are updated using results from execu3ng ac3ons determined by some policy.
These policies are usually "so\" and non-determinis3c.

The meaning of "so\" in this sense, is that it ensures there is always an element of explora3on
to the policy.

π

On-policy TD Learning

I’m almost there…..only
 episodes to go∞ − 500

31

In on-policy TD learning, the agent learns the value of the policy , that is used to make the
decisions.

The value func3ons are updated using results from execu3ng ac3ons determined by some policy.
These policies are usually "so\" and non-determinis3c.

The meaning of "so\" in this sense, is that it ensures there is always an element of explora3on
to the policy.

π

On-policy TD Learning

I’m almost there…..only
 episodes to go∞ − 500SARSA is an example

of On-policy learning

32

Off-Policy methods can learn different policies for behavior and es3ma3on.

These algorithms can update the es3mated value func3ons using hypothe3cal ac3ons, those
which have not actually been tried.

An agent trained using an off-policy method may end up learning tac3cs that it did not
necessarily exhibit during the learning phase.

Off-policy TD Learning

Too tired… let me just
watch and learn what to do

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
33

Q - Learning

34

35

Q-Learning is an Off-Policy algorithm for Temporal Difference learning.

Q-Learning learns the op3mal policy even when ac3ons are selected according to a more
exploratory or even random policy.

Q - Learning

36

Q-Learning is an Off-Policy algorithm for Temporal Difference learning.

Q-Learning learns the op3mal policy even when ac3ons are selected according to a more
exploratory or even random policy.

Here, we have 2 policies, a current policy, called behavior policy, and a target policy , that we
want to update.

μ π

Q - Learning

Given that you are in a state ,
Choose an ac3on
Choose an ac3on

st
at+1 ∼ μ(⋅ |st)
a′ ∼ π(⋅ |st)

Update towards the alterna3ve ac3on, target q(St, At) π
q(st, at) ← q(st, at) + α [rt+1 + γ max

a
q(st+1, a′) − q(st, at)]

IN
TU

IT
IO

N

37

Ini3alize arbitrarily except

Loop for each episode:

Ini3alize

Loop for each step of episode:

ac3on for given by policy derived from for

Take ac3on , observe

un3l is terminal

q(s, a), ∀ s ∈ S, a ∈ A(s) q[terminal, ⋅] = 0

s

a ← s q s

a r, s′

q(s, a) ← q(s, a) + α [(r + γmax
a′

q(s′ , a′)) − q(s, a)]

s ← s′

s

PS
U

E
D

O
 C

O
D

E

PO
LIC

Y
 E

VA
LU

ATIO
N

Ac3on according to behavior policy μ

Update Q es3mate with the sample
data according to greedy policy for
ac3on selec3on.

{
This can be visualised as a table, with rows as the state and columns
as all possible ac3on. Each cell represents the ac3on-value
corresponding to that state and ac3on. This is called the Q-table.

38

Q - Table

The output of Q - learning is a Q - table with rows as the state and columns as all possible
ac3on. Each cell represents the ac3on-value corresponding to that state and ac3on.

The agent then refers to this “look-up” table to take an ac3on given it is in a state .st

10 -2.2 3

-0.6 -7 4

5 6.3 0.1

-9.5 13.4 -4

…. …. …. ….

8.6 -1.5 7

s1

s2
s3
s4

sn

a1 a2 a3

S
TA

TE

ACTION

39

Q - Table

The output of Q - learning is a Q - table with rows as the state and columns as all possible
ac3on. Each cell represents the ac3on-value corresponding to that state and ac3on.

The agent then refers to this “look-up” table to take an ac3on given it is in a state .st

10 -2.2 3

-0.6 -7 4

5 6.3 0.1

-9.5 13.4 -4

…. …. …. ….

8.6 -1.5 7

s1

s2
s3
s4

sn

a1 a2 a3

S
TA

TE

ACTION

Consider the agent is in state . Now, the
agent refers to this Q-table to take an ac3on.

The Q-values associated to state are 5, 6.3
and 0.1. The agent takes the argmax of these
values, which gives as the appropriate
ac3on.

s3

s3

a2

Contents

• Temporal Difference (TD) Learning

• Mo3va3on

• Introduc3on

• TD Predic3on

• TD Control

• SARSA

• Q - Learning

• Deep Q - Learning
40

Deep Q Network (DQN)

41

42

For many problems, it is imprac3cal to represent the Q-func3on as a table containing values for
each combina3on of and . s a

1

2

3

100,000
.
.
.

1 2 3 100,000.

You expect me to
remember and recall all

this? You gotta be kidding
me

43

For many problems, it is imprac3cal to represent the Q-func3on as a table containing values for
each combina3on of and .

Instead, we train a func3on approximator, such as a neural network with parameters to
es3mate the Q-values

s a

θ
Q(s, a; θ) ≈ Q * (s, a)

1

2

3

100,000
.
.
.

1 2 3 100,000.

You expect me to
remember and recall all

this? You gotta be kidding
me

44

The DQN (Deep Q-Network) algorithm was developed by DeepMind in 2015.

It was able to solve a wide range of Atari games (some to superhuman level) by combining
reinforcement learning and deep neural networks at scale.

The algorithm was developed by enhancing a classic RL algorithm called Q-Learning with deep
neural networks and a technique called experience replay.

DQN replaces the standard Q - table by a Deep Neural Network which maps environment states
to ac3ons.

45

State, s

Ac3on, a

Q(s, a)Deep Neural
Network

46

State, s

Ac3on, a

Q(s, a)Deep Neural
Network

There is one problem with this, if we want to update the policy, then we would like to try all
the possible ac3ons.

So, for ac3ons, we would have to run this network 3mes. n n

47

An alterna3ve is to have a network that takes as input only the state and returns the Q-value
for each ac3on.

State, s

Q(s, a1)

Deep Neural
Network

Q(s, a2)

Q(s, a3)

Q(s, an)

48

An alterna3ve is to have a network that takes as input only the state and returns the Q-value
for each ac3on.

State, s

Q(s, a1)

Deep Neural
Network

Q(s, a2)

Q(s, a3)

Q(s, an)

{
Argmax of Q-

values gives the
policy

49

To train the network we need some data.

This data is got by execu3ng the random policy in the environment for a few steps, recording
the ac3ons, states and the return.

DQN: Training

50

To train the network we need some data.

This data is got by execu3ng the random policy in the environment for a few steps, recording
the ac3ons, states and the return.

The loss of the neural network is a simple MSE of the following form:

DQN: Training

ℒ = 𝔼 [(r + γmax
a′

Q(s′ , a′)) − Q(s, a)
2]

TARGET
{

PREDICTION
{ Q-Loss

51

Exercise: Q-Learning using DQN

The aim of this exercise is to find the Q-value given an
environment. For this, we will be using a pre-defined
environment by OpenAI Gym called FrozenLake-v0.

We will get the Q-value of the environment by implemen3ng a
Deep Q Network.

