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Review: Policy Itera1on vs Value Itera1on
Includes: finding op1mal value func1on + 
one policy extrac1on. There is no repe33on of 
the two because once the value func3on is 
op3mal, then the policy out of it should also be 
op3mal

Includes: policy evalua1on + policy 
improvement, and the two are repeated 
itera3vely un3l policy converges.

Each step gives a new value func3on. There is 
no explicit policy computed each step. 

The computa3on alternates between value and 
policy.

Each intermediate  may not correspond to any 
valid policy .

v
π

Every  from the loop corresponds to a valid 
policy . 

v
π

It is based on the Bellman Op3mality equa3onIt is based on the Bellman Expecta3on equa3on
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Un3l this point we have seen situa3ons where we know the environment completely. 

The mouse knew the states, the transi3on probability of the states and the rewards. 
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Un3l this point we have seen situa3ons where we know the environment completely. 

The mouse knew the states, the transi3on probability of the states and the rewards. 

But, it is highly unlikely for an agent to know the en3re Markov Decision Process (MDP). 
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Instead of a mouse, consider a Panda in a similar grid-like environment. 

The goal remains the same, get the snack without geSng an electric shock. 

The difference is in the fact, that the Panda is smart but a tad-bit lazy, hence it will be using a 
hoverboard to navigate to the goal.
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Now consider that the hoverboard has been tampered with. So if the Panda wants to go Up, it 
does so with a certain probability  and goes in the other 3 direc3ons, with a probability 

.

p
(1 − p)

3

Let’s try going left.
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Now consider that the hoverboard has been tampered with. So if the Panda wants to go Up, it 
does so with a certain probability  and goes in the other 3 direc3ons, with a probability 

. 

The problem is the value of  is unknown.

p
(1 − p)

3

p

What is up with this 
board? It goes 
everywhere.
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We cannot use dynamic programming here as its basis is that the transi3on probability  is 
known.

P

We need an alterna3ve that works for model-free environments.
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The simplest way is to just try the environment and learn from experience.

Fine by me, if you say I 
have infinite lives.



Temporal Difference Learning

12
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Unlike dynamic programming, the TD methods learn directly from episodes of experience, as it is 
model-free. 

Our aim now is to find the op3mal policy, , given a policy . 

The TD methods use the Generalized Policy Itera3on (GPI) - i.e.  policy evalua3on and policy 
improvement strategy which was used for dynamic programming.

π * π

Temporal Difference (TD) Learning

We first evaluate the given policy,  , and then improve greedily to get the op3mal policy.π

v = vπ

π = greedy(v)

Start   v*, π *

Policy evalua3on 

Policy improvement
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TD Predic3on is a policy evalua3on method, that finds the value func3on given a policy, . 

For each state,  , we update the value func3on of the state, , immediately a\er transi3oning 
to state .

π

st v(st)
st+1

TD Prediction

v(st) ← v(st) + α [ (rt+1 + γv(st+1)) − v(st) ]

Value func3on of the current state, S

Value func3on of the next state  
according to policy 

St+1
π

Reward for going from state  to state St St+1

Updated value func3on of 
the current state, S

Learning rate - How much of the error should we 
accept and therefore adjust our es3mates towards

 is the expected return based on the policy. 

The term   is called the TD error.

rt+1 + γv(st+1)

(rt+1 + γv(st+1)) − v(st)
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INPUT - The policy  to be evaluated 

Ini3alize , for all , arbitrarily except  

Loop for each episode: 

Ini3alize s 

Loop for each step of episode: 

ac3on given by  for  

Take ac3on , observe  

 

 

un3l  is terminal 

π
v(s) s ∈ S v[terminal] = 0

a ← π s
a r, s′ 

v(s) ← v(s) + α [ (r + γv(s′ )) − v(s) ]
s ← s′ 

s

PS
U

E
D

O
 C

O
D

E
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LIC

Y
 E

VA
LU

ATIO
N
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π
a

St

r

St+1

Temporal Difference Backup

v(st) ← v(st) + α [ (rt+1 + γv(st+1)) − v(st) ]

The TD methods can be used for non-episodic tasks as well. 
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There is one major problem with this approach, if we use the state-value func3on, , then 
greedy improvement over  requires the model of MDP.

v(s)
v(s)

TD Control
TD Control is a policy improvement method, that finds the op3mal policy, , by ac3ng greedily 
with the given value func3on based on a policy, . 

π *
π

π′ (s) = argmax
a ∈ A

rs,a + p({s′ , r} |s, a) v(s′ )

But, for a model-free environment,  is unknown.  

Thus, we can only evaluate the model but not improve it.

P
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Use, the ac3on-value func3on  for both policy evalua3on and improvement. 

The steps remain the same, except we use the ac3on-value instead of the state value.

Q(s, a)

TD Control - SARSA (state–action–reward–state–action)

SOLUTION 

π′ (s) = argmax
a ∈ A

Q(s, a)

Policy Improvement
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Q = qπ

π = greedy(Q)

Start  
Q π

 q*
π*

Policy evalua3on 

Policy improvement

POLICY EVALUATION with  

POLICY IMPROVEMENT with 

Q

greedy(Q)
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Q = qπ

π = greedy(Q)

Start  
Q π

 q*
π*

Policy evalua3on 

Policy improvement

POLICY EVALUATION with  

POLICY IMPROVEMENT with 

Q

greedy(Q)

Finally, there is a way for 
me to figure out the best 

route to reach my bamboo. 
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Q = qπ

π = greedy(Q)

Start  
Q π

 q*
π*

Policy evalua3on 

Policy improvement

POLICY EVALUATION with  

POLICY IMPROVEMENT with 

Q

greedy(Q)

Finally, there is a way for 
me to figure out the best 

route to reach my bamboo. 

Hehe… not so fast
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One major issue with this greedy approach is that, for a determinis3c policy, we may never visit 
some state-ac3on pairs.  

Hence, the ac3on-value func3on will not be updated, because of which the policy will not 
improve with experience. 
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One major issue with this greedy approach is that, for a determinis3c policy, we may never visit 
some state-ac3on pairs.  

Hence, the ac3on-value func3on will not be updated, because of which the policy will not 
improve with experience. 

SOLUTION
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One major issue with this greedy approach is that, for a determinis3c policy, we may never visit 
some state-ac3on pairs.  

Hence, the ac3on-value func3on will not be updated, because of which the policy will not 
improve with experience. 

SOLUTION
Use explora3on!
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One major issue with this greedy approach is that, for a determinis3c policy, we may never visit 
some state-ac3on pairs.  

Hence, the ac3on-value func3on will not be updated, because of which the policy will not 
improve with experience. 

SOLUTION
Use explora3on!

With probability  choose the greedy ac3on. 

With probability  choose a random ac3on. 

1 − ϵ

ϵ

- GREEDY ALGORITHMϵ
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In on-policy TD learning, the agent learns the value of the policy , that is used to make the 
decisions.  

The value func3ons are updated using results from execu3ng ac3ons determined by some policy. 
These policies are usually "so\" and non-determinis3c.  

The meaning of "so\" in this sense, is that it ensures there is always an element of explora3on 
to the policy. 

π

On-policy TD Learning

I’m almost there…..only 
 episodes to go∞ − 500
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In on-policy TD learning, the agent learns the value of the policy , that is used to make the 
decisions.  

The value func3ons are updated using results from execu3ng ac3ons determined by some policy. 
These policies are usually "so\" and non-determinis3c.  

The meaning of "so\" in this sense, is that it ensures there is always an element of explora3on 
to the policy. 

π

On-policy TD Learning

I’m almost there…..only 
 episodes to go∞ − 500SARSA is an example 

of On-policy learning 
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Off-Policy methods can learn different policies for behavior and es3ma3on.  

These algorithms can update the es3mated value func3ons using hypothe3cal ac3ons, those 
which have not actually been tried. 

An agent trained using an off-policy method may end up learning tac3cs that it did not 
necessarily exhibit during the learning phase. 

Off-policy TD Learning

Too tired… let me just 
watch and learn what to do
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Q - Learning
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Q-Learning is an Off-Policy algorithm for Temporal Difference learning.  

Q-Learning learns the op3mal policy even when ac3ons are selected according to a more 
exploratory or even random policy. 

Q - Learning
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Q-Learning is an Off-Policy algorithm for Temporal Difference learning.  

Q-Learning learns the op3mal policy even when ac3ons are selected according to a more 
exploratory or even random policy. 

Here, we have 2 policies, a current policy, called behavior policy,  and a target policy , that we 
want to update. 

μ π

Q - Learning

Given that you are in a state  , 
Choose an ac3on  
Choose an ac3on  

st
at+1 ∼ μ( ⋅ |st)
a′ ∼ π( ⋅ |st)

Update  towards the alterna3ve ac3on, target   q(St, At) π
q(st, at) ← q(st, at) + α [ rt+1 + γ max

a
q(st+1, a′ ) − q(st, at) ]

IN
TU

IT
IO

N
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Ini3alize  arbitrarily except  

Loop for each episode: 

Ini3alize  

Loop for each step of episode: 

ac3on for  given by policy derived from  for  

Take ac3on , observe  

 

 

un3l  is terminal 

q(s, a), ∀ s ∈ S, a ∈ A(s) q[terminal, ⋅ ] = 0

s

a ← s q s

a r, s′ 

q(s, a) ← q(s, a) + α [ (r + γmax
a′ 

q(s′ , a′ )) − q(s, a) ]

s ← s′ 

s

PS
U

E
D

O
 C

O
D

E

PO
LIC

Y
 E

VA
LU

ATIO
N

Ac3on according to behavior policy μ

Update Q es3mate with the sample 
data according to greedy policy for 
ac3on selec3on.

{
This can be visualised as a table, with rows as the state and columns 
as all possible ac3on. Each cell represents the ac3on-value 
corresponding to that state and ac3on. This is called the Q-table.
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Q - Table

The output of Q - learning is a Q - table with rows as the state and columns as all possible 
ac3on. Each cell represents the ac3on-value corresponding to that state and ac3on. 

The agent then refers to this “look-up” table to take an ac3on given it is in a state .st

10 -2.2 3

-0.6 -7 4

5 6.3 0.1

-9.5 13.4 -4

…. …. …. ….

8.6 -1.5 7

s1

s2
s3
s4

sn

a1 a2 a3

S
TA

TE

ACTION



39

Q - Table

The output of Q - learning is a Q - table with rows as the state and columns as all possible 
ac3on. Each cell represents the ac3on-value corresponding to that state and ac3on. 

The agent then refers to this “look-up” table to take an ac3on given it is in a state .st

10 -2.2 3

-0.6 -7 4

5 6.3 0.1

-9.5 13.4 -4

…. …. …. ….

8.6 -1.5 7

s1

s2
s3
s4

sn

a1 a2 a3

S
TA

TE

ACTION

Consider the agent is in state . Now, the 
agent refers to this Q-table to take an ac3on. 

The Q-values associated to state  are 5, 6.3 
and 0.1. The agent takes the argmax of these 
values, which gives  as the appropriate 
ac3on.

s3

s3

a2
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Deep Q Network (DQN)

41
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For many problems, it is imprac3cal to represent the Q-func3on as a table containing values for 
each combina3on of  and . s a

1

2

3

100,000
. 
. 
.

1 2 3 100,000.  .  .  .  .

You expect me to 
remember and recall all 

this? You gotta be kidding 
me
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For many problems, it is imprac3cal to represent the Q-func3on as a table containing values for 
each combina3on of  and . 

Instead, we train a func3on approximator, such as a neural network with parameters  to 
es3mate the Q-values  

s a

θ
Q(s, a; θ) ≈ Q * (s, a)

1

2

3

100,000
. 
. 
.

1 2 3 100,000.  .  .  .  .

You expect me to 
remember and recall all 

this? You gotta be kidding 
me
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The DQN (Deep Q-Network) algorithm was developed by DeepMind in 2015.  

It was able to solve a wide range of Atari games (some to superhuman level) by combining 
reinforcement learning and deep neural networks at scale.  

The algorithm was developed by enhancing a classic RL algorithm called Q-Learning with deep 
neural networks and a technique called experience replay. 

DQN replaces the standard Q - table by a Deep Neural Network which maps environment states 
to ac3ons. 
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State, s

Ac3on, a

Q(s, a)Deep Neural 
Network
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State, s

Ac3on, a

Q(s, a)Deep Neural 
Network

There is one problem with this, if we want to update the policy, then we would like to try all 
the possible ac3ons. 

So, for  ac3ons, we would have to run this network  3mes. n n
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An alterna3ve is to have a network that takes as input only the state and returns the Q-value 
for each ac3on. 

State, s

Q(s, a1)

Deep Neural 
Network

Q(s, a2)

Q(s, a3)

Q(s, an)
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An alterna3ve is to have a network that takes as input only the state and returns the Q-value 
for each ac3on. 

State, s

Q(s, a1)

Deep Neural 
Network

Q(s, a2)

Q(s, a3)

Q(s, an)

{
Argmax of Q-

values gives the 
policy
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To train the network we need some data.  

This data is got by execu3ng the random policy in the environment for a few steps, recording 
the ac3ons, states and the return. 

DQN: Training
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To train the network we need some data.  

This data is got by execu3ng the random policy in the environment for a few steps, recording 
the ac3ons, states and the return. 

The loss of the neural network is a simple MSE of the following form: 

DQN: Training

ℒ = 𝔼 [ (r + γmax
a′ 

Q(s′ , a′ )) − Q(s, a)
2]

TARGET
{

PREDICTION
{ Q-Loss
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Exercise: Q-Learning using DQN

The aim of this exercise is to find the Q-value given an 
environment. For this, we will be using a pre-defined 
environment by OpenAI Gym called FrozenLake-v0. 

We will get the Q-value of the environment by implemen3ng a 
Deep Q Network.


