
1

Lecture 32: Introduction to Reinforcement

Learning 2

CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

2

Consider a scenario where we have a mouse star2ng from an in2al state, S0

3

Consider a scenario where we have a mouse star2ng from an in2al state, S0

It can take 2 possible ac2ons, go up or go le<.

4

Let us assume the mouse goes up,

then it again has to choose between

2 ac2ons, up or le<.

Let us assume the mouse goes le<,

then it again has to choose between

3 ac2ons, up, le< and right

5

For each of the op2ons, we further

let the mouse explore all possible

ac2ons.

6

7

The number of possible paths quickly grows with each
action the mouse takes

8

So how do we find the possible reward for each path taken and the best

path to reach the goal?

Bellman Equation

9

10

Gives the rela2onship between value of a state and value of its successor states.

vπ(s) = ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvπ(s′)]

Backup diagram for vπ(s)

π

a

s

rp

s′

Root node - represents the current state

State-Ac2on pairs - the agent picks any

ac2on based on the policy

Next state - based on the ac2on the

environment responds with the next

state and a reward

This equa2on averages all possibili2es, weigh2ng each by the probability of occurring.

It states that the value of the current state is the reward plus the discounted value of the next state.

vπ(s) = ∑
a∈A

π(a |s) qπ(s, a)

11

vπ(s) = 𝔼[Gt |St = s]

= 𝔼[Rt+1 + γGt+1 |St = s]

= ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γ𝔼[Gt+1 |St+1 = s′]]

= ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvπ(s′)]

Recursive form of Bellman Equation

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . .)

= Rt+1 + γGt+1

Optimal policy and optimal value
function

12

13

A policy is said to be beNer than policy if its expected return is greater than or equal to

that of for all states.

 if and only if

All op2mal policies have the same state-value func2on called op2mal state-value

func2on and the same op2mal ac2on-value func2on .

π π′

π′

π ≥ π′ vπ(s) ≥ vπ′

(s), ∀ s ∈ S

π*

v*(s) q*(s)

v*(s) = max
π

vπ(s)

q*(s, a) = max
π

qπ(s, a)

For any given MDP, there exists an op2mal policy that is beNer than or equal to all other policies.

14

Finding an Optimal Policy

An op2mal policy is got by maximising over q*(s, a),

π∗(a ∣ s) = {
1 if a = argmax

a∈A

q∗(s, a)

0 otherwise

For each state, we are selec2ng the ac2on that gives the highest q-value.

Bellman Optimality Equation

15

16

Value of a state under an op2mal policy is equal to the expected return for the best ac2on

from that state.

v*(s) = max
π ∑

{s′ ,r}

p({s′ , r} |s, a)[r + γv*(s′)]

q*(s) = ∑
{s′ ,r}

p({s′ , r} |s, a) [r + γmax
a′

q*(s′ , a′)]

v*(s) = max
a

qπ*
(s, a)

The Bellman Op2mality Equa2on considers the

maximum instead of average value given some

policy.

pick an ac2on based on the max of all q values

π

a

s

r

p

s′

max

17

Solving the Bellman Optimality Equation

• Bellman Op2mality Equa2on is non-linear.

• It can be solved using itera2ve methods -

• Policy Itera2on

• Value Itera2on

• Q-Learning

18

Dynamic Programming

Op2mal solu2ons can be decomposed into sub-problems.

Subproblems may occur many 2mes and hence the solu2on can be cached and reused.

The value func2on stores and reuses

the solu2on

The Bellman equa2on gives the recursive

decomposi2on

Given the MDP and policy compute the

value func2on

π
νπ

Given the MDP, find the op2mal value

func2on and the op2mal policy ν* π*

Predic2on Control

Policy Evaluation

19

20

Given a policy , find out how good it is - by compu2ng the value func2on π vπ

This is the Predic2on problem based on the Bellman Expecta2on equa2on

vk+1(s) = ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvk(s′)]

vk(s) = ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvk−1(s′)]

a

vk(s) ← s

r

vk−1(s′) ← s′

Each state during the update gets to be
the root

The previous value func2on is

used to compute the new value

func2on.

In the next itera2on, the root

node is and the lower

level nodes are

vk+1(s)

vk

21

INPUT - , the policy to be evaluated

Ini2alise arbitrarily, except

Loop:

Loop for each

un2l

π

v(s), ∀ s ∈ S v(terminal) = 0

△ ← 0

s ∈ S :

v ← v(s)

v(s) ← ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γv(s′)]

△ ← max(△ , |v − v(s) |)

△ < θ

Iterative Policy Evaluation
P

S
U

E
D

O
 C

O
D

E

a small threshold determining accuracy of es2ma2onθ > 0

22

INPUT - , the policy to be evaluated

Ini2alise arbitrarily, except

Loop:

Loop for each

un2l

π

v(s), ∀ s ∈ S v(terminal) = 0

△ ← 0

s ∈ S :

v ← v(s)

v(s) ← ∑
a

π(a |s) ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γv(s′)]

△ ← max(△ , |v − v(s) |)

△ < θ

Iterative Policy Evaluation
P

S
U

E
D

O
 C

O
D

E

a small threshold determining accuracy of es2ma2onθ > 0

23

All the grey states are terminal

states where the reward is

always zero

0.0

0.00.0

0.00.00.0

0.0

0.00.0

0.00.0

0.00.00.0

0.0 0.0

0.0

-1.0-1.0

-1.0-1.0-1.0

-1.0

-1.0-1.0

-1.0-1.0

-1.0-1.0-1.0

-1.0 0.0

0.0

-2.0-1.75

-2.0-2.0-1.75

-2.0

-2.0-2.0

-2.0-2.0

-1.75-2.0-2.0

-1.75 0.0

The value of the state is

-1 + the weighted sum of the

previously es2mated values of

the states you expect to end up

in.

The cost of going from one

state to another is -1 i.e

nega:ve reward for each

step taken

Probability of going in each of

the 4 direc2ons here is equal.

}Random
Policyk=0

k=1

k=2

24

0.0

-2.9-2.4

-3.0-2.9-2.4

-2.9

-2.9-3.0

-2.9-3.0

-2.4-2.9-3.0

-2.4 0.0

0.0

-7.7-6.1

-9.0-8.4-6.1

-8.4

-8.4-8.4

-8.4-9.0

-6.1-7.7-8.4

-6.1 0.0

0.0

-18.-14.

-22.-20.-14.

-20.

-20.-20.

-20.-22.

-14.-18.-20.

-14. 0.0

k=3

k=10

k=∞

NOTE - These values are not

equal. The decimal value will

prove that the le< cell value is

lower than that of the right

cell.

25

Policy Improvement

26

For a state s, is it beNer to follow policy or choose another ac2on ?π a ≠ π(s)

To determine which one is beNer take an ac2on and compute the valuea

qπ(s, a) = ∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvπ(s′)]

Take an ac2on a ≠ π(s) Value of following policy a<er taking

an ac2on

π

If , then we consider it overall beNer to take the ac2on a every 2me

state s is encountered.

qπ(s, a) ≥ vπ(s)

This is a special case, in general, we want

qπ(s, π′ (s)) ≥ vπ(s) ∀ s ∈ S

27

vπ(s) ≤ qπ(s, π′ (s))

= 𝔼[rt+1 + γvπ(St+1 |St = s, At = π′ (s))]

= 𝔼π′

[rt+1 + γvπ(St+1 |St = s]

≤ 𝔼π′

[rt+1 + γqπ(St+1, π′ (St+1)) | St = s]

= 𝔼π′

[rt+1 + γ𝔼π′

[rt+2 + γvπ(St+2) | St+1, At+1 = π′ (St1
)] | St = s]

= 𝔼π′

[rt+1 + γrt+2 + γ2vπ(St+2) | St = s]

≤ 𝔼π′

[rt+1 + γrt+2 + γ2rt+3 + γ3vπ(St+3) | St = s]

≤ 𝔼π′

[rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . | St = s]

vπ(s) ≤ vπ′

(s)

....

Value of state s for the

given policy π

Value of state s by taking an ac2on a = π′ (s)

Expected value by taking an ac2on

based on policy in state and

then following policy

π′ St

π
Expected value by taking an ac2on

based on policy in state and

then following policy

π′ St+1

π
Expected value by taking an ac2on

based on policy in state and

then following policy from state

onwards

π′ St+1

π St+2

Expected value by taking an ac2on

based on policy in state and

then following policy from state

onwards

π′ St+2

π St+3

Un2l termina2on

Expected value star2ng from state

s and following policy π′

28

The algorithm shown gives a beNer policy wrt one state, .

The same is iterated to all states and to all possible ac2ons, selec2ng at each state

the ac2on that appears best according to

s

qπ(s, a)

π′ (s) = argmax
a

qπ(s, a)

= argmax
a

𝔼[rt+1 + γvπ(St+1) |St = s, At = a]

= argmax
a

∑
{s′ ,r}

p({s′ , r} |s, a)[r + γvπ(s′)]

The greedy policy takes the ac2on that looks best in one step lookahead according to

policy π

29

The policy is updated greedily wrt the value func2on.

0.0

0.00.0

0.00.00.0

0.0

0.00.0

0.00.0

0.00.00.0

0.0 0.0

0.0

-1.0-1.0

-1.0-1.0-1.0

-1.0

-1.0-1.0

-1.0-1.0

-1.0-1.0-1.0

-1.0 0.0

The cost of going from one

state to another is -1 i.e

nega:ve reward for each

step taken }Random
Policyk=0

30

Policy Iteration

31

Find best policy in an MDP

1. Evaluate the policy π

Given a policy π

νπ(s) = 𝔼π [rt+1 + γrt+1 + |St = s]

2. Improve the policy by ac2ng greedily wrt νπ

π′ = greedy(νπ)

{Iterate

The process of policy itera2on converges to the op2mal policy π*

POLICY ITERATION

32

v = v
π

π = greedy(v)

Start

v π
 v*

π*

Policy evalua2on

Policy improvement

v

Evalua:on

Improvement

π

v → vπ

π → greedy(v)

33

INITIALIZE - and arbitrarily for all , except

Loop:

Loop for each

un2l

v(s) ∈ ℝ π(s) ∈ A(s) s ∈ S v(terminal) = 0

△ ← 0
s ∈ S :

v ← v(s)

v(s) ← ∑
{s′ ,r}

p({s′ , r} |s, π(s))[r + γv(s′)]

△ ← max(△ , |v − v(s) |)

△ < θ

P
S

U
E

D
O

 C
O

D
E

a small threshold determining accuracy of estimationθ > 0

P
O

L
IC

Y
 E

V
A

L
U

A
T

IO
N

policy-stable true

For each

old-ac0on

If old-ac0on , then policy-stable false

If policy-stable, then stop and return and ; else policy evalua2on

←

s ∈ S :

← π(s)

π(s) ← argmax
a

∑
{s′ ,r}

p({s′ , r} |s, a)[r + γv(s′)]

≠ π(s) ←

v ≈ v* π ≈ π*

P
O

L
IC

Y
 IM

P
R

O
V

E
M

E
N

T

}

IT
E

R
A

T
E

 T
O

 C
O

N
V

E
R

G
E

N
C

E

34

If improvements stop,

The Bellman op2mality equa2on has been sa2sfied ,

 for all is the op2mal policy

q(s, π′ (s)) = max
a∈A

qπ(s, a) = qπ(s, π(s)) = vπ(s)

vπ(s) = max
a∈A

qπ(s, a)

vπ(s) = v*(s) s ∈ S ⟹ π

35

All the grey states are terminal

states where the reward is

always zero

0.0

0.00.0

0.00.00.0

0.0

0.00.0

0.00.0

0.00.00.0

0.0 0.0

0.0

-1.0-1.0

-1.0-1.0-1.0

-1.0

-1.0-1.0

-1.0-1.0

-1.0-1.0-1.0

-1.0 0.0

0.0

-2.0-1.75

-2.0-2.0-1.75

-2.0

-2.0-2.0

-2.0-2.0

-1.75-2.0-2.0

-1.75 0.0

The value of the state is

-1 + the weighted sum of the

previously es2mated values of

the states you expect to end up

in.

The cost of going from one

state to another is -1 i.e

nega:ve reward for each

step taken

Probability of going in each of

the 4 direc2ons here is equal.

}Random
Policyk=0

k=1

k=2

36

0.0

-2.9-2.4

-3.0-2.9-2.4

-2.9

-2.9-3.0

-2.9-3.0

-2.4-2.9-3.0

-2.4 0.0

0.0

-7.7-6.1

-9.0-8.4-6.1

-8.4

-8.4-8.4

-8.4-9.0

-6.1-7.7-8.4

-6.1 0.0

0.0

-18.-14.

-22.-20.-14.

-20.

-20.-20.

-20.-22.

-14.-18.-20.

-14. 0.0

k=3

k=10

k=∞

Op:mal

Policy

The value func2on while

evalua2ng a given policy

helps get an op2mal policy

NOTE - These values are not

equal. The decimal value will

prove that the le< cell value is

lower than that of the right

cell.

37

Instead of looping 2ll convergence, stop a<er k itera2ons of itera2ve policy

evalua2on.

Act greedy according to this value to get the new policy and con2nue the process.

This is guaranteed to converge to the op2mal policy.

When k=1 Value Itera2on→

Modified Policy Iteration

38

Value Iteration

39

A policy achieves the op2mal value from state s, , if and only if

• For any state reachable from s

• achieves the op2mal value from state

π(a |s) vπ(s) = v*(s)

s′

π s′ , vπ(s′) = v*(s′)

THEOREM OF OPTIMALITY

Value itera2on can be wriNen as a simple opera2on that combines policy

improvement and truncated policy evalua2on.

Find the op2mal policy by itera2ve applica2on of Bellman op2mality equa2on. π

vk+1(s) = max
a

𝔼[rt+1 + γvk(St+1) |St = s, At = a]

= max
a ∑

{s′ ,r}

p({s′ , r} |s, a)[r + γvk(s′)]

The idea is to work backwards through an MDP. Start at the leaf (assume you know the op2mal

value here) and work your way backwards.

40

a

vk+1(s) ← s

r

vk(s′) ← s′

Each state during the update gets to be the root

The previous value func2on is

used to compute the new value

func2on.

Take the maximum

In the next itera2on, is used at the lower nodes to compute the root node

i.e. the new value func2on.

vk+1

41

Ini2alise arbitrarily, except

Loop:

Loop for each

un2l

OUTPUT a determinis2c policy , such that,

v(s), ∀ s ∈ S v(terminal) = 0

△ ← 0

s ∈ S :

v ← v(s)

v(s) ← max
a ∑

{s′ ,r}

p({s′ , r} |s, a)[r + γv(s′)]

△ ← max(△ , |v − v(s) |)

△ < θ

π ≈ π*

π(s) = argmax
a

∑
{s′ ,r}

p({s′ , r} |s, a)[r + γv(s′)]

P
S

U
E

D
O

 C
O

D
E

a small threshold determining accuracy of estimationθ > 0

P
O

L
I
C

Y
 E

V
A

L
U

A
T

I
O

N
P

O
L

I
C

Y

I
M

P
R

O
V

E
M

E
N

T

42

Policy Itera:on vs Value Itera:on

Includes: finding op:mal value func:on +

one policy extrac:on. There is no repe22on of

the two because once the value func2on is

op2mal, then the policy out of it should also be

op2mal

Includes: policy evalua:on + policy

improvement, and the two are repeated

itera2vely un2l policy converges.

Each step gives a new value func2on. There is

no explicit policy computed each step.

The computa2on alternates between value and

policy.

Each intermediate may not correspond to any

valid policy .

v
π

Every from the loop corresponds to a valid

policy .

v
π

It is based on the Bellman Op2mality equa2onIt is based on the Bellman Expecta2on equa2on

43

Summary

PROBLEM BELLMAN EQUATION ALGORITHM

Predic2on Bellman Expecta2on Equa2on
Itera2ve Policy

Evalua2on

Control
Bellman Expecta2on Equa2on +

Greedy Policy Improvement
Policy Itera2on

Control Bellman Op2mality Equa2on Value Itera2on

The MDP is given in all the cases here.

For m ac2ons and n states, algorithms based on state-value func2on

have a complexity of O(mn2)

We would like to

compute the reward of a

state s given a policy

i.e. find

π
vπ

Compute i.e. the

best possible reward

v* {

44

Exercise: Finding the optimal policy

The aim of this exercise is to find the op2mal policy that given

the maximum reward given an environment. For this, we will be

using a pre-defined environment by OpenAI Gym. We will be

using an environment called FrozenLake-v0.

Here, we will learn how to find an op2mal policy given a policy

and then the op2mal value func2on associated to the op2mal

policy.

