Lecture 32: Introduction to Reinforcement Learning 2

CS109B Data Science 2

Pavlos Protopapas, Mark Glickman, and Chris Tanner

Consider a scenario where we have a mouse starting from an intial state, S_{0}

Consider a scenario where we have a mouse starting from an intial state, S_{0} It can take 2 possible actions, go up or go left.

Let us assume the mouse goes up, then it again has to choose between 2 actions, up or left.

Let us assume the mouse goes left, then it again has to choose between 3 actions, up, left and right

For each of the options, we further let the mouse explore all possible actions.

The number of possible paths quickly grows with each action the mouse takes

So how do we find the possible reward for each path taken and the best path to reach the goal?

Bellman Equation

Gives the relationship between value of a state and value of its successor states.

$$
\nu_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma \nu_{\pi}\left(s^{\prime}\right)\right]
$$

This equation averages all possibilities, weighting each by the probability of occurring.
It states that the value of the current state is the reward plus the discounted value of the next state.

Next state - based on the action the environment responds with the next state and a reward

Recursive form of Bellman Equation

$$
\left.\left.\begin{array}{rl}
v_{\pi}(s)= & \mathbb{E}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma \mathbb{E}\left[G_{t+1} \mid S_{t+1}\right.\right.
\end{array}=s^{\prime}\right]\right]
$$

Optimal policy and optimal value function

A policy π is said to be better than policy π^{\prime} if its expected return is greater than or equal to that of π^{\prime} for all states.

$$
\pi \geq \pi^{\prime} \text { if and only if } v_{\pi}(s) \geq v_{\pi}(s), \forall s \in S
$$

All optimal policies π_{*} have the same state-value function called optimal state-value function $v_{*}(S)$ and the same optimal action-value function $q_{*}(S)$.

$$
\begin{aligned}
& v_{*}(s)=\max _{\pi} v_{\pi}(s) \\
& q_{*}(s, a)=\max _{\pi} q_{\pi}(s, a)
\end{aligned}
$$

For any given MDP, there exists an optimal policy that is better than or equal to all other policies.

Finding an Optimal Policy

An optimal policy is got by maximising over $q_{*}(s, a)$,

$$
\pi_{*}(a \mid s)= \begin{cases}1 & \text { if } a=\underset{a \in A}{\operatorname{argmax}} q_{*}(s, a) \\ 0 & \text { otherwise }\end{cases}
$$

For each state, we are selecting the action that gives the highest q-value.

Bellman Optimality Equation

Value of a state under an optimal policy is equal to the expected return for the best action from that state.

$$
\begin{aligned}
& \nu_{*}(s)=\max _{\pi} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right] \\
& q_{*}(s)=\sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma \max _{a^{\prime}}(s)=\max _{a} q_{* *}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

pick an action based on the max of all q values

The Bellman Optimality Equation considers the maximum instead of average value given some policy.

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear.
- It can be solved using iterative methods -
- Policy Iteration
- Value Iteration
- Q-Learning

Dynamic Programming

Optimal solutions can be decomposed into sub-problems.
The Bellman equation gives the recursive decomposition

Subproblems may occur many times and hence the solution gan be cached and reused. The value function stores and reuses the solution

Given the MDP and policy π compute the value function ν_{π}

Given the MDP, find the optimal value function ν_{*} and the optimal policy π_{*}

Policy Evaluation

Given a policy π, find out how good it is - by computing the value function ν_{π}
This is the Prediction problem based on the Bellman Expectation equation

$$
\begin{aligned}
v_{k}(s) & =\sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v_{k-1}\left(s^{\prime}\right)\right] \\
v_{k+1}(s) & =\sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

In the next iteration, the root node is $v_{k+1}(s)$ and the lower level nodes are v_{k}

Each state during the update gets to be the root

TThe previous value function is used to compute the new value function.

Iterative Policy Evaluation

INPUT - π, the policy to be evaluated
Initialise $v(s), \forall s \in S$ arbitrarily, except $v($ terminal $)=0$
Loop:

$$
\begin{aligned}
& \triangle \leftarrow 0 \\
& \text { Loop for each } s \in S \text { : } \\
& \nu \leftarrow v(s) \\
& v(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v\left(s^{\prime}\right)\right] \\
& \triangle \leftarrow \max (\triangle,|v-v(s)|)
\end{aligned}
$$

until $\triangle<\theta$

Iterative Policy Evaluation

INPUT - π, the policy to be evaluated
Initialise $v(s), \forall s \in S$ arbitrarily, except $v($ terminal $)=0$
Loop:

$$
\begin{aligned}
& \triangle \leftarrow 0 \\
& \text { Loop for each } s \in S: \\
& \qquad \begin{aligned}
v & \leftarrow v(s) \\
v(s) & \leftarrow \sum_{a} \pi(a \mid s) \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v\left(s^{\prime}\right)\right] \\
\triangle & \leftarrow \max (\triangle,|v-v(s)|)
\end{aligned}
\end{aligned}
$$

until $\triangle<\theta$

The cost of going from one

 state to another is -1 i.e negative reward for each step takenAll the grey states are terminal states where the reward is

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Random Policy
always zero
 previously estimated values of the states you expect to end up in.

| 0.0 | -2.4 | -2.9 | -3.0 |
| :---: | :---: | :---: | :---: | :---: |
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
| -3.0 | -2.9 | -2.4 | 0.0 |

$\mathbf{k}=10$	0.0	-6.1	-8.4
	-6.1	-7.7	-8.4
	-8.4	-8.4	-7.7
	-9.0	-8.4	-6.1

NOTE - These values are not equal. The decimal value will prove that the left cell value is lower than that of the right cell.

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy Improvement

For a state s, is it better to follow policy π or choose another action $a \neq \pi(s)$?

To determine which one is better take an action a and compute the value

Take an action $a \neq \pi(s)$

Value of following policy π after taking an action

If $q_{\pi}(s, a) \geq v_{\pi}(s)$, then we consider it overall better to take the action a every time state s is encountered.

This is a special case, in general, we want

$$
q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s) \quad \forall s \in S
$$

Value of state s for the given policy π

$$
\vartheta_{\pi} \ldots \ldots
$$

Expected value by taking an actiop: based on policy π^{\prime} in state S_{t} and then following policy π

Expected value by taking an action based on policy π^{\prime} in state S_{t+1} and

$$
\begin{aligned}
& =\mathbb{E}\left[r_{t+1}+\gamma v_{\pi}\left(S_{t+1} \mid S_{t}=s, A_{t}=\pi^{\prime}(s)\right)\right] \\
& =\mathbb{E}_{\pi^{\prime}}\left[r_{t+1}+\gamma v_{\pi}\left(S_{t+1} \mid S_{t}=s\right]\right. \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[r_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) \mid S_{t}=s\right]
\end{aligned}
$$

Expected value by taking an action based on policy π^{\prime} in state S_{t+1} and then following policy π then following policy π from state S_{t+2} onwards
\qquad

Expected value by taking an action based on policy π^{\prime} in state S_{t+2} and then following policy π from state S_{t+3} onwards

The algorithm shown gives a better policy wrt one state, s.
The same is iterated to all states and to all possible actions, selecting at each state the action that appears best according to $q_{\pi}(s, a)$

$$
\begin{aligned}
\pi^{\prime}(s) & =\underset{a}{\operatorname{argmax}} q_{\pi}(s, a) \\
& =\underset{a}{\operatorname{argmax}} \mathbb{E}\left[r_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\underset{a}{\operatorname{argmax}} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

he greedy policy takes the action that looks best in one step lookahead according to policy π

The cost of going from one state to another is - 1 i.e negative reward for each step taken

Random
Policy

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

The policy is updated greedily wrt the value function.

Policy Iteration

Find best policy in an MDP

Given a policy π

$$
\text { Iterate }\left\{\begin{array}{c}
\text { 1. Evaluate the policy } \pi \\
\nu_{\pi}(s)=\mathbb{E}_{\pi}\left[r_{t+1}+\gamma r_{t+1}+\ldots \mid S_{t}=s\right] \\
\text { 2. Improve the policy by acting greedily wrt } \nu_{\pi} \\
\pi^{\prime}=\operatorname{greedy}\left(\nu_{\pi}\right)
\end{array}\right.
$$

POLICY ITERATION

The process of policy iteration converges to the optimal policy π_{*}

Policy evaluation

$\operatorname{INITIALIZE~}-v(s) \in \mathbb{R}$ and $\pi(s) \in A(s)$ arbitrarily for all $s \in S$ ，except $v($ terminal $)=0$
Loop：
$\triangle \leftarrow 0$
Loop for each $s \in S$ ：

$$
v \leftarrow v(s)
$$

$$
v(s) \leftarrow \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, \pi(s)\right)\left[r+\gamma v\left(s^{\prime}\right)\right]
$$

$$
\triangle \leftarrow \max (\triangle,|v-v(s)|)
$$

until $\triangle<\theta$ a small threshold $\theta>0$ determining accuracy of estimation
policy－stable \leftarrow true
For each $s \in S$ ：

$$
\text { old-action } \leftarrow \pi(s)
$$

$$
\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v\left(s^{\prime}\right)\right]
$$

If old－action $\neq \pi(s)$ ，then policy－stable \leftarrow false

If improvements stop,

$$
q\left(s, \pi^{\prime}(s)\right)=\max _{a \in A} q_{\pi}(s, a)=q_{\pi}(s, \pi(s))=v_{\pi}(s)
$$

The Bellman optimality equation has been satisfied,

$$
v_{\pi}(s)=\max _{a \in A} q_{\pi}(s, a)
$$

$\nu_{\pi}(s)=\nu_{*}(s)$ for all $s \in S \quad \Longrightarrow \quad \pi$ is the optimal policy

The cost of going from one state to another is -1 i.e negative reward for each step taken

All the grey states are terminal states where the reward is

$\mathbf{k}=0$| 0.0 | 0.0 | 0.0 | 0.0 |
| :--- | :--- | :--- | :--- |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |

Random Policy
always zero
 previously estimated values of the states you expect to end up in.

35

| 0.0 | -2.4 | -2.9 | -3.0 |
| :---: | :---: | :---: | :---: | :---: |
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
| -3.0 | -2.9 | -2.4 | 0.0 |

The value function while evaluating a given policy

	0.0	-6.1	-8.4
$k=10$	-6.1	-7.7	-8.4
	-8.4		
	-8.4	-8.4	-7.7
-6.0	-8.4	-6.1	0.0

helps get an optimal policy

NOTE - These values are not equal. The decimal value will prove that the left cell value is lower than that of the right cell.

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Modified Policy Iteration

Instead of looping till convergence, stop after k iterations of iterative policy evaluation.

Act greedy according to this value to get the new policy and continue the process. This is guaranteed to converge to the optimal policy.

When $k=1 \rightarrow$ Value Iteration

Value Iteration

A policy $\pi(a \mid s)$ achieves the optimal value from state $s, v_{\pi}(s)=v_{*}(s)$, if and only if

- For any state s^{\prime} reachable from s
- π achieves the optimal value from state $s^{\prime}, v_{\pi}\left(s^{\prime}\right)=\nu_{*}\left(s^{\prime}\right)$

Value iteration can be written as a simple operation that combines policy improvement and truncated policy evaluation.

Find the optimal policy π by iterative application of Bellman optimality equation.

$$
\begin{aligned}
v_{k+1}(s) & =\max _{a} \mathbb{E}\left[r_{t+1}+\gamma v_{k}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

The idea is to work backwards through an MDP. Start at the leaf (assume you know the optimal value here) and work your way backwards.

In the next iteration, v_{k+1} is used at the lower nodes to compute the root node i.e. the new value function.

Initialise $v(s), \forall s \in S$ arbitrarily, except $v($ terminal $)=0$
Loop:

$$
\triangle \leftarrow 0
$$

Loop for each $s \in S$:

$$
v \leftarrow v(s)
$$

$$
v(s) \leftarrow \max _{a} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma v\left(s^{\prime}\right)\right]
$$

$$
\triangle \leftarrow \max (\triangle,|v-v(s)|)
$$

until $\triangle<\theta$ a small threshold $\theta>0$ determining accuracy of estimation
OUTPUT a deterministic policy $\pi \approx \pi_{*,}$, such that,

$$
\pi(s)=\underset{a}{\operatorname{argmax}} \sum_{\left\{s^{\prime}, r\right\}} p\left(\left\{s^{\prime}, r\right\} \mid s, a\right)\left[r+\gamma \nu\left(s^{\prime}\right)\right]
$$

Policy Iteration vs Value Iteration

Includes: policy evaluation + policy improvement, and the two are repeated iteratively until policy converges.

It is based on the Bellman Expectation equation

The computation alternates between value and policy.

Every v from the loop corresponds to a valid policy π.

Includes: finding optimal value function + one policy extraction. There is no repetition of the two because once the value function is optimal, then the policy out of it should also be optimal

It is based on the Bellman Optimality equation

Each step gives a new value function. There is no explicit policy computed each step.

Each intermediate v may not correspond to any valid policy π.

Summary

			PROBLEM
We would like to compute the reward of a state s given a policy π i.e. find v_{π}			
Compute v_{*} i.e. the best possible reward	Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration	
Control	Bellman Optimality Equation	Value Iteration	

The MDP is given in all the cases here.
For m actions and n states, algorithms based on state-value function have a complexity of $O\left(m n^{2}\right)$

Exercise: Finding the optimal policy

The aim of this exercise is to find the optimal policy that given the maximum reward given an environment. For this, we will be using a pre-defined environment by OpenAl Gym. We will be using an environment called FrozenLake-v0.

Here, we will learn how to find an optimal policy given a policy and then the optimal value function associated to the optimal policy.

