Lecture 32: Introduction to Reinforcement
Learning 2

CS109B Data Science 2

Pavlos Protopapas, Mark Glickman, and Chris Tanner

IACS mings
r_____\; |

Consider a scenario where we have a mouse starting from an intial state,

Consider a scenario where we have a mouse starting from an intial state,

It can take 2 possible actions, go up or go left.

Let us assume the mouse goes up, Let us assume the mouse goes left,
then it again has to choose between then it again has to choose between
2 actions, up or left. 3 actions, up, left and right

>

+
|

For each of the options, we further
let the mouse explore all possible
actions.

>
4

|
—
|

4
>

g\t;@:
4
| |

.
W

The number of possible paths quickly grows with each

action the mouse takes

So how do we find the possible reward for each path taken and the best
path to reach the goal?

Bellman Equation

Gives the relationship between value of a state and value of its successor states.

TOE an\s) D (s r}] 5. @)r + yv(s)]

{s",r}
This equation averages all p055|b|I|t|es, weighting each by the probability of occurring.

It states that the value of the current state is the reward plus the discounted value of the next state.

@ /\/\" Root node - represents the current state

State-Action pairs - the agent picks any
T actlon based on the policy

ve(s) =) m(als) q,(s,a)

acA
Next state - based on the action the
environment responds with the next
state and a reward

Backup diagram for v_(s) 10

Recursive form of Bellman Equation

V(s) =

_[Gt‘St — S]

= E[R 1 + 7G4 |5, = 5]

an\s)z‘,p({s r} s, a)lr+7y
181}

= Zn(a\s) D P8 r} | 5. @)r + yv,(s)]

8]

11

G, =R+ VR

=[Gy 1S40 = 571

=R +7(R»+ YR, 3

:Rt

1 + 76

+ 7R3+ 7Ry + ...
T }/2RH_4 + ...

Optimal policy and optimal value
function

A policy zis said to be better than policy 7' if its expected return is greater than or equal to
that of ' for all states.

m > r'ifandonlyifv (s) > v (s), VseES

All optimal policies 7« have the same state-value function called optimal state-value
function v.(s) and the same optimal action-value function g.(s).

v:(s) = max v_(s)

Q*(Sa Cl) = ImMax Qn'(sa Cl)

For any given MDP, there exists an optimal policy that is better than or equal to all other policies.

13

Finding an Optimal Policy
An optimal policy is got by maximising over g(s, a),

1 If a =argmaxgqg,(s,a)
m(a|s) = a€A
0 otherwise

For each state, we are selecting the action that gives the highest g-value.

14

Bellman Optimality Equation

Value of a state under an optimal policy is equal to the expected return for the best action
from that state.

V«($) = max Z p({s’,r}|s,a)r+ yv«(s)]

s
{8%,r} v«(s) = max q_(s, a)

I ‘
g:(s) = 2, p(1s’r}|5,@) [r+ ymax gu(s,a)
{s.r]

pick an action based on the max of all g values
A m ° ° ° °
The Bellman Optimality Equation considers the
maximum instead of average value given some

A/ \ /p\

O O 0O O Or

16

Solving the Bellman Optimality Equation

® Bellman Optimality Equation is non-linear.

® |t can be solved using iterative methods -

® Policy Iteration
e \/alue lteration

® (Q-Learning

17

Dynamic Programming

Optimal solutions can be decomposed into sub-problems.

The Bellman equation gives the recw
decomposition

Subproblems may occur many times and hence the solution can be cached and reused.
The value function stores and reugy

the solution
Prediction Control
Given the MDP and policy 7 compute the Given the MDP, find the optimal value

value function v function v« and the optimal policy 7
18

Policy Evaluation

Given a policy z, find out how good it is - by computing the value function v_

This is the Prediction problem based on the Bellman Expectation equation

WOE 2n<a|s> Y p(s s, @)lr + 7y ()]
{s'r}

Vi1 (8) = Z mals)) p({s.r}]s,a)r+ yvs)]
s}

"x‘ Each state during the update gets to be
~, theroot ¢

In the next iteration, the root
node is v, {(s) and the lower

level nodes are v,

/ / A The previous value function is
i) <=sQ O O O O /O
. J used to compute the new value

function.

Iterative Policy Evaluation

INPUT - &, the policy to be evaluated

Initialise v(s), V s € § arbitrarily, except v(terminal) = 0

Loop:
o A\ <0
8 Loop foreachs € § :
O
A v <« v(s)
S
2 Ws) < Y atals)), pUs'rhls.@)lr +yv(s)]

) 1s',r}
A\ < max(/A, |[v—v(s)])
until /\ < @

\/asmall threshold & > 0 determining accuracy of estimation

21

Iterative Policy Evaluation

INPUT - &, the policy to be evaluated

Initialise v(s), V s € § arbitrarily, except v(terminal) = 0

Loop:
o A\ <0
8 Loop foreachs € § :
O
A v <« v(s)
S
2 Ws) < Y atals)), pUs'rhls.@)lr +yv(s)]

) 1s',r}
A\ < max(/A, |[v—v(s)])
until /\ < @

\/asmall threshold & > 0 determining accuracy of estimation

22

The cost of going from one
state to anotheris -1i.e
negative reward for each

step taken Random

Policy

All the grey states are terminal
states where the reward is
always zero

-

The value of the state is
-1 + the weighted sum of the
previously estimated values of
the states you expect to end up
in.

(.

Probability of going in each of
the 4 directions here is equal.

NOTE - These values are not
equal. The decimal value will
prove that the left cell value is
lower than that of the right
cell.

...lll““

24

Policy Improvement

For a state s, is it better to follow policy 7 or choose another action a # z(s) ?

To determine which one is better take an action a and compute the value

ar(s,@) =), p({s'.r} s, a)[r+w)
S — ’ tsr}

*
.
‘O

¥ Y
Take an action a # 7(s) Value of following policy r after taking
an action

If g (s,a) > v (s), then we consider it overall better to take the action a every time
state s is encountered.

This is a special case, in general, we want

g (s,7(s) >v(s) VseES

20

Value of state s for the

given policy # 4 ‘

/ Value of state s by taking an action a = 7'(s)
............... vﬂ(s) < qﬂ(s, T (S))
Expected value by taking an actigge::[" -... /
A =Kl Fyv (S0 1S, =5, A, = 7'(s

bssei ciln pc.)llcy ﬂl,m state 5, and k! [1T ﬂ(i+1 ‘ / S ())] Expected value by taking an action
then tollowing policy — [— based on policy 7’ in state S, ; and

=k, [ro +7v(S4118, = 5] POV +
- rod value by taki - then following policy &

xpected value by taking an action ,

based on policy ' in state S, ; and S — [rt+1 T yqn(SHla 7T (St-|-1)) ‘ St — S] ___________________ x
then following policy 7 from state S, ,

— [- —_ 4 —_
onwards SO = Ep [rg FVE g F7v(Si0) | Sy, A = 7'(5,)] | S, = s]
Expected value by taking an action =t [rt+1 + YT, in 4 VZVE(SHz) ‘ St — S]
based on policy 7’ in state S, , and
then following policy 7 from state §,_ 5 — p) 3 .
onwards v.. - < i’ [rt+1 + VT2 + V 1143 + 4 Vﬂ(St+3) ‘ St — S]

Until termination < [F [},. + yr + 27. 4 37. 4 ‘ S — S """""
SEpy U1 TV TV T3 T Frgqg T - r =
V(8) < vy (s)

4
Expected value starting from state

- s and following policy 7’

The algorithm shown gives a better policy wrt one state, s.

The same is iterated to all states and to all possible actions, selecting at each state
the action that appears best according to g_(s, a)

7'(s) = argmax q,(s, a)
= argmax Elr, +yv, SIS, =s,A =d]
= argmax Y p({s',r}|s,@)[r + yv,(s)]

A {S/,I”}

he greedy policy takes the action that looks best in one step lookahead according to
policy i

28

The cost of going from one
state to anotheris -1i.e
negative reward for each

step taken Random

Policy

-
B

Plpl

The policy is updated greedily wrt the value function.

29

Policy Iteration

Find best policy in an MDP

Given a policy

1. Evaluate the policy

v(s)=E, [r +yr +....]8 =s]

Ilterate

2. Improve the policy by acting greedily wrt v_
' = greedy(v,)

POLICY ITERATION

The process of policy iteration converges to the optimal policy 7.

31

Policy evaluation

Evaluation

V=V,

. — greedy(v)

Improvement

Policy improvement

32

PSUEDO CODE

INITIALIZE - v(s) € R and z(s) € A(s) arbitrarily for all s € §, except v(terminal) = O

Loop:

A <0 3
Loop foreach s € § : <
v «— v(s) m
>
W(s) < D, pUs.rY s a()lr + yv(s)] z
—]
{s',r} 5
A\ — max(A, |v—us)]) -

until A < 0 w a small threshold 8 > 0 determining accuracy of estimation
policy-stable < true §
Foreachs € § : Q
old-action <« 7(s) %
/ / AJ
n(s) < argmax Z pAs,rils, a)lr+ yv(s)] o
da {S,,l"} E
If old-action # 7z(s), then policy-stable < false g

If policy-stable, then stop and return v & v. and & & 7., else policy evaluation

JONIDIIANOD Ol J1vydll

If improvements stop,

q(s, 7'(s)) = max q,(8,a) = q,(s, 7(s)) = v,(s)
ac
The Bellman optimality equation has been satisfied,

v (s) = max q_(s, a)
acA

v.(s) =v«(s)foralls €S = & isthe optimal policy

34

The cost of going from one
state to anotheris -1i.e
negative reward for each

step taken

All the grey states are terminal
states where the reward is
always zero

-

The value of the state is
-1 + the weighted sum of the
previously estimated values of
the states you expect to end up
in.

(.

Probability of going in each of
the 4 directions here is equal.

| Random
Policy

-
B
Plbl
R e e

The value function while
evaluating a given policy
helps get an optimal policy
Optimal
k=10 #)
Policy
NOTE - These values are not
equal. The decimal value will
prove that the left cell value is
lower than that of the right
cell.
““ k=w #

.......... 36

Modified Policy Iteration

Instead of looping till convergence, stop after k iterations of iterative policy
evaluation.

Act greedy according to this value to get the new policy and continue the process.
This is guaranteed to converge to the optimal policy.

When k=1 — Value Iteration

37

Value lteration

THEOREM OF OPTIMALITY

A policy n(a | s) achieves the optimal value from state s, v_(s) = v«(s), if and only if

e For any state s’ reachable from s

e 1 achieves the optimal value from state s', v_(s") = vi(s’)

Value iteration can be written as a simple operation that combines policy
improvement and truncated policy evaluation.

Find the optimal policy 7 by iterative application of Bellman optimality equation.

Vie1(8) = max E[r +yvi(S,.)18, = 5,4, =d]

A

= max Z pUs,r}ls,a)lr+yv.(s)]

s

The idea is to work backwards through an MDP. Start at the leaf (assume you know the optimal

value here) and work your way backwards.
39

Each state during the update gets to be the root

|
= s
g
.
*
.
& " ‘
k+1 N "’
*
‘0 *
L 4 *
L 4 .
% +
“‘Il""l... T T T L

Take the maximum

/\ /\ /\

Vk(S) <3S O O ; ;' The previous value function is

used to compute the new value
function.

In the next iteration, v, is used at the lower nodes to compute the root node
i.e. the new value function.

40

PSUEDO CODE

Initialise v(s), V s € § arbitrarily, except v(terminal) = 0

Loop:

JANRN(

Loop foreachs € § :

v «— V(s$)

V(s) < max Z p({s,,r}|s,a)lr+ yv(s)]

“ s
A\ <« max(A\, |v—v(s)|)

until A <0 W a small threshold @ > 0 determining accuracy of estimation

NOILV(Y'TVAH AODI'TOd

OUTPUT a deterministic policy 7 = 7, such that,

n(s) = argmax Z p({s’,r}|s,a)lr+ yv(s)]

A {S/,l"}

INHIWHAOUdNI
AIJI'TIOd

41

Policy Iteration vs Value Iteration

Includes: policy evaluation + policy Includes: finding optimal value function +

improvement, and the two are repeated one policy extraction. There is no repetition of

iteratively until policy converges. the two because once the value function is
optimal, then the policy out of it should also be
optimal

It is based on the Bellman Expectation equation It is based on the Bellman Optimality equation

The computation alternates between value and Each step gives a new value function. There is

policy. no explicit policy computed each step.

Every v from the loop corresponds to a valid Each intermediate v may not correspond to any

policy 7. valid policy 7.

42

Summary

PROBLEM BELLMAN EQUATION ALGORITHM
- terative Poli

We would like to o ~ | s Prediction Bellman Expectation Equation cTanve .O aid
compute the reward of a . Fvaluation

state s given a policy

.e. find v, Bellman Expectation Equation +

| .
contro Greedy Policy Improvement

Policy Iteration
Compute v i.e. the

best possible reward

Control Bellman Optimality Equation Value Iteration

The MDP is given in all the cases here.

For m actions and n states, algorithms based on state-value function

have a complexity of O(mn?)
43

Exercise: Finding the optimal policy

The aim of this exercise is to find the optimal policy that given
the maximum reward given an environment. For this, we will be
using a pre-defined environment by OpenAl Gym. We will be
using an environment called FrozenLake-VvO.

Start p‘oint g | ‘ ‘

.
.
o*

. .
. .

Here, we will learn how to find an optimal policy given a policy
and then the optimal value function associated to the optimal

policy.

44

