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The Basic Intuition
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A formal definition
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Reinforcement learning is an area of machine learning concerned with how 
software agents ought to take actions in an environment in order to maximize 
the notion of cumulative reward.

Reinforcement Learning (RL) is a type of machine learning technique that 
enables an agent to learn in an interactive environment by trial and error 
using feedback from its own actions and experiences.

A mathematical formalisation of a decision making process.



Where is it used?
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Games

Traffic
Robotics



Elements of Reinforcement 
Learning
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Exploration vs Exploitation
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Exploitation Exploration

Do I just go left like 
before? It’s a safe 

option right?

Can I try going right?        
I might just find the 

cheese faster!

Better immediate reward Long term return is increased



Markov Decision Process
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The future is independent of the past given the present.

A state 𝑆! is said to be Markov if and only if

ℙ[𝑆!"#|𝑆#, 𝑆$, 𝑆%. . . , 𝑆!] = ℙ[𝑆!"#|𝑆!]

Hence we require the state to encapsulate all the necessary information from the history

Markov Property





48

Markov Process
A Markov Process is a tuple ⟨𝑆, 𝑃⟩

• S is the set of states (finite)
• P is the state transition matrix

Gives the entire dynamics of the environment
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Figure adopted from 
David Silver’s RL course

Markov Process Chain
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Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions 
influence immediate rewards, subsequent states and future rewards.
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Markov Decision Process

A Markov Decision Process is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩

• S is the set of states (finite)

• A is a finite set of actions

• P is the state transition matrix, 𝑃""!
# = ℙ[𝑆!$% = 𝑠&|𝑆! = 𝑠, 𝐴! = 𝑎]

• R is the reward function
• 𝛾 is the discount factor

One matrix for each action in the action space



Tasks

Episodic Task

Continuing Task

71



Episodic Tasks

A task that consists of “episodes” which end naturally in a 
special stated called terminal state 𝑆!.

After the terminal state, we reset back to the start state.

The termination time T is a random variable and varies 
from one episode to another.

The return in this task type is a simple summation of the 
rewards.

𝐺! = ∑
'(!$%

)
𝑅'
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Continuing Tasks

Task where there is no natural break into identifiable episodes.

It goes on continually without a definitive limit i.e. the final step 𝑇 = ∞.

Hence, a discounting factor 𝛾 is introduced when computing the return. 

𝐺! = ∑
"#$

%
𝛾"𝑅!&"&' where 0 ≤ 𝛾 ≤ 1.

𝛾 determines the present value of future rewards: A reward received k steps from now 
is worth only 𝛾!"# times the immediate reward.

If 𝛾 < 1, the sum is finite. If 𝛾 = 0, we maximise only the immediate reward.
73



Episodic and Continuing Tasks

To combine episodic and continuing task we introduce an absorbing state.

On termination of an episode, we go to this state that transitions to itself and generates 
only rewards of zero.

The return for T rewards is the same as the return for ∞ rewards.

𝐺! = ∑
"#!$%

&
𝛾"'!'%𝑅" where 0 ≤ 𝛾 ≤ 1
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Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0
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Policy
Consider the following scenario

We have a mouse in a state. Let’s call this state 𝑆$.

The mouse can take 3 possible actions: Go up, left or right. No 
backward move in this policy. 
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Policy
Consider the following scenario

We have a mouse in a state. Let’s call this state 𝑆$.

The mouse can take 3 possible actions: Go up, left or right. No 
backward move in this policy. 

If the mouse was not very smart, then the probability of it 
taking any one of those actions is 

%
(

.
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Policy

However, a smarter mouse would realize that going left would 
give it a slight electric shock, hence it drastically reduces the 
probability of taking that action.

Further, the mouse can smell the cheese from somewhere 
above it, hence it likely for it to want to try going up.

Thus, the new probability of going

Up = %
)

, Left =  %
*

, Right = )
*
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Policy

Assume, the mouse takes an action and goes up. It is 
now in state 𝑆'$. 

Again, we have the same set of possible actions. But
the mouse now knows that it will get an electric shock 
when it goes left and not right like the previous case.

Thus, the probability of taking any action in this state 
changes.
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Policy

This probability, that defines the action taken by an 
agent in a given state is what is called a Policy.

The probability of an action changes for each state the 
agent is present in.



Policy
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Policy 𝜋, provides a probability mapping given a state.

If an agent is said to follow a policy 𝜋 at time t, then 𝜋(𝑎|𝑠) is the probability that 𝐴! =
𝑎 if 𝑆! = 𝑠. 

𝜋(𝑎|𝑠) = 𝑃𝑟{𝐴! = 𝑎|𝑆! = 𝑠}

At a time t, under policy 𝜋 that probability of taking action a in state s is 𝜋(𝑎|𝑠) .

For each state 𝑠𝜖𝑆, 𝜋 is a probability distribution over 𝑎𝜖𝐴(𝑠) i.e. probability 
distribution for all actions permissible in that state.



Value Function
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State value
function

Action value
function
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Let’s now think of a scenario where we have 2 mice starting from an intial state, 𝑆%.

Each mouse can take a total of 3 cheese slices. But remember, it cannot come back. So, 
once it misses a slice it can never eat it.

At this point, both the 
mice can get all the 3 
cheese slices.

Mouse A

Mouse B
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After, a fixed number of actions, each of the mouse ends up in a different state and 
both of them missed the bottom-most slice.

Both, of them can now have almost 2 slices of cheese.

Mouse A however, has many more 
paths to reach the top-most cheese 

Mouse B however, has fewer possible 
paths to reach the top-most cheese
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After, a fixed number of actions, each of the mouse ends up in a different state and 
both of them missed the bottom-most slice.

Both, of them can now have almost 2 slices of cheese.

Mouse A however, has many more 
paths to reach the top-most cheese 

Mouse B however, has fewer possible 
paths to reach the top-most cheese

If, more movement 
implies losing energy 
getting to the cheese, 
Mouse A is essentially 
getting lesser reward 
that Mouse B.
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Thus, for the same environment, and the same set of possible of rewards, the actual 
reward varies for different states.

This actual reward got when the agent is in a particular state is called the State Value 
Function or Value Function of a state.

Value function 𝑣!(𝑠) of a state s under a policy 𝜋 is the expected return when starting 
at s and then thereafter following policy 𝜋.

𝑣!(𝑠) = 𝔼[𝐺"|𝑆" = 𝑠] = 𝔼![ ∑
#$%

&
𝛾#𝑅"'#'(|𝑆" = 𝑠]

𝔼 is the expected value of random variable given that the agent follows policy 𝜋 and t
is any time step.
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Mouse A goes left Mouse B goes up

Time for some action!



107

Mouse A goes left Mouse B goes up

Based on the action, taken Mouse A still has possibility of taking 2 cheese slices, 
whereas Mouse B can only take one.
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Based on the action, taken Mouse A still has possibility of taking 2 cheese slices, 
whereas Mouse B can only take one.

Thus, for the same state, on selecting a different action, the reward an agent gets 
changes. This is called Action Value function.

Value of taking action a state s under a policy 𝜋 is given by 𝑞((𝑠, 𝑎). It is the 
expected return starting from s, taking the action a, thereafter following policy 𝜋.

𝑞+(𝑠, 𝑎) = 𝔼+[𝐺!|𝑆! = 𝑠, 𝐴! = 𝑎] = 𝔼+[ ∑
"#,

-
𝛾"𝑅!$"$%|𝑆! = 𝑠, 𝐴! = 𝑎]

𝑞+ is called the Q-function.
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Exercise: Setting up a Custom Environment

The aim of this exercise is to learn how to set up a custom 
environment using OpenAI Gym.  For setting up any custom 
environment, we will have to define, the state, possible 
actions and the reward obtained for a particular action in a 
given state.

For our custom environment, we will implement the mouse 
grid present in the slides. The possible rewards and state 
given the current state are in the helper file. 


