
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Lecture 31: Introduction to Reinforcement
Learning

1

The Basic Intuition

2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

A formal definition

30

31

Reinforcement learning is an area of machine learning concerned with how
software agents ought to take actions in an environment in order to maximize
the notion of cumulative reward.

Reinforcement Learning (RL) is a type of machine learning technique that
enables an agent to learn in an interactive environment by trial and error
using feedback from its own actions and experiences.

A mathematical formalisation of a decision making process.

Where is it used?

32

33

Games

Traffic
Robotics

Elements of Reinforcement
Learning

34

36

37

38

39

40

41

42

43

Exploration vs Exploitation

44

Exploitation Exploration

Do I just go left like
before? It’s a safe

option right?

Can I try going right?
I might just find the

cheese faster!

Better immediate reward Long term return is increased

Markov Decision Process

45

46

The future is independent of the past given the present.

A state 𝑆! is said to be Markov if and only if

ℙ[𝑆!"#|𝑆#, 𝑆$, 𝑆%. . . , 𝑆!] = ℙ[𝑆!"#|𝑆!]

Hence we require the state to encapsulate all the necessary information from the history

Markov Property

48

Markov Process
A Markov Process is a tuple ⟨𝑆, 𝑃⟩

• S is the set of states (finite)
• P is the state transition matrix

Gives the entire dynamics of the environment

Facebook Sleep

Class 1 Class 2 Class 3 Pass

0.9

0.1

0.5

0.5 0.8 0.6

1.0

0.4

0.4
Club

0.4

0.2

0.2

Figure adopted from
David Silver’s RL course

Markov Process Chain

50

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

51

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

52

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

53

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

54

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

55

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

56

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

57

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

58

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

59

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

60

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

61

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

62

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

63

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

64

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

65

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

66

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

67

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

68

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

69

Markov Decision Process (MDP)
MDP provides a method to formalize sequential decision making where actions
influence immediate rewards, subsequent states and future rewards.

70

Markov Decision Process

A Markov Decision Process is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩

• S is the set of states (finite)

• A is a finite set of actions

• P is the state transition matrix, 𝑃""!
= ℙ[𝑆!$% = 𝑠&|𝑆! = 𝑠, 𝐴! = 𝑎]

• R is the reward function
• 𝛾 is the discount factor

One matrix for each action in the action space

Tasks

Episodic Task

Continuing Task

71

Episodic Tasks

A task that consists of “episodes” which end naturally in a
special stated called terminal state 𝑆!.

After the terminal state, we reset back to the start state.

The termination time T is a random variable and varies
from one episode to another.

The return in this task type is a simple summation of the
rewards.

𝐺! = ∑
'(!$%

)
𝑅'

72

V
E
N
TU

R
E

TE
R
M
IN
A
TE

R
E
S
E
T

Continuing Tasks

Task where there is no natural break into identifiable episodes.

It goes on continually without a definitive limit i.e. the final step 𝑇 = ∞.

Hence, a discounting factor 𝛾 is introduced when computing the return.

𝐺! = ∑
"#$

%
𝛾"𝑅!&"&' where 0 ≤ 𝛾 ≤ 1.

𝛾 determines the present value of future rewards: A reward received k steps from now
is worth only 𝛾!"# times the immediate reward.

If 𝛾 < 1, the sum is finite. If 𝛾 = 0, we maximise only the immediate reward.
73

Episodic and Continuing Tasks

To combine episodic and continuing task we introduce an absorbing state.

On termination of an episode, we go to this state that transitions to itself and generates
only rewards of zero.

The return for T rewards is the same as the return for ∞ rewards.

𝐺! = ∑
"#!$%

&
𝛾"'!'%𝑅" where 0 ≤ 𝛾 ≤ 1

74

76

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

77

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

78

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

79

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

80

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

81

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

82

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

83

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

84

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

85

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

86

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

87

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

88

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

89

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

90

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

91

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

92

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

93

Rewards 𝑅", 𝑅#, 𝑅$ are equal to 10

All rewards after this are equal to 0

94

95

Policy
Consider the following scenario

We have a mouse in a state. Let’s call this state 𝑆$.

The mouse can take 3 possible actions: Go up, left or right. No
backward move in this policy.

96

Policy
Consider the following scenario

We have a mouse in a state. Let’s call this state 𝑆$.

The mouse can take 3 possible actions: Go up, left or right. No
backward move in this policy.

If the mouse was not very smart, then the probability of it
taking any one of those actions is

%
(

.

97

Policy

However, a smarter mouse would realize that going left would
give it a slight electric shock, hence it drastically reduces the
probability of taking that action.

Further, the mouse can smell the cheese from somewhere
above it, hence it likely for it to want to try going up.

Thus, the new probability of going

Up = %
)

, Left = %
*

, Right =)
*

98

Policy

Assume, the mouse takes an action and goes up. It is
now in state 𝑆'$.

Again, we have the same set of possible actions. But
the mouse now knows that it will get an electric shock
when it goes left and not right like the previous case.

Thus, the probability of taking any action in this state
changes.

99

Policy

This probability, that defines the action taken by an
agent in a given state is what is called a Policy.

The probability of an action changes for each state the
agent is present in.

Policy

100

Policy 𝜋, provides a probability mapping given a state.

If an agent is said to follow a policy 𝜋 at time t, then 𝜋(𝑎|𝑠) is the probability that 𝐴! =
𝑎 if 𝑆! = 𝑠.

𝜋(𝑎|𝑠) = 𝑃𝑟{𝐴! = 𝑎|𝑆! = 𝑠}

At a time t, under policy 𝜋 that probability of taking action a in state s is 𝜋(𝑎|𝑠) .

For each state 𝑠𝜖𝑆, 𝜋 is a probability distribution over 𝑎𝜖𝐴(𝑠) i.e. probability
distribution for all actions permissible in that state.

Value Function

101

State value
function

Action value
function

102

Let’s now think of a scenario where we have 2 mice starting from an intial state, 𝑆%.

Each mouse can take a total of 3 cheese slices. But remember, it cannot come back. So,
once it misses a slice it can never eat it.

At this point, both the
mice can get all the 3
cheese slices.

Mouse A

Mouse B

103

After, a fixed number of actions, each of the mouse ends up in a different state and
both of them missed the bottom-most slice.

Both, of them can now have almost 2 slices of cheese.

Mouse A however, has many more
paths to reach the top-most cheese

Mouse B however, has fewer possible
paths to reach the top-most cheese

104

After, a fixed number of actions, each of the mouse ends up in a different state and
both of them missed the bottom-most slice.

Both, of them can now have almost 2 slices of cheese.

Mouse A however, has many more
paths to reach the top-most cheese

Mouse B however, has fewer possible
paths to reach the top-most cheese

If, more movement
implies losing energy
getting to the cheese,
Mouse A is essentially
getting lesser reward
that Mouse B.

105

Thus, for the same environment, and the same set of possible of rewards, the actual
reward varies for different states.

This actual reward got when the agent is in a particular state is called the State Value
Function or Value Function of a state.

Value function 𝑣!(𝑠) of a state s under a policy 𝜋 is the expected return when starting
at s and then thereafter following policy 𝜋.

𝑣!(𝑠) = 𝔼[𝐺"|𝑆" = 𝑠] = 𝔼![∑
#$%

&
𝛾#𝑅"'#'(|𝑆" = 𝑠]

𝔼 is the expected value of random variable given that the agent follows policy 𝜋 and t
is any time step.

106

Mouse A goes left Mouse B goes up

Time for some action!

107

Mouse A goes left Mouse B goes up

Based on the action, taken Mouse A still has possibility of taking 2 cheese slices,
whereas Mouse B can only take one.

108

Based on the action, taken Mouse A still has possibility of taking 2 cheese slices,
whereas Mouse B can only take one.

Thus, for the same state, on selecting a different action, the reward an agent gets
changes. This is called Action Value function.

Value of taking action a state s under a policy 𝜋 is given by 𝑞((𝑠, 𝑎). It is the
expected return starting from s, taking the action a, thereafter following policy 𝜋.

𝑞+(𝑠, 𝑎) = 𝔼+[𝐺!|𝑆! = 𝑠, 𝐴! = 𝑎] = 𝔼+[∑
"#,

-
𝛾"𝑅!$"$%|𝑆! = 𝑠, 𝐴! = 𝑎]

𝑞+ is called the Q-function.

109

Exercise: Setting up a Custom Environment

The aim of this exercise is to learn how to set up a custom
environment using OpenAI Gym. For setting up any custom
environment, we will have to define, the state, possible
actions and the reward obtained for a particular action in a
given state.

For our custom environment, we will implement the mouse
grid present in the slides. The possible rewards and state
given the current state are in the helper file.

