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Lecture 30: Generative Adversarial Networks 
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Quiz Q1

Fooled means D can not tell 

real from fakePossible interpretations ”perfectly fooled” as: 
1. 𝐷(𝑥!"#$) is whatever and 𝐷(𝑥%#&") = 1. This would give log(0) which is 
−∞ .None of the answers work. 

2. 𝐷 𝑥!"#$ = 0 and 𝐷(𝑥%#&") = 1 which again will result in infinities. No match. 

3. 𝐷(𝑥!"#$) = '

(
and 𝐷(𝑥%#&") = '

(
which means the Discriminator has no idea what

is going on.

Note: log(1/2) = −log(2)
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Quiz Q2

Descent means minimize

<latexit sha1_base64="Ws/fhsX1usNUKrMg6fFwV4LUuCo="></latexit>

E
x∼pdata (x)[− logD(x)] + E

z∼pz(z)[− log(1−D(G(z)))]D minimizes this: 

D maximizes this: 
<latexit sha1_base64="TqXTQWcuWctgyA1X8i2k/eLcB5k="></latexit>

E
x∼pdata (x)[logD(x)] + E

z∼pz(z)[log(1−D(G(z)))]

G minimizes this: 
<latexit sha1_base64="8Us6DGR2sEgTgvEZ7Mq9ShyocCI="></latexit>

E
z∼pz(z)[log(1−D(G(z)))]



Image-to-Image Translation using Cycle-GANs
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[Zhu et al. 2017]

https://arxiv.org/abs/1703.10593
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How we build a generator from GANS

8

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝑝(𝑦|𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)
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𝑥"𝑍

Generator

𝑥" = 𝐺(𝑧)

Generative Model

𝑧 ∼ 𝑝(𝑧)
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Game Theory 

In some games there are unbounded resources. For example, in a game 
of poker, the pot can theoretically get larger and larger without limit. 

Zero-sum game:  Players compete for a fixed and limited pool of 
resources. Players compete for resources, claiming them and each 
player’s total number of resources can change, but the total number of 
resources remain constant.

In zero-sum games each player can try to set things up so that the other 
player’s best move is of as little advantage as possible. This is called a 
minimax, or minmax, technique.

10
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Game Theory (cont)

Our goal in training the GAN is to produce two networks that are each as 
good as they can be. In other words, we don’t end up with a “winner.”

Instead, both networks have reached their peak ability given the other 
network’s abilities to prevent it. Game theorists call this state a Nash 

equilibrium, where each network is at its best configuration with 
respect to the other. 

11
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Challenges

Biggest challenge to using GANs in practice is their sensitivity to both 
structure and parameters. 

If either the discriminator or generator gets better than the other too 
quickly, the other will never be able to catch up. 

Also, there is no proof that they will converge. 

GANs do seem to perform very well most of the time when we find the 
right parameters, but there’s no guarantee beyond that. 

12
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Challenges: Using Big Samples 

Trying to train a GAN generator to produce large images, such as 1000 by 
1000 pixels can be problematic. 

The problem is that with large images, it’s easy for the discriminator to 
tell the generated fakes from the real images. 

Many pixels can lead to error gradients that cause the generator’s 
output to move in almost random directions, rather than getting closer 
to matching the inputs. 

Compute power, memory, and time to process large numbers of these 
big samples. 

13
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Challenges: Using Big Samples (cont)  

• Start by resizing the images: 512x512, 128x128, 64x64, … ,4x4. 

• Then build a small generator and discriminator, each with just a few 
layers of convolution. 

• Train with the 4 by 4 images until it does well. 

• Add a few more convolution layers to the end network, and now train 
them with 8 by 8 images. Again, when the results are good, add some 
more convolution layers to the end of each network and train them on 
16 by 16 images. 

This process takes much less time to complete than if we’d trained with 
only the full-sized images from the start. 

14
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Challenges: Mode collapse

I would like to use GAN to produce faces like the ones below 
from NVIDIA [Karras, Laine, Aila / Nvidia]. 

15
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Challenges: Mode collapse (cont)  

The generator somehow finds one image that fools the 
discriminator.

16
[Karras, Laine, Aila / Nvidia]. 
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Challenges: Mode collapse (cont)  

A generator could then just produce that 
image every time independently of the input 
noise. 

The discriminator will always say it is real, so 
the generator has accomplished its goal and 
stops learning.

However: The problem is that every sample 
made by the generator is identical. 

17[Karras, Laine, Aila / Nvidia]. 

This problem of producing just one successful output over and over is called 
mode collapse. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Modal collapse (cont)  

Much more common is when the system produces the same few outputs, 
or minor variations of them. 

This is called partial mode collapse 

18

Solution: 
• Extend the loss function with an 

additional terms to measure the diversity 
of the outputs produced. 

• If the outputs are all the same, or nearly 
the same, the discriminator can assign a 
larger error to the result. 

• The generator will diversify because that 
action will reduce the error.

• Use WGAN (see below) 
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Challenges: Modal collapse (cont)  

19
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Challenges: Modal collapse (cont)  

20

Credit: G. Garcia et al. 2018
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Evaluating GANs: Why is it challenging

21

CheeseburgerPomeranian
??

Could we use D?

Supervised Learning GANs
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Evaluating GANs: What do we want from a Generator? 

22

Fidelity: quality of images Diversity: variety of images

[A Google intern built the AI behind these shockingly good fake images]

https://www.fastcompany.com/90244767/see-the-shockingly-realistic-images-made-by-googles-new-ai


How to evaluate the models  ? 

Evaluating GANs

● Human annotators

● inception Score (IS)

● Fréchet Inception Distance (FID)

● Others… (IS*, SWD)

23[Barrat et al., 2018]

https://arxiv.org/abs/1801.01973
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Evaluation

24

Given a generative model, we generate images 𝑥 = 𝐺 𝑧 .
In the ideal case:
1. 𝑥 has a diverse distribution i.e. it covers a wide range of original 

data distribution
2. 𝑥 have good quality

We could try to classify 𝑥, and get 𝑝 𝑦 𝑥 .
If 1) holds: if we put together all the classifications, we could expect a 
uniform distribution → 𝑝(𝑦) should be very wide
If 2) holds: → 𝑝(𝑦|𝑥) should be very narrow since there shouldn’t be 
uncertainty when classifying

𝑝(𝑦) and 𝑝(𝑦|𝑥) should be very different !
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Evaluation (cont)

25

In order to do this, we need a good classifier. 

In the context of images, why don’t we use the inception network,
and then call it inception score.
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How we build a generator from GANS

26

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝐷(𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)

Inception network trained 
on real network

𝑝(𝑦|𝐺(𝑧))

Binary 

Classification

Multi-Class 

Classification
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Evaluation: Inception Score

27

𝐼𝑆 𝐺 = exp(𝔼,!~."𝐷/0( 𝑝 𝑦 𝑥1 ||𝑝(𝑦))

𝑝 𝑦 = >𝑝 𝑦 𝐺 𝑧 𝑑𝑧

Inception network trained 
on real network

𝑝(𝑦|𝐺(𝑧))

Distribution of labels 
which should be uniform 

(low entropy)

𝑝(𝑦|𝐺(𝑧)) would be 
very high if the network 
is sure about the class 
(high entropy)

Inception Score:

High Inception 
Score means high 
quality and diverse 
generated data.

Diversity means 

flat distribution

High quality means 

peaky distribution

KL measures the difference 

of the two distributions. If 

we want high quality and 

diverse, KL has to be high.

pr
ob
ab
ili
ty

class
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Evaluation: Inception Score

28

Inception Score is used for 
evaluation not for training.

Using IS for training, yields to weird 
results; see figure to the right.
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Evaluation: Train Synthetic, Test Real: TSTR

29

Train classifier on synthetic, test on real (TSTR). 

If synthetic data are of high quality the we expect TSTR≥ TRTR 

Example: GAN model trained on time series data. 
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Evaluation: TSTR (cont)

30

Train on Synthetic Test on Real (TSTR)

Class 0

Train

Synthetic Data (GAN generated)

Classifier

Real Data

Class 1 Class 2Class 0

Test

Accuracy on 

Test is: TSTR

N
o

is
e

 z

Generator

https://arxiv.org/abs/1811.08295

Class 1

N
o

is
e

 z

Generator

Class 2

N
o

is
e

 z

Generator

https://arxiv.org/abs/1811.08295
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Evaluation: TSTR (cont)

31

Class 0

Class 1

Class 2

TrainN
o

is
e

 z
z

Generator

Classifier

Real Data

Class 1

Class 2Class 0

Test

Accuracy on 

Test is: TSTR

Test on Synthetic Train on Real (TSTR)

Synthetic Data (GAN generated)

N
o
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e

 z
z

Generator

N
o
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e

 z
z

Generator
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Evaluating GANs: Fréchet Distance 

33

When we deal with distributions:

1-D normals: 

Multivariable normals:  
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Evaluating GANs: Fréchet Inception Distance

34

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝐷(𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)
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Evaluating GANs: Fréchet Inception Distance

35

Real data

𝑥!

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

Fake data

𝑥" = 𝐺(𝑧)
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Evaluating GANs: Fréchet Inception Distance

36

Real data

𝑥!

𝑥"

Fake data

𝑥" = 𝐺(𝑧)

<latexit sha1_base64="l7H7JBUYsFQhe4gVP4ID4UxGs/I=">AAACGXicbVDNS8MwHE39nPOr6tFLcQiCONoh6kUYKqK3Ce4D1lrSLN3CkrYkqTBq/w0v/itePCjiUU/+N6ZdD7r5IOTx3u9H8p4XUSKkaX5rM7Nz8wuLpaXy8srq2rq+sdkSYcwRbqKQhrzjQYEpCXBTEklxJ+IYMo/itjc8z/z2PeaChMGtHEXYYbAfEJ8gKJXk6qbNoBxwllxeX6SnNsW+tB9sFrsJTw/yu5/anPQHSr5Laum+q1fMqpnDmCZWQSqgQMPVP+1eiGKGA4koFKJrmZF0EsglQRSnZTsWOIJoCPu4q2gAGRZOkidLjV2l9Aw/5OoE0sjV3xsJZEKMmKcmsxxi0svE/7xuLP0TJyFBFEscoPFDfkwNGRpZTUaPcIwkHSkCESfqrwYaQA6RVGWWVQnWZORp0qpVraOqeXNYqZ8VdZTANtgBe8ACx6AOrkADNAECj+AZvII37Ul70d61j/HojFbsbIE/0L5+AArVoZE=</latexit>

FID = kµr � µgk
2
+

<latexit sha1_base64="VmS89+wTirLI4Lirtd8SMkdfHfA="></latexit>

Tr
⇣

Σr + Σg − 2 (ΣrΣg)
1/2

⌘

Assuming that the activations 
distribute as multivariate Gaussians, 
compute the W2 distance between the 
distributions

2
0

4
8

 d
im

e
n

si
o

n
s

2
0

4
8

 d
im

e
n

si
o

n
s

In practice, we use large batches, 

take 𝜇!, Σ! and the average the 

𝜇!, Σ!’s over batches. 
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GANS: Brief timeline

37

Which one is real?  Are you a good Discriminator?

[Analyzing and Improving the Image Quality of StyleGAN]

https://github.com/NVlabs/stylegan2
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GANS: Brief timeline

7 years of progress in faces

38

2021

https://deepgenerativemodels.github.io/assets/slides/cs236_lecture9.pdf

https://deepgenerativemodels.github.io/assets/slides/cs236_lecture9.pdf
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GANS: Brief timeline

39

~2 years of progress in ImageNet

Auxiliary

Spectral Normalization

Self-Attention 

Large Scale GAN Training 
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GANS: Brief timeline – Original GAN

40

[Goodfellow et al. 2014]

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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GANS: Brief timeline: Conditional GAN 

41

𝑥!

𝑥"

𝑍

Generator

𝑥!~𝑝"#$#(𝑥)

𝑥! = 𝐺(𝑧)

𝐷(𝑥)
𝑧 ∼ 𝑝(𝑧)

Discriminator

Classification
Real/Fake
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GANS: Brief timeline: Conditional GAN 

424242

𝑥!

𝑥"

𝑍

Discriminator

Generator

Classification
Real/Fake

𝑥!~𝑝"#$#(𝑥|𝜃)

𝑥! = 𝐺(𝑧|𝜃)

𝐷(𝑥|𝜃)

𝜃

C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)

Conditional GANs are an extension of 

the GANs model. 

The Generator and Discriminator both 

receive some additional conditioning 

input information. This could be the 

class of the current image or some 

other property. 

https://arxiv.org/abs/1411.1784

https://arxiv.org/abs/1411.1784
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GANS: Brief timeline: Conditional GAN 

43

[Mirza et al. 2014]

https://arxiv.org/abs/1411.1784
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Deep Convolutional GAN: DCGAN

44

● Eliminate fully connected layers

● Replace all max pooling with convolutional stride

● Use transposed convolution or simply upsampling

[Radford et al. 2015]

● Batchnorm in G and 

D except for the input 

and output layer 

● ReLU in G for all 
layers except output, 
which uses a tanh

https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN: DCGAN

45

● Eliminate fully connected layers

● Replace all max pooling with convolutional stride

● Use transposed convolution or simply upsampling

[Radford et al. 2015]

● Batchnorm in G and 

D except for the input 

and output layer 

● ReLU in G for all 
layers except output, 
which uses a tanh

https://arxiv.org/abs/1511.06434
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Auxiliary Classifier Generative Adversarial Network 

46

𝑥1

𝑥<

𝑍

Discriminator

Generator

𝑥<~𝑝=#>#(𝑥|𝜃)

𝑥1 = 𝐺(𝑧|𝜃)

𝐷(𝑥|𝜃)

𝜃

C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)

Binary 
Classification 
Real/Fake

𝐿%&'

𝑃(𝑦|𝑥, 𝜃) 𝐿&&'

𝐿 = 𝐿%&' + 𝜆 𝐿&&'

Multi Class  
Classification

FALSE NEGATIVES: Discriminator is passed a fake and it calls it real but the 

wrong class. In vanilla GAN, the generator would be happy but in this case 

the Generator still updates. 

Hyperparameter
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Auxiliary Classifier Generative Adversarial Network 

47

[Odena et al. 2016]

https://arxiv.org/abs/1610.09585
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Wasserstein GAN 

They propose a GAN framework base on a metric that correlates 
with image quality: The Earth Mover Distance, or Wasserstein 

Distance [Arjovsky et al. 2017]

48[Image: Learning with mini-batch Wasserstein]

https://arxiv.org/abs/1701.07875
https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5
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Wasserstein GAN 

Distance is everything: 

In general, generative models seek to minimize the distance 
between real and learned distribution.

Wasserstein (also EM, Earth-Mover) distance: 

“Informally, if the distributions are interpreted as two different 
ways of piling up a certain amount of dirt over the region D, the 
Wasserstein distance is the minimum cost of turning one pile 
into the other; where the cost is assumed to be amount of dirt 
moved times the distance by which it is moved.”

49[Image: Learning with mini-batch Wasserstein]

https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5


50

Imagine we started with a distribution 𝑃! and wanted to move mass 
around to change it into 𝑃?. Moving mass 𝑚 by distance 𝑑 costs 𝑚 F 𝑑. To 

execute this, for all (x,y), move 𝛾 𝑥, 𝑦 mass from x to y

Among all the transport plans, the earth moving (EM) distance 
corresponds to the cost of the optimal transport plan. 

<latexit sha1_base64="MbfvanGBp7WuHV2c2CBAwCKujWc=">AAACgHiclVFda9swFJXdde3Sdk3Xx72IhUEKaWqX0o5BIXQM9pjB0hQiY2RFdkQl2UjXo8bx79j/2lt/TGHKB6Nr+7IDgnPP/dS9SSGFhSC49/yNV5uvt7bftHZ2997utw/eXdu8NIyPWC5zc5NQy6XQfAQCJL8pDKcqkXyc3H5Z+Mc/ubEi1z+gKnikaKZFKhgFJ8XtX2MieQpdoijMkqQeNnFtmh5+bGcNMSKbwdElETrFcU0yqhTFzsJkKP6jQPNX/urk7l0PV0eYWKHwqmQzIfO744rMo7jdCfrBEvg5Cdekg9YYxu3fZJqzUnENTFJrJ2FQQFRTA4JJ3rRIaXlB2S3N+MRRTRW3Ub1cYIM/OmWK09y4pwEv1ccZNVXWVipxkYv57VPfQnzJNykh/RTVQhclcM1WjdJSYsjx4hp4KgxnICtHKDPCzYrZjBrKwN2s5ZYQPv3yc3J92g/P+8H3s87gar2ObfQefUBdFKILNEDf0BCNEEMPXsfrece+73f9Ez9chfreOucQ/QP/8x/BO8OR</latexit>

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [kx� yk]
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Wasserstein GAN 

● Exact computation is intractable. 

● Idea: Use a NN to approximate Wasserstein distance. 

● Here, we re-use the discriminator, whose outputs are now unbounded.

● We define a custom loss function: 

𝑦>!@" here is chosen from {-1, 1} according to real/fake 

Idea: make predictions for real as large as possible, and for fakes as small as 
possible 

51[Image: Learning with mini-batch Wasserstein]

𝑊 = 1
𝑛L

A

𝑦A,.!"=𝑦A,>!@"

https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5


CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN 

52

The authors claim: 

• Higher stability during training, less need for carefully 

balancing generator and discriminator. 

• Meaningful loss metric, correlating well with sample quality. 

• Mode collapse is rare.

• Learns faster because it does not suffer as much from 

Vanishing gradients. 
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Wasserstein GAN 

53

Tips for implementing Wasserstein GAN in Keras. 

● Leave the discriminator output unbounded, i.e., apply linear activation. 

● Initialize with small weights to not run into clipping issues from the start. 

● Remember to run sufficient discriminator updates. This is crucial in the 

WGAN setup. 

● You can use the Wasserstein surrogate loss implementation below. 

● Clip discriminator weights by implementing your own keras constraint 
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GANS: Brief timeline - Spectral Normalization

56

Method to stabilize the training of the discriminator and restrict its 
capacity using a novel weight normalization technique: 

where 𝜎(𝑊) is equivalent to the largest singular value of W.

[Miyato et al. 2018]

.𝑊#$ = 𝑊/𝜎(𝑊)
Singular value is 

very similar to

PCA

https://arxiv.org/abs/1802.05957
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GANS: Brief timeline – Self Attention 

57
[Zhang et al. 2018]

https://arxiv.org/abs/1805.08318


CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline – Large Scale GAN 

58
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GANS: Brief timeline – Large Scale GAN 

59



The GAN Zoo

2017: The explosion of GANs

https://github.com/hindupuravinash/the-gan-zoo

DEQGAN - Differential Equation GAN

TCGAN – Time Conditional GAN

https://github.com/hindupuravinash/the-gan-zoo
https://arxiv.org/abs/2007.11133
https://arxiv.org/abs/1811.08295
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GAN Rules of Thumb (GANHACKs)

Normalize the inputs

● normalize the images between -1 and 1

● tanh as the last layer of the generator output

Use Spherical Z

Don’t sample from a Uniform distribution

● When doing interpolations, do the interpolation via a great circle, rather than a 

straight line from point A to point B

● Tom White's Sampling Generative Networks ref code

https://github.com/dribnet/plat has more details
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GAN Rules of Thumb (GANHACKs)

Batch Normalization

● Construct different mini-batches for real and fake, i.e. each mini-batch needs to 

contain only all real images or all generated images.

● When batchnorm is not an option use instance normalization (for each sample, 

subtract mean and divide by standard deviation).

Avoid Sparse Gradients: ReLU, MaxPool

● The stability of the GAN game suffers if you have sparse gradients

● LeakyReLU = good (in both G and D)

● For Downsampling, use: Average Pooling, Conv2d + stride

● For Upsampling, use: ConvTranspose2d + stride
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GAN Rules of Thumb (GANHACKs)

Use Soft and Noisy Labels

● Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for 

each incoming sample, if it is real, then replace the label with a random number 

between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for 

example).

○ Salimans et. al. 2016

● Make the labels noisy for the discriminator: occasionally flip the labels when 

training the discriminator.

See GANHACKs (https://github.com/soumith/ganhacks) for 

more tips.
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PROTOPAPAS

Exercise: 

Simple exercise to calculate the Fréchet 
distance. 


