
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Lecture 30: Generative Adversarial Networks
(GANS) – part 2

1

CS109B, PROTOPAPAS, GLICKMAN, TANNER
2

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Lecture outline

3

• Review

• Generative Models

– Mode collapse

• Evaluate GANs

– Inception score

– Train Synthetic Test Real

– Fréchet Distance

• State of the Art GANs

– Deep Convolutional GAN: DCGAN

– Auxiliary Classifier GANs

– Recent updates

• Concluding remarks

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Lecture outline

4

• Review

• Generative Models

– Mode collapse

• Evaluate GANs

– Inception score

– Train Synthetic Test Real

– Fréchet Distance

• State of the Art GANs

– Deep Convolutional GAN: DCGAN

– Auxiliary Classifier GANs

– Recent updates

• Concluding remarks

CS109B, PROTOPAPAS, GLICKMAN, TANNER
5

Quiz Q1

Fooled means D can not tell

real from fakePossible interpretations ”perfectly fooled” as:
1. 𝐷(𝑥!"#$) is whatever and 𝐷(𝑥%#&") = 1. This would give log(0) which is
−∞ .None of the answers work.

2. 𝐷 𝑥!"#$ = 0 and 𝐷(𝑥%#&") = 1 which again will result in infinities. No match.

3. 𝐷(𝑥!"#$) = '

(
and 𝐷(𝑥%#&") = '

(
which means the Discriminator has no idea what

is going on.

Note: log(1/2) = −log(2)

CS109B, PROTOPAPAS, GLICKMAN, TANNER
6

Quiz Q2

Descent means minimize

<latexit sha1_base64="Ws/fhsX1usNUKrMg6fFwV4LUuCo=">AAACqHicdVFdS8MwFE3r15xfUx99CQ5hUxytiPoofqDgywTnlLWMNM1mMG1Kcitupb/N/+Cb/8Z0DnRTL4Qczrn35N6bIBFcg+N8WPbM7Nz8QmmxvLS8srpWWd+41zJVlLWoFFI9BEQzwWPWAg6CPSSKkSgQrB08nxd6+4UpzWV8B4OE+RHpx7zHKQFDdStvXkTgKQiyy7ybeYEUoR5E5spec+xpHuHE0MBeAWchAYLzvDaZVc87+56QfXwxLfh7/3kPf3hP0JPmw2/zmrt/UbuaVut1v1upOg1nFPg3cMegisbR7FbevVDSNGIxUEG07rhOAn5GFHAqWF72Us0SQp9Jn3UMjEnEtJ+NFp3jHcOEuCeVOTHgEfuzIiORLtozmcXoeloryL+0Tgq9Ez/jcZICi+nXQ71UYJC4+DUccsUoiIEBhCpuesX0iShCwfxt2SzBnR75N7g/aLhHDef2sHp6Nl5HCW2hbVRDLjpGp+gaNVELUWvHurHurJa9azfttv34lWpb45pNNBF28AnubdTX</latexit>

E
x∼pdata (x)[− logD(x)] + E

z∼pz(z)[− log(1−D(G(z)))]D minimizes this:

D maximizes this:
<latexit sha1_base64="TqXTQWcuWctgyA1X8i2k/eLcB5k=">AAACpnicdVFdS/MwFE7r9/TVqZfeBIfQIY5WRL0UP1BvxK85YS170zSbwbQpyak4S3+af8I7/43pHOKmHgh5eJ5znpxzEqaCa3Ddd8uemJyanpmdq8wv/Ftcqi6v3GmZKcqaVAqp7kOimeAJawIHwe5TxUgcCtYKH49KvfXElOYyuYV+yoKY9BLe5ZSAoTrVVz8m8BCG+UnRyf1Qikj3Y3PlzwX2NY9xamhgz4DziADBReGMZtWLti9kDx+P88HmX9Yv36xH6FHvly9vx9s6dk7HxXo96FRrbsMdBP4JvCGooWFcdqpvfiRpFrMEqCBatz03hSAnCjgVrKj4mWYpoY+kx9oGJiRmOsgHay7whmEi3JXKnATwgP1ekZNYl+2ZzHJyPa6V5G9aO4PufpDzJM2AJfTzoW4mMEhc/hmOuGIURN8AQhU3vWL6QBShYH62YpbgjY/8E9xtN7zdhnu1Uzs4HK5jFq2hdeQgD+2hA3SGLlETUatmnVvX1o3t2Bd20259ptrWsGYVjYT9/wOkGNRp</latexit>

E
x∼pdata (x)[logD(x)] + E

z∼pz(z)[log(1−D(G(z)))]

G minimizes this:
<latexit sha1_base64="8Us6DGR2sEgTgvEZ7Mq9ShyocCI=">AAACS3icbVC7TsMwFHUKhVJeAUYWiwqpHagShICx4iEYi0QfUhNVjuO0Vp04sh2kEuX/WFjY+AkWBhBiwGk7QMuRLB+fc6987/FiRqWyrFejsLRcXFktrZXXNza3ts2d3bbkicCkhTnjoushSRiNSEtRxUg3FgSFHiMdb3SZ+50HIiTl0b0ax8QN0SCiAcVIaalvek6I1NDz0uusnzoeZ74ch/pKHzPoSBrCeF7Oqn/ftaznMD6AVfvoqnozb9Zqbt+sWHVrArhI7BmpgBmaffPF8TlOQhIpzJCUPduKlZsioShmJCs7iSQxwiM0ID1NIxQS6aaTLDJ4qBUfBlzoEyk4UX93pCiU+Xi6Mt9cznu5+J/XS1Rw7qY0ihNFIjz9KEgYVBzmwUKfCoIVG2uCsKB6VoiHSCCsdPxlHYI9v/IiaR/X7dO6dXdSaVzM4iiBfXAAqsAGZ6ABbkETtAAGT+ANfIBP49l4N76M72lpwZj17IE/KBR/AHkwtUY=</latexit>

E
z∼pz(z)[log(1−D(G(z)))]

Image-to-Image Translation using Cycle-GANs

7

[Zhu et al. 2017]

https://arxiv.org/abs/1703.10593

CS109B, PROTOPAPAS, GLICKMAN, TANNER

How we build a generator from GANS

8

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝑝(𝑦|𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)

CS109B, PROTOPAPAS, GLICKMAN, TANNER
99

𝑥"𝑍

Generator

𝑥" = 𝐺(𝑧)

Generative Model

𝑧 ∼ 𝑝(𝑧)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Game Theory

In some games there are unbounded resources. For example, in a game
of poker, the pot can theoretically get larger and larger without limit.

Zero-sum game: Players compete for a fixed and limited pool of
resources. Players compete for resources, claiming them and each
player’s total number of resources can change, but the total number of
resources remain constant.

In zero-sum games each player can try to set things up so that the other
player’s best move is of as little advantage as possible. This is called a
minimax, or minmax, technique.

10

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Game Theory (cont)

Our goal in training the GAN is to produce two networks that are each as
good as they can be. In other words, we don’t end up with a “winner.”

Instead, both networks have reached their peak ability given the other
network’s abilities to prevent it. Game theorists call this state a Nash

equilibrium, where each network is at its best configuration with
respect to the other.

11

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges

Biggest challenge to using GANs in practice is their sensitivity to both
structure and parameters.

If either the discriminator or generator gets better than the other too
quickly, the other will never be able to catch up.

Also, there is no proof that they will converge.

GANs do seem to perform very well most of the time when we find the
right parameters, but there’s no guarantee beyond that.

12

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Using Big Samples

Trying to train a GAN generator to produce large images, such as 1000 by
1000 pixels can be problematic.

The problem is that with large images, it’s easy for the discriminator to
tell the generated fakes from the real images.

Many pixels can lead to error gradients that cause the generator’s
output to move in almost random directions, rather than getting closer
to matching the inputs.

Compute power, memory, and time to process large numbers of these
big samples.

13

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Using Big Samples (cont)

• Start by resizing the images: 512x512, 128x128, 64x64, … ,4x4.

• Then build a small generator and discriminator, each with just a few
layers of convolution.

• Train with the 4 by 4 images until it does well.

• Add a few more convolution layers to the end network, and now train
them with 8 by 8 images. Again, when the results are good, add some
more convolution layers to the end of each network and train them on
16 by 16 images.

This process takes much less time to complete than if we’d trained with
only the full-sized images from the start.

14

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Mode collapse

I would like to use GAN to produce faces like the ones below
from NVIDIA [Karras, Laine, Aila / Nvidia].

15

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Mode collapse (cont)

The generator somehow finds one image that fools the
discriminator.

16
[Karras, Laine, Aila / Nvidia].

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Mode collapse (cont)

A generator could then just produce that
image every time independently of the input
noise.

The discriminator will always say it is real, so
the generator has accomplished its goal and
stops learning.

However: The problem is that every sample
made by the generator is identical.

17[Karras, Laine, Aila / Nvidia].

This problem of producing just one successful output over and over is called
mode collapse.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Modal collapse (cont)

Much more common is when the system produces the same few outputs,
or minor variations of them.

This is called partial mode collapse

18

Solution:
• Extend the loss function with an

additional terms to measure the diversity
of the outputs produced.

• If the outputs are all the same, or nearly
the same, the discriminator can assign a
larger error to the result.

• The generator will diversify because that
action will reduce the error.

• Use WGAN (see below)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Modal collapse (cont)

19

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Challenges: Modal collapse (cont)

20

Credit: G. Garcia et al. 2018

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: Why is it challenging

21

CheeseburgerPomeranian
??

Could we use D?

Supervised Learning GANs

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: What do we want from a Generator?

22

Fidelity: quality of images Diversity: variety of images

[A Google intern built the AI behind these shockingly good fake images]

https://www.fastcompany.com/90244767/see-the-shockingly-realistic-images-made-by-googles-new-ai

How to evaluate the models ?

Evaluating GANs

● Human annotators

● inception Score (IS)

● Fréchet Inception Distance (FID)

● Others… (IS*, SWD)

23[Barrat et al., 2018]

https://arxiv.org/abs/1801.01973

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation

24

Given a generative model, we generate images 𝑥 = 𝐺 𝑧 .
In the ideal case:
1. 𝑥 has a diverse distribution i.e. it covers a wide range of original

data distribution
2. 𝑥 have good quality

We could try to classify 𝑥, and get 𝑝 𝑦 𝑥 .
If 1) holds: if we put together all the classifications, we could expect a
uniform distribution → 𝑝(𝑦) should be very wide
If 2) holds: → 𝑝(𝑦|𝑥) should be very narrow since there shouldn’t be
uncertainty when classifying

𝑝(𝑦) and 𝑝(𝑦|𝑥) should be very different !

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation (cont)

25

In order to do this, we need a good classifier.

In the context of images, why don’t we use the inception network,
and then call it inception score.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

How we build a generator from GANS

26

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝐷(𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)

Inception network trained
on real network

𝑝(𝑦|𝐺(𝑧))

Binary

Classification

Multi-Class

Classification

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation: Inception Score

27

𝐼𝑆 𝐺 = exp(𝔼,!~."𝐷/0(𝑝 𝑦 𝑥1 ||𝑝(𝑦))

𝑝 𝑦 = >𝑝 𝑦 𝐺 𝑧 𝑑𝑧

Inception network trained
on real network

𝑝(𝑦|𝐺(𝑧))

Distribution of labels
which should be uniform

(low entropy)

𝑝(𝑦|𝐺(𝑧)) would be
very high if the network
is sure about the class
(high entropy)

Inception Score:

High Inception
Score means high
quality and diverse
generated data.

Diversity means

flat distribution

High quality means

peaky distribution

KL measures the difference

of the two distributions. If

we want high quality and

diverse, KL has to be high.

pr
ob
ab
ili
ty

class

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation: Inception Score

28

Inception Score is used for
evaluation not for training.

Using IS for training, yields to weird
results; see figure to the right.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation: Train Synthetic, Test Real: TSTR

29

Train classifier on synthetic, test on real (TSTR).

If synthetic data are of high quality the we expect TSTR≥ TRTR

Example: GAN model trained on time series data.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation: TSTR (cont)

30

Train on Synthetic Test on Real (TSTR)

Class 0

Train

Synthetic Data (GAN generated)

Classifier

Real Data

Class 1 Class 2Class 0

Test

Accuracy on

Test is: TSTR

N
o

is
e

 z

Generator

https://arxiv.org/abs/1811.08295

Class 1

N
o

is
e

 z

Generator

Class 2

N
o

is
e

 z

Generator

https://arxiv.org/abs/1811.08295

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluation: TSTR (cont)

31

Class 0

Class 1

Class 2

TrainN
o

is
e

 z
z

Generator

Classifier

Real Data

Class 1

Class 2Class 0

Test

Accuracy on

Test is: TSTR

Test on Synthetic Train on Real (TSTR)

Synthetic Data (GAN generated)

N
o

is
e

 z
z

Generator

N
o

is
e

 z
z

Generator

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: Fréchet Distance

33

When we deal with distributions:

1-D normals:

Multivariable normals:

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: Fréchet Inception Distance

34

𝑥!
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

𝐷(𝑥)

Classification

Real data

Fake data

𝑥" = 𝐺(𝑧)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: Fréchet Inception Distance

35

Real data

𝑥!

𝑧 ∼ 𝑝(𝑧)

𝑥"𝑍

Generator

Fake data

𝑥" = 𝐺(𝑧)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Evaluating GANs: Fréchet Inception Distance

36

Real data

𝑥!

𝑥"

Fake data

𝑥" = 𝐺(𝑧)

<latexit sha1_base64="l7H7JBUYsFQhe4gVP4ID4UxGs/I=">AAACGXicbVDNS8MwHE39nPOr6tFLcQiCONoh6kUYKqK3Ce4D1lrSLN3CkrYkqTBq/w0v/itePCjiUU/+N6ZdD7r5IOTx3u9H8p4XUSKkaX5rM7Nz8wuLpaXy8srq2rq+sdkSYcwRbqKQhrzjQYEpCXBTEklxJ+IYMo/itjc8z/z2PeaChMGtHEXYYbAfEJ8gKJXk6qbNoBxwllxeX6SnNsW+tB9sFrsJTw/yu5/anPQHSr5Laum+q1fMqpnDmCZWQSqgQMPVP+1eiGKGA4koFKJrmZF0EsglQRSnZTsWOIJoCPu4q2gAGRZOkidLjV2l9Aw/5OoE0sjV3xsJZEKMmKcmsxxi0svE/7xuLP0TJyFBFEscoPFDfkwNGRpZTUaPcIwkHSkCESfqrwYaQA6RVGWWVQnWZORp0qpVraOqeXNYqZ8VdZTANtgBe8ACx6AOrkADNAECj+AZvII37Ul70d61j/HojFbsbIE/0L5+AArVoZE=</latexit>

FID = kµr � µgk
2
+

<latexit sha1_base64="VmS89+wTirLI4Lirtd8SMkdfHfA=">AAACSXicbZBNT+MwEIadls/yVXaPXCwqJBCiJBWCPVZw2SMICkhNKY47SS2cOLInSFWUv7eXvXHjP+xlDyDECbcUAYWRLD1+3xl5/AapFAZd994plaemZ2bn5isLi0vLK9XVH+dGZZpDiyup9GXADEiRQAsFSrhMNbA4kHAR3BwN/Ytb0Eao5AwHKXRiFiUiFJyhlbrVa+qrFDRDpRMWQ36mC19CiJv+qYhi1s11sf2GUbHTmDTpu+lrEfVx6yr36C5tvF271Zpbd0dFv4I3hhoZ13G3euf3FM9iSJBLZkzbc1Ps5Eyj4BKKip8ZSBm/YRG0LQ63Np18lERBN6zSo6HS9iRIR+rHiZzFxgziwHbGDPtm0huK33ntDMNfnVwkaYaQ8NeHwkxSVHQYK+0JDRzlwALjWthdKe8zzTja8Cs2BG/yy1/hvFH39uvuyV6teTiOY46skXWySTxyQJrkNzkmLcLJH/KPPJBH56/z33lynl9bS8545if5VKXyC/Kes3A=</latexit>

Tr
⇣

Σr + Σg − 2 (ΣrΣg)
1/2

⌘

Assuming that the activations
distribute as multivariate Gaussians,
compute the W2 distance between the
distributions

2
0

4
8

 d
im

e
n

si
o

n
s

2
0

4
8

 d
im

e
n

si
o

n
s

In practice, we use large batches,

take 𝜇!, Σ! and the average the

𝜇!, Σ!’s over batches.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline

37

Which one is real? Are you a good Discriminator?

[Analyzing and Improving the Image Quality of StyleGAN]

https://github.com/NVlabs/stylegan2

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline

7 years of progress in faces

38

2021

https://deepgenerativemodels.github.io/assets/slides/cs236_lecture9.pdf

https://deepgenerativemodels.github.io/assets/slides/cs236_lecture9.pdf

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline

39

~2 years of progress in ImageNet

Auxiliary

Spectral Normalization

Self-Attention

Large Scale GAN Training

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline – Original GAN

40

[Goodfellow et al. 2014]

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline: Conditional GAN

41

𝑥!

𝑥"

𝑍

Generator

𝑥!~𝑝"#$#(𝑥)

𝑥! = 𝐺(𝑧)

𝐷(𝑥)
𝑧 ∼ 𝑝(𝑧)

Discriminator

Classification
Real/Fake

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline: Conditional GAN

424242

𝑥!

𝑥"

𝑍

Discriminator

Generator

Classification
Real/Fake

𝑥!~𝑝"#$#(𝑥|𝜃)

𝑥! = 𝐺(𝑧|𝜃)

𝐷(𝑥|𝜃)

𝜃

C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)

Conditional GANs are an extension of

the GANs model.

The Generator and Discriminator both

receive some additional conditioning

input information. This could be the

class of the current image or some

other property.

https://arxiv.org/abs/1411.1784

https://arxiv.org/abs/1411.1784

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline: Conditional GAN

43

[Mirza et al. 2014]

https://arxiv.org/abs/1411.1784

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep Convolutional GAN: DCGAN

44

● Eliminate fully connected layers

● Replace all max pooling with convolutional stride

● Use transposed convolution or simply upsampling

[Radford et al. 2015]

● Batchnorm in G and

D except for the input

and output layer

● ReLU in G for all
layers except output,
which uses a tanh

https://arxiv.org/abs/1511.06434

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep Convolutional GAN: DCGAN

45

● Eliminate fully connected layers

● Replace all max pooling with convolutional stride

● Use transposed convolution or simply upsampling

[Radford et al. 2015]

● Batchnorm in G and

D except for the input

and output layer

● ReLU in G for all
layers except output,
which uses a tanh

https://arxiv.org/abs/1511.06434

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Auxiliary Classifier Generative Adversarial Network

46

𝑥1

𝑥<

𝑍

Discriminator

Generator

𝑥<~𝑝=#>#(𝑥|𝜃)

𝑥1 = 𝐺(𝑧|𝜃)

𝐷(𝑥|𝜃)

𝜃

C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)

Binary
Classification
Real/Fake

𝐿%&'

𝑃(𝑦|𝑥, 𝜃) 𝐿&&'

𝐿 = 𝐿%&' + 𝜆 𝐿&&'

Multi Class
Classification

FALSE NEGATIVES: Discriminator is passed a fake and it calls it real but the

wrong class. In vanilla GAN, the generator would be happy but in this case

the Generator still updates.

Hyperparameter

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Auxiliary Classifier Generative Adversarial Network

47

[Odena et al. 2016]

https://arxiv.org/abs/1610.09585

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN

They propose a GAN framework base on a metric that correlates
with image quality: The Earth Mover Distance, or Wasserstein

Distance [Arjovsky et al. 2017]

48[Image: Learning with mini-batch Wasserstein]

https://arxiv.org/abs/1701.07875
https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN

Distance is everything:

In general, generative models seek to minimize the distance
between real and learned distribution.

Wasserstein (also EM, Earth-Mover) distance:

“Informally, if the distributions are interpreted as two different
ways of piling up a certain amount of dirt over the region D, the
Wasserstein distance is the minimum cost of turning one pile
into the other; where the cost is assumed to be amount of dirt
moved times the distance by which it is moved.”

49[Image: Learning with mini-batch Wasserstein]

https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5

50

Imagine we started with a distribution 𝑃! and wanted to move mass
around to change it into 𝑃?. Moving mass 𝑚 by distance 𝑑 costs 𝑚 F 𝑑. To

execute this, for all (x,y), move 𝛾 𝑥, 𝑦 mass from x to y

Among all the transport plans, the earth moving (EM) distance
corresponds to the cost of the optimal transport plan.

<latexit sha1_base64="MbfvanGBp7WuHV2c2CBAwCKujWc=">AAACgHiclVFda9swFJXdde3Sdk3Xx72IhUEKaWqX0o5BIXQM9pjB0hQiY2RFdkQl2UjXo8bx79j/2lt/TGHKB6Nr+7IDgnPP/dS9SSGFhSC49/yNV5uvt7bftHZ2997utw/eXdu8NIyPWC5zc5NQy6XQfAQCJL8pDKcqkXyc3H5Z+Mc/ubEi1z+gKnikaKZFKhgFJ8XtX2MieQpdoijMkqQeNnFtmh5+bGcNMSKbwdElETrFcU0yqhTFzsJkKP6jQPNX/urk7l0PV0eYWKHwqmQzIfO744rMo7jdCfrBEvg5Cdekg9YYxu3fZJqzUnENTFJrJ2FQQFRTA4JJ3rRIaXlB2S3N+MRRTRW3Ub1cYIM/OmWK09y4pwEv1ccZNVXWVipxkYv57VPfQnzJNykh/RTVQhclcM1WjdJSYsjx4hp4KgxnICtHKDPCzYrZjBrKwN2s5ZYQPv3yc3J92g/P+8H3s87gar2ObfQefUBdFKILNEDf0BCNEEMPXsfrece+73f9Ez9chfreOucQ/QP/8x/BO8OR</latexit>

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [kx� yk]

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN

● Exact computation is intractable.

● Idea: Use a NN to approximate Wasserstein distance.

● Here, we re-use the discriminator, whose outputs are now unbounded.

● We define a custom loss function:

𝑦>!@" here is chosen from {-1, 1} according to real/fake

Idea: make predictions for real as large as possible, and for fakes as small as
possible

51[Image: Learning with mini-batch Wasserstein]

𝑊 = 1
𝑛L

A

𝑦A,.!"=𝑦A,>!@"

https://towardsdatascience.com/learning-with-minibatch-wasserstein-d87dcf52efb5

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN

52

The authors claim:

• Higher stability during training, less need for carefully

balancing generator and discriminator.

• Meaningful loss metric, correlating well with sample quality.

• Mode collapse is rare.

• Learns faster because it does not suffer as much from

Vanishing gradients.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Wasserstein GAN

53

Tips for implementing Wasserstein GAN in Keras.

● Leave the discriminator output unbounded, i.e., apply linear activation.

● Initialize with small weights to not run into clipping issues from the start.

● Remember to run sufficient discriminator updates. This is crucial in the

WGAN setup.

● You can use the Wasserstein surrogate loss implementation below.

● Clip discriminator weights by implementing your own keras constraint

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline - Spectral Normalization

56

Method to stabilize the training of the discriminator and restrict its
capacity using a novel weight normalization technique:

where 𝜎(𝑊) is equivalent to the largest singular value of W.

[Miyato et al. 2018]

.𝑊#$ = 𝑊/𝜎(𝑊)
Singular value is

very similar to

PCA

https://arxiv.org/abs/1802.05957

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline – Self Attention

57
[Zhang et al. 2018]

https://arxiv.org/abs/1805.08318

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline – Large Scale GAN

58

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GANS: Brief timeline – Large Scale GAN

59

The GAN Zoo

2017: The explosion of GANs

https://github.com/hindupuravinash/the-gan-zoo

DEQGAN - Differential Equation GAN

TCGAN – Time Conditional GAN

https://github.com/hindupuravinash/the-gan-zoo
https://arxiv.org/abs/2007.11133
https://arxiv.org/abs/1811.08295

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GAN Rules of Thumb (GANHACKs)

Normalize the inputs

● normalize the images between -1 and 1

● tanh as the last layer of the generator output

Use Spherical Z

Don’t sample from a Uniform distribution

● When doing interpolations, do the interpolation via a great circle, rather than a

straight line from point A to point B

● Tom White's Sampling Generative Networks ref code

https://github.com/dribnet/plat has more details

61

https://arxiv.org/abs/1609.04468
https://github.com/dribnet/plat

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GAN Rules of Thumb (GANHACKs)

Batch Normalization

● Construct different mini-batches for real and fake, i.e. each mini-batch needs to

contain only all real images or all generated images.

● When batchnorm is not an option use instance normalization (for each sample,

subtract mean and divide by standard deviation).

Avoid Sparse Gradients: ReLU, MaxPool

● The stability of the GAN game suffers if you have sparse gradients

● LeakyReLU = good (in both G and D)

● For Downsampling, use: Average Pooling, Conv2d + stride

● For Upsampling, use: ConvTranspose2d + stride

62

CS109B, PROTOPAPAS, GLICKMAN, TANNER

GAN Rules of Thumb (GANHACKs)

Use Soft and Noisy Labels

● Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for

each incoming sample, if it is real, then replace the label with a random number

between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for

example).

○ Salimans et. al. 2016

● Make the labels noisy for the discriminator: occasionally flip the labels when

training the discriminator.

See GANHACKs (https://github.com/soumith/ganhacks) for

more tips.

63

https://github.com/soumith/ganhacks

PROTOPAPAS

Exercise:

Simple exercise to calculate the Fréchet
distance.

