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Pavlos Protopapas, Mark Glickman, and Chris Tanner

Lecture 29 : Introduction to Generative 

Adversarial Networks (GANS)
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Outline

3

• Generative Modeling Motivation 

• High Level Formalism  

• Mathematics

• Architecture

• Conditional GANS
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Unpaired Image-to-Image Translation using Cycle-GANs

5

[Zhu et al. 2017]

https://arxiv.org/abs/1703.10593


Video-to-Video Synthesis

[Wang et al. 2018] 6

https://arxiv.org/abs/1808.06601
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What is generative modeling?

Given samples ~ 𝑝data, we would like to sample from the same 
distribution? 

7

Training data ~ 𝑝data(x) Generated samples ~ 𝑝!"#$%(x) 
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What is generative modeling?

How do we generate samples from the same distribution as 
𝑝data(x) ? 

Explicit sampling: 𝑝model(x) has analytical expression: 

• MCMC

• Variational methods

Implicit sampling: learn only how to sample from 𝑝data(x)

• Generator part of VAR

• GANS

8
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#𝑋𝑍

𝑧 ∼ 𝑝(𝑧)

Variational Auto Encoder as a generative model 

Generative model

#𝑋 ∼ 𝑃(𝑋)

Though we used Variational inference to sample of the latent space, at the end we created a 

model that given z in generates !𝑋 with a distribution similar to 𝑋.
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Why should we study it?

1. Realistic generation tasks 
2. Debiasing and data augmentation 
3. Missing data
4. Simulation and planning (RL)

10
[MIT 6.S191: Introduction to Deep Learning]

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L4.pdf
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Generative Adversarial Networks (GANs) 
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Mary
Marketer

Filip
Spam Filterer

Yes, it is spam

No, it is not spam

Spam
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Generative Adversarial Networks (GANs) 
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Yes, it is spam

No, it is not spam
Spam Spam

Spam Spam SpamSpam

Discards a valid email

Allowed some spams

Filip
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Generative Adversarial Networks (GANs) 
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Mary and Filip

learned from what 
went wrong from 

their perspective

Filip: it is not spam

Filip: it is spam

It was spam, for real It was not spam

Spam

Spam Spam

Spam

Spam Spam
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Generative Adversarial Networks (GANs) 
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Mary and Filip

learned from what 
went wrong from 

their perspective

Filip: it is not spam

Filip: it is spam

It was spam, for real It was not spam

Spam

Spam Spam

Spam

Spam Spam
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Generative Adversarial Networks (GANs) 
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Mary
Finds more sophisticated words 

to use

Filip
Learns what 

typical words a 
spam email 

contains

Yes, it is spam

No, it is not spam
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Generative Adversarial Networks (GANs) 
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Yes, it is spam

No, it is not spam

Discarded a valid email

Allowed fewer spams
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Generative Adversarial Networks (GANs) 
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It was spam, for real It was not spam

Filip: it is spam

Filip: it is not spam

Mary and Filip

learned from what 
went wrong from 

their perspective
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Generative Adversarial Networks (GANs) 
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Filip

Discriminator

Mary

Generator

Adversaries: Mary and Filip
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Pos

Generative Adversarial Networks (GANs) 
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Understanding confusion matrix 

Negative

Positive

NegM

label: POSITIVE/NEGATIVE

prediction

prediction 
matches label?

Yes: True

No: False

TP

TNFN

FP

False Positive

+ =

TRUE/FALSE: If prediction and true label match / do not match
POSITIVE/NEGATIVE: Prediction class (SPAM = POSITIVE) 

True Label Prediction

SPAM/NON SPAM
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Generative Adversarial Networks (GAN) 

20

Yes, it is spam

No, it is not spam

It was spam, for real It was not spam

D No action for discriminator. Generator 

must do better. 

label: it is a spam

prediction:
yes, it is spam

Yes

Show email

prediction 
matches label?

True positive (TP): the discriminator sees a spam and 
predicts correctly. No need for further actions for 
discriminator. Generator must do a better job. 

TNFN

FPTP
TRUE/FALSE: If prediction and true label match / do not match

POSITIVE/NEGATIVE: Prediction class (SPAM = POSITIVE) 

POSITIVE
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Generative Adversarial Networks (GANs) 

21

Yes, it is spam

No, it is not spam

It was spam, for real It was not spam

D

Discriminator learns more about 
spams.

label: it is a spam

prediction:
No, It is NOT a 
spam Noshow email

prediction 
matches label?

False Negative (FN): the discriminator sees an email and 
predicts it not a spam even though it is. The discriminator 
must learn more.

TP

TN

FP

FN

TRUE/FALSE: If prediction and true label match / do not match

POSITIVE/NEGATIVE: Prediction class (SPAM = POSITIVE) 

NEGATIVE
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Generative Adversarial Networks (GANs) 

22

False Positive (FP): the discriminator sees an email and 
predicts it is a spam even though it is NOT. The discriminator 
must learn more.

Yes, it is spam

No, it is not spam

It was spam, for real It was not spam

D

label: it is not a spam

prediction:
Yes. it is a spam

show email

prediction 
matches label?

TRUE/FALSE: If prediction and true label match / do not match
POSITIVE/NEGATIVE: Prediction class (SPAM = POSITIVE) 

TP

TN

FP

FN

POSITIVE

Discriminator learns more about 
spams.

No
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Generative Adversarial Networks (GANs) 
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True negative (TN): No action required by Generator or 
Discriminator. 

Yes, it is spam

No, it is not spam

It was spam, for real It was not spam

D

label: it is not a spam

prediction:
No, it is not a 
spamShow spam 

email

prediction 
matches label?

YES

TRUE/FALSE: If prediction and true label match / do not match
POSITIVE/NEGATIVE: Prediction class (SPAM = POSITIVE) 

NEGATIVE

TP FP

FN TN

No action 
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Generative Adversarial Networks (GANs) 
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Filip

Discriminator

Mary

Generator

Adversaries: Mary and Filip
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Generative Adversarial Networks (GANs) 

25

Discriminator

Generator

Adversaries: Mary and Filip
Become: Two player game between a generator G and a discriminator D.



Why is it a “game” ? 

26
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The Discriminator

The discriminator is very simple. 

It takes a sample as input, and 

its output is a single value that 

reports the network’s probability 

that the input is from the 

training set rather than being a 

fake. 

There are not many restrictions 

on what the discriminator is.

27

Discriminator

sample

probability that sample is real 
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The Generator

The generator takes as input a bunch of 
random numbers and generates a 
sample.

If we build our generator to be 
deterministic, then the same input will 
always produce the same output. 

We want to generate data from a 
distribution. In that sense, we can think of 
the input values as latent variables. 

28

noise

sample

Generator
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GANS Architecture

29

𝑥$
Discriminator

𝑧 ∼ 𝑝(𝑧)

𝑥%𝑍

Generator

𝑝(𝑦|𝑥)

Classification

Real data

Fake data

Discriminator 

takes either 
𝑋! or 𝑋"
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Training: Loss Function

30

ℒ = − 1
𝑁2
'()

*

𝑦' log 𝑝 𝑦' + (1 − 𝑦')log 1 − 𝑝 𝑦'

In a binary classification problem, the loss function is given by:

ℒ = − )

*!"#$
∑
'()
*!"#$ 𝑦' log 𝑝 𝑦' + (1 − 𝑦')log 𝑝 1 − 𝑦' −

1
𝑁+,-. 2

'()

*%#&"

𝑦' log 𝑝 𝑦' + (1 − 𝑦')log 1 − 𝑝 𝑦'

Where 𝑦 is the label for 𝑟𝑒𝑎𝑙=1 or f𝑎𝑘𝑒=0. The input to the Discriminator can 
be the real data or the fake data generated by the Generator. Splitting the 
loss function, we have:
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Learning

31

ℒ = − )

*!"#$
∑
'()
*!"#$ 𝑦' log 𝑝 𝑦' + (1 − 𝑦')log 1 − 𝑝 𝑦'

− 1
𝑁+,-. 2

'()

*%#&"

𝑦' log 𝑝 𝑦' + (1 − 𝑦')log 1 − 𝑝 𝑦'

Real: 𝒚𝒊 = 𝟏

Fake: 𝒚𝒊 = 𝟎
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Learning

32

ℒ = − )

*!"#$
∑
'()
*!"#$ log 𝑝 𝑦' − )

*%#&"
∑
'()
*%#&" log 1 − 𝑝 𝑦'
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Learning

33

Rewriting in terms of discriminator D and generator G outputs:

ℒ = − )

*!"#$
∑
'()
*!"#$ log 𝐷 𝑥'/ − )

*%#&"
∑
'()
*%#&" log 1 − 𝐷(𝑥'+ )

ℒ = − )

*!"#$
∑
'()
*!"#$ log 𝐷 𝑥'/ − )

*%#&"
∑
'()
*%#&" log 1 − 𝐷(𝐺(𝑧'))

And noting that 𝑥'+= 𝐺(𝑧')

ℒ = − )

*!"#$
∑
'()
*!"#$ log 𝑝 𝑦' − )

*%#&"
∑
'()
*%#&" log 1 − 𝑝 𝑦'
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𝑧 ∼ 𝑝(𝑧)

𝑥$

𝑍 𝑥%

Discriminator

Generator

𝑝(𝑦|𝑥)

Classification

𝑥!~𝑝"#$#(𝑥)

𝑥% = 𝐺(𝑧)

𝐷(𝑥)

ℒ = − )

*!"#$
∑
'()
*!"#$ log 𝐷 𝑥'/ − )

*%#&"
∑
'()
*%#&" log 1 − 𝐷(𝐺(𝑧'))

ℒ = −Ε0~2'#(#(0) log(𝐷(𝑥)) - Ε5~2)(5) log(1 − 𝐷(𝐺(𝑧))
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Learning

35

The adversarial training can be described as though the Generator 
G and Discriminator D play the following two-player min-max game with 
the following value function V (G, D). 

The Discriminator’s job is to minimize the loss or maximize the –ve loss. 

The Generator’s job is to maximize the loss or minimize the –ve loss. 

ℒ = −Ε0~2'#(#(0) log(𝐷(𝑥)) - Ε5~2)(5) log(1 − 𝐷(𝐺(𝑧))

𝑚𝑎𝑥6𝑉 𝐺,𝐷 = Ε0~2'#(#(0) log(𝐷(𝑥)) + Ε5~2)(5) log(1 − 𝐷(𝐺(𝑧))

min7max6 𝑉 𝐺,𝐷 = Ε0~2'#(#(0) log(𝐷(𝑥)) + Ε5~2)(5) log(1 − 𝐷(𝐺(𝑧))
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Minimax value 

function

Discriminator’s 

prediction on fake 

data
Discriminator’s 

prediction on real 

data

Sample random noise

Sample real data Generator’s output:

fake data
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Minimax value 

function

Generator:

Minimize

Discriminator:

Maximize
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Minimax value 

function

Generator:

Maximize

Discriminator:

Maximize



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Training the GAN

False negative (I: Real/D: Fake): 

In this case we feed reals to the 
discriminator. The Generator is not involved 
in this step at all. 

The error function here only involves the 
Discriminator and if it makes a mistake the 
error drives a backpropagation step through 
the discriminator, updating its weights, so 
that it will get better at recognizing reals. 

39

Discriminator

Reals

Error

Function

Fake

Real

Update

max
6

Ε0~2'#(#(0) log(𝐷(𝑥))
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Training the GAN

False positives (I:Fake/D:Real): 

Here we generate a fake and punish the 
discriminator if it classifies it as real.

40

Discriminator

Error
Function

Fake

Update

Generator

noise

Real

max
'

Ε(~*!(() log(1 − 𝐷(𝐺(𝑧))
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Training the GAN

True negative (I: Fake/D: Fake): 

• We start with random numbers going 
into the generator. 

• The generator’s output is a fake. 

• The objective function gets a large –ve
value if this fake is correctly identified as 
fake. Meaning that the generator got 
caught. 

• Backprop, goes through the discriminator 
(which is frozen) to the generator 
updating the generator’s weight, so it can 
better learn how to fool the discriminator. 

41

Discriminator

Error
Function

Fake

Fake

Update

Generator

noise

max
-

Ε(~*!(() log( 𝐷(𝐺(𝑧))
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Learning

The process – known as Learning Round - accomplishes three 
jobs:

1. The discriminator learns to identify features that characterize 
a real sample

2. The discriminator learns to identify features that reveal a fake 
sample

3. The generator learns how to avoid including the features that 
the discriminator has learned to spot

42
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The Generator

43

Generator

Noise
Generated 
distribution

(FAKE)
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Training GANs

44

Generator

Noise Generated 
distribution

(FAKE)

Forward Pass
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Training GANs

45

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Forward Pass
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Training GANs
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Generator

Noise Generated 
distribution

(FAKE)

Discriminator

Target distribution
(REAL)

Forward Pass
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Training GANs
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Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Forward Pass
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Training GANs

48

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Forward Pass Discriminator 
Loss
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Training GANs

49

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Forward Pass Discriminator 
Loss

Generator 
Loss
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Training GANs

50

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Backward Pass Discriminator 
Loss

Generator 
Loss

Adjust
weights by
𝛻!!

𝐿"

Adjust

weights by

𝛻!"
𝐿#
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Training GANs

51

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Backward Pass Discriminator 
Loss

Generator 
Loss

Adjust
weights by
𝛻!!

𝐿"

Adjust

weights by

𝛻!"
𝐿#
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Training GANs

52

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Backward Pass Discriminator 
Loss

Generator 
Loss

Adjust
weights by
𝛻!!

𝐿"

Adjust

weights by

𝛻!"
𝐿#
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Training GANs

53

Generator

Noise Generated 
distribution

(FAKE)

Target distribution
(REAL)

Discriminator

Real vs. Fake 
Classification

Backward Pass Discriminator 
Loss

Generator 
Loss

Adjust
weights by
𝛻!!

𝐿"

Adjust

weights by

𝛻!"
𝐿#



Training procedure

Generative Adversarial Networks

54
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Building GANS: Fully Connected Case

55

Let’s build a FC simple GAN to generate points 

from a 2-dimensional Gaussian Distribution.

● Generator

○ Takes 4 random numbers

○ Generates a coordinate pair  

● Discriminator

○ Takes an input point in the form of a 

coordinate pair

○ Determines whether the point is 

drawn from a specific 2-D Gaussian

16 neurons

ReLU

Dropout

0.1

16 neurons

Linear

16 neurons

ReLU

Dropout 

0.1

16 neurons

ReLU

Dropout 

0.1

1 neurons

Sigmoid
4 noise 1
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Building GANS: Fully Connected Case

56

Train the Networks based on their ability to generate/discriminate batches of 
points drawn from the distribution.

Are these batches of points drawn from the right distribution?
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Building GANS: Fully Connected Case

57

As the generator and discriminator 
loss converges, the batch of points 
generated by the generator (in the 
yellow) approaches the real batch of 
points (in the blue)



PROTOPAPAS

Exercise: 

In this exercise, we are going to 

generate 1-D Gaussian distribution from 
a n-D uniform distribution. This is a toy 

exercise in order to understand the 
ability of GANs (generators) to generate 
arbitrary distributions from random 

noise.
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Deep Convolutional GAN: DCGAN

59

Deep Convolutional GAN (DCGAN)  
-- Alex Radford et al. 2016

● Eliminate fully connected 

layers.

● Max Pooling BAD!  Replace all 

max pooling with convolutional 

stride

● Use transposed convolution for 

upsampling or simply 

upsampling.

● Use Batch normalization
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Building GANS: DCGAN

60

DCGAN on MNIST

Generated digits 
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Evolution of GANs

62

5 Years of Improvement in Artificially Generated Faces

https://twitter.com/goodfellow_ian/status/969776035649675265?lang=en

2021
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Evolution of GANs

64
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𝑥%

𝑥$

𝑍

Discriminator

Generator

𝑝(𝑦|𝑥)

Classification

𝑥!~𝑝"#$#(𝑥)

𝑥% = 𝐺(𝑧)

𝐷(𝑥)

Vanilla Generative Adversarial Nets

𝑧 ∼ 𝑝(𝑧)
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𝑥%

𝑥$

𝑍

Discriminator

Generator

𝑝(𝑦|𝑥, 𝜃)

Classification

𝑥!~𝑝"#$#(𝑥|𝜃)

𝑥% = 𝐺(𝑧|𝜃)

𝐷(𝑥|𝜃)

𝜃

Conditional Generative Adversarial Nets
C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)

Conditional GANs are an extension of 

the GANs model. 

The Generator and Discriminator both 

receive some additional conditioning 

input information. This could be the 

class of the current image or some 

other property. 

https://arxiv.org/abs/1411.1784

https://arxiv.org/abs/1411.1784
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𝑥%𝑍

Generator

𝑥% = 𝐺(𝑧|𝜃)𝜃

Conditional Generative Adversarial Nets

C
o
n
d
it
io
n
s

𝑧 ∼ 𝑝(𝑧)


