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Outline: Part 2

• Motivation for Variational Autoencoders (VAE)

• Inference in Neural Networks
• Bayesian Linear Regression 

• Bayesian Neural Networks

• Introduction to Variational methods

• Variational Autoencoder as an inference model

• Variational Autoencoders as generative model
• Separability of VAE

• Tips & tricks

• Other generative models
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Skulls of Bayesian Methods

MCMC will not work for NN’s with more than a few 
dozens of parameters. 

Why? 

For each parameter (weight), we sample and 
calculate the likelihood 5 ∗ 𝑛 times, where 𝑛 is the 
chain’s length.  

We also throw away a significant number of 
samples from the beginning of the chain. 

The number of samples, 𝑛, necessary to adequately 
capture the distribution grows with the number of 
parameters and complexity of the posterior.
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Five times because we 
usually have acceptance 

rate of ∼ 20%.

Typically, we throw the 
first 10-20% of the 

samples for burn in. 

I do not know of a 
convergence bounds for 
MCMC. There are some 

works but for specific 
problems only.

Typically, we depend on 
empirical diagnostics to 
know that the chain has 

converged
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Guess we’ll need an 
alternative route!
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Variational Approximations

6



CS109B, PROTOPAPAS, GLICKMAN, TANNER 7

Space of all distributions

Alternative method of estimating the posteriors: Variational Inference 
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True 𝑝(w|D)

Space of all distributions
Let 𝑝(𝑤|D) be the true posterior 
distribution. 

Alternative method of estimating the posteriors: Variational Inference 
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True 𝑝(w|D)

Space of all distributions
Let 𝑝(𝑤|D) be the true posterior 
distribution. 

We want to find another distribution, 
which is easier to deal with, 𝑞(𝑤), that 
is similar to 𝑝 𝑤 𝐷 .

Space of all ‘friendly’ 
distributions, q(w)

Alternative method of estimating the posteriors: Variational Inference 
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True 𝑝(w|D)

Space of all distributions
Let 𝑝(𝑤|D) be the true posterior 
distribution. 

We want to find another distribution, 
which is easier to deal with, 𝑞(𝑤), that 
is similar to 𝑝 𝑤 𝐷 .

To do so we define the meaning of 
‘similar’ to be some form of distance
between 𝑞 w 𝑎𝑛𝑑 𝑝 w|D . We will use KL 
divergence for that: 

𝐷&'[𝑞|𝑝] = ∫ 𝑞 𝑤 log
𝑞(𝑤)
𝑝(𝑤|𝐷)

𝑑𝑤

Technically not a distance

Space of all ‘friendly’ 
distributions, q(w)

Alternative method of estimating the posteriors: Variational Inference 

Why KL: Because the maths
work nicely

D: Data

We often use normal for the 
friendly distributions q(w)
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True 𝑝(w|D)

Space of all distributions 𝐷&'[𝑞|𝑝] = ∫ 𝑞 𝑤 log
𝑞(𝑤)
𝑝(𝑤|𝐷)

𝑑𝑥

By minimizing over all functions 𝑞(𝑤)

𝑞∗ = 𝑎𝑟𝑔𝑚𝑖𝑛)∫ 𝑞 𝑤 log )(+)
-(+|/)𝑑𝑤,

we will discover 𝑞 𝑤 that is the closest 
to 𝑝(𝑤|𝐷), namely 𝑞∗(. ).

If 𝑞 . is parametrized by 𝜙, 𝑞0 .

𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛0∫ 𝑞0 𝑤 log
𝑞0(𝑤)
𝑝(𝑤|𝐷)

𝑑𝑤

Closest q w to 
p w|x Space of all ‘friendly’ 

distributions, q(w)

Alternative method of estimating the posteriors: Variational Inference 

If 𝑞! . is normal, 𝑞!, 𝜙 is 𝜇, 𝜎
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True 𝑝(W|D)

Space of all distributions 𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛0∫ 𝑞0 𝑤 log
𝑞0(𝑤)
𝑝(𝑤|𝐷)

𝑑𝑤

Doing a “little” of math that we will 
cover in the advanced section, we can 
derive a new loss function:

ℒ = 𝐾𝐿 𝑞!(𝑤)||𝑝(𝑤) −𝐸""[log𝑝(𝐷|𝑤)]

The important point is that we do not 
need to sample to discover the 
posterior distribution but, minimize
this new loss function w.r.t. to 𝜙.

This can be approached with gradient 
descent or stochastic gradient descent.

Closest q w to 
p w|x Space of all ‘friendly’ 

distributions, q(w)

Alternative method of estimating the posteriors: Variational Inference 

We will always need to choose the 
prior of the parameters.
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Variational Method in Action

13
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RECAP: Bayesian Neural Network

Candidate 𝑾∗

generator

𝑃 𝑑𝑎𝑡𝑎 𝑊∗)∗𝑃 𝑊∗

𝑃 𝑑𝑎𝑡𝑎 𝑊(#$%))∗𝑃 𝑊(#$%)

ACC
EPT

REPEAT

FORWARD PASS

𝑃 𝑑𝑎𝑡𝑎 𝑊∗)

Current𝑾(𝒋$𝟏)

Dataset 

REJECT

Bayesian Neural Network

𝑊($) =𝑊∗

𝑊($) =𝑊($'()



PROTOPAPAS



PROTOPAPAS
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INPUT LOSS FUNCTION

𝑊!= 𝑊! − 𝜂(
"#!
"$!
)

REPEAT

𝐿"MINI BATCH

MINI 
BATCH 1

MINI 
BATCH 2

MINI 
BATCH 3

MINI 
BATCH …

MINI 
BATCH …

MINI 
BATCH …

MINI 
BATCH …

RECAP: Neural Network

FORWARD PASS

Learning rate

BACKWARD PASS



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Variational Neural Network

1.2

−0.6

12.6

0.9

BEFORE
(Deterministic weights)

AFTER
(Probabilistic weights)

The distributions of w’s are 
now the 𝑞(𝑤))’s
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Variational Neural Network

INPUT

• In variational methods, we assume a 
weight distribution, 𝑞' 𝑤 , with
distribution parameters, 𝜙, which
are to be optimized to best match 
the true posterior, 𝑝(𝑊|D).

• However, for the forward pass, to 
compute the activations, we need
values for the weights.

• Since we assume a distribution for 
the weights, we can take a sample
from that distribution, 𝑞' 𝑤 ,  for 
some scaling parameters 𝜙 = 𝜇, 𝜎 .

𝒂 = 𝑾𝑻𝑿

HOW?!?!
We will learn these parameters.
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Variational Neural Network

𝜇.

𝜇/
𝜎/

𝜎0
𝜇0

𝜇1
𝜎1

𝜎.

This will double our trainable parameters, as we optimize for the 𝜇 & 𝜎 for 
each weight distribution.

𝒘𝒊 = 𝝁𝒊 + 𝝈𝒊⊙𝝐

𝒂 = ∑𝒘𝒊𝑿

𝜖 ∼ 𝑁(0,1)
This is equivalent to  

𝑤) ∼ 𝑞,!,.! 𝑊 = 𝑁(𝜇) , 𝜎))
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INPUT LOSS FUNCTION

𝜇$= 𝜇$ − 𝜂(
%&!
%'!

) 

𝜎$ = 𝜎$ − 𝜂(
%&!
%(!

) REPEAT

𝐿"MINI BATCH

MINI 
BATCH 1

MINI 
BATCH 2

MINI 
BATCH 3

MINI 
BATCH …

MINI 
BATCH …

MINI 
BATCH …

MINI 
BATCH …

RECAP: Variational Neural Network We start with some random 
𝜇)
(/), 𝜎)

(/)

FORWARD PASS 
WITH SAMPLING
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Landscape of Inference Method for NN

VARIATIONAL
ACTIVATIONS

VARIATIONAL 
METHODS

• Stochastic hidden units

• Metropolis Hastings
• HMC
• Adaptive HMC

• Bayes By Backprop
• Flipout
• Dense Local Reparameterization

VARIATIONAL
WEIGHTS

BAYESIAN
NEURAL NETWORKS

MCMC 
METHODS

OTHER 
METHODS

• Dropouts
• Bootstraps

Advanced 
Section
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Variational Methods

VARITIATIONAL
ACTIVATIONS

VARIATIONAL 
METHODS

• Stochastic hidden units • Bayes By Backprop
• Flipout
• Dense Local Reparameterization

VARIATIONAL
WEIGHTS
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𝑋 +𝑌

Quick Review

𝜖

Deterministic
Input

Deterministic 
weights

Stochastic
Output

Source of 
stochasticity

VARIATIONAL 
OUTPUT

We could directly 
approximate the 
output distribution
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𝑋 +𝑌

Quick Review

𝜖

Deterministic
Input

Stochastic 
weights

Stochastic
Output

Source of 
stochasticity

VARIATIONAL 
WEIGHTS

We could 
approximate each 
weight distribution



CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝑋 +𝑌𝑍

Quick Review

Deterministic
Input

Deterministic 
weights

Stochastic
hidden units

Stochastic
Output

VARIATIONAL 
HIDDEN UNITS 𝜖 Source of 

stochasticity

Deterministic 
weights

More simply, we could 
approximate hidden 
activation distributions
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Building blocks of probabilistic machine learning

WORKFLOW

DEFINE LOSS
FUNCTION

BUILD MODEL

MINIMIZE LOSS

For variational 
methods, our workflow 
remains the same
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Building blocks of supervised machine learning

WORKFLOW

DEFINE LOSS
FUNCTION

BUILD MODEL

MINIMIZE LOSS

Tensorflow Probability
Layers

Negative Log Likelihood

.FIT()
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Building blocks of supervised machine learning

DEFINE LOSS
FUNCTION

BUILD MODEL

MINIMIZE LOSS
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Building blocks of supervised machine learning

BUILD MODEL

MINIMIZE LOSS

DEFINE LOSS
FUNCTION
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Building blocks of supervised machine learning

BUILD MODEL

MINIMIZE LOSS

DEFINE LOSS
FUNCTION
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Building blocks of supervised machine learning

WORKFLOW

DEFINE LOSS
FUNCTION

BUILD MODEL

MINIMIZE LOSS

Tensorflow Probability
Layers

Negative Log Likelihood

.FIT()
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Variational Methods - Introduction

33

Back to the same dataset from part one
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Option #1 – Variational Approximation of the output

34



CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝑋

Variational BNN – Output only

𝜖
VARIATIONAL 

OUTPUT

+𝑌

Source of 
stochasticity
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𝑋
𝜇

Variational BNN – Output only

𝜖
VARIATIONAL 

OUTPUT

𝜎
+𝑌

Source of 
stochasticity

This is the easiest to 
perform: 𝒒𝝓 𝒀 = 𝑵(𝝁, 𝝈)
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Variational BNN – Output only

37

• We build a neural network like before, but instead of one output @𝑦, we output 
two values, each representing the mean 𝜇, and standard deviation 𝜎.

• We introduce stochasticity by the equation @𝑦 = 𝜇 + 𝜎 ⊙ 𝜖, thus for each input 
x, we have an output distribution given by 𝑦~ 𝑁 𝜇, 𝜎 .

• We estimate 𝜇, 𝜎 , by minimizing the Variational Loss as before and doing 
backpropagation.

Model Summary
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Variational BNN – Output only

‘OUTPUT ONLY’ ISSUES?

• Although easy to implement, 
the approximate posterior 
𝑞 𝑦 𝑥 is not complex enough to 
capture the true posterior 
distribution p 𝑦 𝑥 .

• As seen in the output on our 
sample dataset, the epistemic
variance away from the dataset 
should be much higher, but the 
model still confidently predicts 
those regions.
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Option #2 – Variational Approximation of the weights

39
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𝑋
𝜇

Variational BNN – Output only

𝜖
VARIATIONAL 

OUTPUT

𝜎
+𝑌

Source of 
stochasticity
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𝑋 +𝑌

Variational BNN – Bayes by Backprop

𝜖

Deterministic
Input

Stochastic 
weights

Stochastic
Output

Source of 
stochasticity

VARIATIONAL 
WEIGHTS

To approximate the 
weights, we can use 
‘Bayes by Backprop’
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Variational BNN – Bayes by Backprop

42

• To perform variational approximation on the weights, instead of using 
a deterministic value for 𝑤, we let each q"*,$*(w%) = 𝑁 𝜇& , 𝜎& and 
sample from these distributions.

• In the forward pass, we introduce stochasticity in the weights by using 
the equation 𝒘 = 𝜇 + 𝜎 ⊙ 𝜖, and thus the output 1𝑦 = 𝑁𝑁'(𝑥) will have 
an output distribution.

• In order to perform backpropagation, we modify our equations to take 

the derivate 
()
("
, ()
($

and update the 𝜇 & 𝜎.

Weight Uncertainty in Neural Networks

https://arxiv.org/abs/1505.05424
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Variational BNN 

‘BAYES BY BACKPROP’ ISSUES?

• Although the approximate posterior 𝑞'(𝑤)
adds sufficient complexity to the output 
posterior, it doubles the trainable parameters, 
which can be significant for very large neural 
networks.

• Since it is computationally prohibitive to 
sample a unique 𝜖 in each forward pass, the 
implementation uses the same sample for all 
weights.

• This causes the gradients to be correlated, 
thereby preventing variance reduction during 
training.
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Variational BNN – Flipout

44

• Like Bayes By Backprop, Flipout performs variational approximation on the 
weights w~q0(wI) = 𝑁 𝜇, 𝜎 .

• Unlike Bayes By Backprop, in the forward pass Flipout uses a different 𝜖J for 
each weight wI. Like Bayes By Backprop, it introduces stochasticity in the 
weights by using the equation 𝒘 = 𝜇 + 𝜎⊙ 𝜖, and thus the output @𝑦 =
𝑁𝑁(𝑤, 𝑥) will have an output distribution.

• Flipout overcomes the computational difficulty of a unique sampling by 
multiplying the sample 𝜖 with a random sign matrix. 

Not exactly different

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches

https://arxiv.org/abs/1803.04386


CS109B, PROTOPAPAS, GLICKMAN, TANNER

Uncorrelated stochastic gradients

45

∆𝑊 = $∆𝑊 ∘ 𝐸
Some 

perturbation 
distributions

Random Sign 
matrix
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FLIPOUT

𝜖

∆𝑊 = $∆𝑊 ∘ 𝐸

REPEAT FOR EVERY MINIBATCH

−𝜖
𝜖

−𝜖

𝜖
−𝜖

−𝜖

𝜖

Flipout Explained
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Variational BNN – Output only

‘FLIPOUT’ ISSUES?

• Although Flipout is a significant 
improvement over Bayes By Backprop, 
Flipout still suffers from some degree of 
correlation between the stochastic 
gradients, and performance suffers 
from an increased number of weights.

• In order to get uncorrelated stochastic 
gradients, we will need to sample 
independently for each weight for each 
forward pass.
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Option #3 – Variational Approximation on hidden units

48
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𝑋 +𝑌

Variational BNN – Stochastic Weights

𝜖

Deterministic
Input

Stochastic 
weights

Stochastic
Output

Source of 
stochasticity

VARIATIONAL 
WEIGHTS
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𝑋 +𝑌𝑍

Quick Review

Deterministic
Input

Deterministic 
weights

Stochastic
hidden units

Stochastic
Output

VARIATIONAL 
HIDDEN UNITS 𝜖 Source of 

stochasticity

Deterministic 
weights

This is where things 
get interesting
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Variational BNN – Stochastic hidden units

51

• Instead of using stochastic weights, we 
could approximate the true posterior 

𝑝(𝑧│𝑥) with the approximate posterior 
𝑞(𝑧│𝑥) with a known distribution such as a 
Gaussian. 

• Since number of hidden units are an order 
of two lesser than the weights in a network, 
we can easier sample for each hidden unit 
in the forward pass.



VARIATIONAL
AUTO-ENCODERS

BAYESIAN
Linear regression

VARIATIONAL
METHODS

BAYESIAN 
NEURAL NETWORKS

Now let’s get to the 
treasure chest
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Variational Auto-Encoders

53
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𝑋 +𝑌𝑍

Quick Review

Deterministic
Input

Deterministic 
weights

Stochastic
hidden units

Stochastic
Output

VARIATIONAL 
HIDDEN
UNITS 𝜖 Source of 

stochasticity

Deterministic 
weights
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𝑋 +𝑋𝑍

Quick Review

𝜖

Deterministic 
Input

Deterministic 
weights

Stochastic 
hidden units

Deterministic 
weights

Stochastic 
Output

Source of 
stochasticity

VARIATIONAL AUTOENCODER
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𝑋

+𝑋𝑍

𝜇(𝑋),𝜎(𝑋)

Variational AutoEncoder

VARIATIONAL
AUTOENCODER

𝜖
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ESTIMATED LOWER BOUND

57

Don’t worry, we’ll cover this 
in the advanced section Sample 

Lower Bound

Log-likelihood
Reconstruction Term 𝑞!(𝑧|𝑥 " ) should resemble 

the prior p#(𝑧)

<latexit sha1_base64="cgPTIteRbKf1G9L6z+Zb2mIa9YE=">AAADO3iclVLPi9QwFE7rr3X8NatHL8FBmAEd2kVcQYRFEQT3sAvO7sKkljRNp2HTppuk4mzM/+XFf8KbFy8eFPHq3XTahZ0ZPfig5ON77/vee2mSijOlg+CL51+4eOnylY2rvWvXb9y81d+8faBELQmdEMGFPEqwopyVdKKZ5vSokhQXCaeHyfGLJn/4jkrFRPlGzysaFXhWsowRrB0Vb3r7qMA6J5ibXSuUQpxmeogSwVM1L9xhkM6pxvYBXCKrnFn4FC7ESWbe27dmyEYWSTbL9egZfL3bOp3EZk1nuyad9tQ6G5b+ywuiD7A6Vzzq+IctlZiXNjZNm8b6v5zb6iniYgarlTnbpVf8zvTLrqdnfu0Rxf1BMA4WAddB2IEB6GIv7n9GqSB1QUtNOFZqGgaVjgyWmhFObQ/VilaYHOMZnTpY4oKqyCz+vYX3HZPCTEj3lRou2PMKgwvVLOUqm3nVaq4h/5ab1jp7EhlWVrWmJWkbZTWHWsDmIcGUSUo0nzuAiWRuVkhyLDHR7rn13CWEqyuvg4Otcfh4HOw/Guw8765jA9wF98AQhGAb7IBXYA9MAPE+el+9794P/5P/zf/p/2pLfa/T3AFL4f/+A3AZEvQ=</latexit>

Loss
⇣
✓,�;x(i)

⌘
= KL

⇣
q�

⇣
z | x(i)

⌘
kp(z)

⌘
� Eq�(z|x(i))

h
log p✓

⇣
x(i) | z

⌘i
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ESTIMATED LOWER BOUND

58

Reconstruction Term 𝑞!(𝑧|𝑥 " ) should resemble 
the prior p#(𝑧)

If likelihood is 
normal this term 

becomes: 

−∑ &𝑥 ) − 𝑥 ) 1

If likelihood is Bernoulli this 
term becomes the binary cross 

entropy: 
−∑𝑥()) log &𝑥()) + 𝑥()) log &𝑥())

Set the priors to 𝑝 𝑧 = 𝑁(0,1)

<latexit sha1_base64="cgPTIteRbKf1G9L6z+Zb2mIa9YE="></latexit>

Loss
⇣
✓,�;x(i)

⌘
= KL

⇣
q�

⇣
z | x(i)

⌘
kp(z)

⌘
� Eq�(z|x(i))

h
log p✓

⇣
x(i) | z

⌘i

Set 𝑞!(𝑧|𝑥 ) ) to be 𝑁(𝜇, 𝜎)

𝜃 are the decoder weights
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Training a VAE

59

1. Set priors: 𝑝 𝑧 = 𝑁 0,1
2. Forward pass with sampling: 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖
3. Calculate the loss: 

4a. Update the decoder weights using backpropagation 

4b. Update the encoder weights using backpropagation 

<latexit sha1_base64="cgPTIteRbKf1G9L6z+Zb2mIa9YE="></latexit>

Loss
⇣
✓,�;x(i)

⌘
= KL

⇣
q�

⇣
z | x(i)

⌘
kp(z)

⌘
� Eq�(z|x(i))

h
log p✓

⇣
x(i) | z

⌘i

Note: If priors are 𝑁 0,1 and q! 𝑧, 𝑥(") is also normal, the KL can be analytically calculated. 



VARIATIONAL
AUTO-ENCODERS

BAYESIAN
Linear regression

VARIATIONAL
METHODS

BAYESIAN 
NEURAL NETWORKS Yo-ho-ho!
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Inference Summary

61
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Summary

62

COMPLEXITY

SPEED STOCHASTICITY

PICK TWO

𝑋 5𝑋𝑍

MCMCFLIPOUT
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RECAP: Variational AutoEncoder Paper
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Let us consider some dataset 𝑋 = {𝑥(7)}78.9 consisting of 𝑁 i.i.d. 
samples of some continuous or discrete variable 𝑥. We 
assume that the data are generated by some random process, 
involving an unobserved continuous random variable 𝑧.

…
We are interested in a general algorithm that works in case of: 

1. Intractability: 𝑝: 𝑥 = ∫𝑝: 𝑧 𝑝: 𝑥|𝑧 𝑑𝑧 is intractable 

2. Large Dataset: Sampling based solutions eg. Monte Carlo EM 
would be too slow

Auto-Encoding Variational Bayes (Diederik P. Kingma et al)

https://arxiv.org/pdf/1312.6114.pdf


CS109B, PROTOPAPAS, GLICKMAN, TANNER

VAE as a generative model
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Variational Autoencoders – Generative models
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COMPUTE 3 MEANS COMPUTE 3 STANDARD DEVIATIONS

SAMPLE FROM EACH 
DISTRIBUTION

LATENT VALUES

ENCODER

LATENT VALUES
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Variational Autoencoders
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STOCHASTICITY

ENCODER DECODER

LATENT VARIABLES LATENT VARIABLES

=

=

=

=
=
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Variational Autoencoders
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512 neurons
ReLU

512 neurons
ReLU

256 neurons
ReLU

20 neurons
ReLU

256 neurons
ReLU

784 neurons
ReLU

512 
neurons

ReLU

512 
neurons

ReLU

256 
neurons

ReLU

20 
neurons

ReLU

256 
neurons

ReLU

784 
neurons

ReLU

Centers

Spreads

Random 
Variable
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Separability in Variational Autoencoders
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Separability is not only between classes, but we 
also want similar items in the same class to be 
near each other. 

For example, there are different ways of writing 
“2”; we want similar styles to end up near each 
other. 

Let us examine VAE; there is something magical
happening once we add stochasticity in the 
latent space. 
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Separability in Variational Autoencoders
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Encode the first sample (a “2”) and find 𝜇., 𝜎. . Sample z. ∼ 𝑁 𝜇., 𝜎.
and decode to >𝑥.

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Latent Space
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Decode to >𝑥.
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Encode the second sample (a “3”) find 𝜇/, 𝜎/. Sample z/ ∼ 𝑁 𝜇/, 𝜎/
and decode to >𝑥/
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Train with the first sample (a “2”) again and find 𝜇:, 𝜎:. However z: ∼ 𝑁(𝜇:, 𝜎:)
will not be the same. 
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Train with the first sample (a “2”) again and find 𝜇:, 𝜎:. However z: ∼ 𝑁(𝜇:, 𝜎:)
will not be the same. It happens to be close to the “3” in latent space. 

Remember, this is 
very close to the 
encoded 3 earlier
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Train with 1st sample again.

Latent space starts 
to re-organize
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Keep doing this multiple times with 2’s and 3’s
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

ENCODER DECODER

Soon images belonging to different classes are separated and images 
within a class are clustered together.
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Separability in Variational Autoencoders
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Latent Space

SD σ

Mean µ

Sample a value 
from the 

distribution

Similarly, if there are 
more than 2 image 

classes.ENCODER DECODER
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𝑋

+𝑋𝑍

𝜇(𝑋),𝜎(𝑋)

Variational AutoEncoder

VARIATIONAL
AUTOENCODER

𝜖
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+𝑋𝑍

𝑧 ∼ 𝑝(𝑧)

Variational AutoEncoder as a generative model 

Generative model
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Training VAE
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Input Image:

Output Images:

Difference:

Traditional AE:

Input Image:

Output Images:

Variational AE:
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Generative model in action: The Famous plots
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Latent space of VAE

• More separable than AE
• Because of the prior 
𝑁(0,1) everything is center at 
(0,0) with spread of approximately 
one.  

• Blending is more continuous 
because latent space is 
continuous 



PROTOPAPAS

Exercise: Variational Auto-Encoder 
From scratch

The goal of this exercise is to build a VAE from 
scratch to reconstruct images of the MNIST 
dataset. We will use the decoder to generate 
blended images like on the right. 

Note: Here we show you one way of doing VAE. 
During section we show a slightly different 
way.  
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Generative model applications
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https://github.com/tkarras/progressive_growing_of_gans

https://github.com/tkarras/progressive_growing_of_gans
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Generative model applications

85

• Deep Nostalgia from MyHeritage is a 
generative model based on the ideas 
mentioned before.

• All generative models are in some 
way inference models.

• We will study other types of 
generative models in the upcoming 
lecture.

https://www.myheritage.com/deep-nostalgia
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Bonus Material
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What else could work?

87
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Dense Local Reparameterization

88

• DP Kingma
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Local reparametrization trick
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Cited only 711 times
• DP Kingma

Cited 13,215 times

Everybody talks about 
my first paper, but 
the magic is in the 
second paper!
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Local reparametrization trick

90

• Reformulate weight perturbations as activation perturbations and 

sample (Applicable only on fully connected neural networks with no 

weight sharing) 

• Inspired from the above idea, Variational dropout works on other 

architectures 

𝐵 = 𝑋𝑊
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Bayesian Auto-Encoder?

91

Distribution over the weights instead of hidden state

• How about we use Flipout layers instead

• Do we still get a similar output distribution?

• How does it compare to stochastic hidden units?
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𝑋 +𝑋𝑍

Quick Review

𝜖

Deterministic 
Input

Deterministic 
weights

Stochastic 
hidden 
units

Deterministic 
weights

Stochastic 
Output

Source of 
stochasticity

VARIATIONAL AUTOENCODER
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𝑋 +𝑋𝑍

Variational Autoencoder - Weight distributions

𝜖

Deterministic 
Input

Stochastic 
weights

Stochastic 
hidden units

Deterministic 
weights

Stochastic 
Output

Source of 
stochasticity
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𝒁𝑿

Variational AutoEncoder - Weight distributions 

PROBABILISTIC
ENCODER

DETERMINISTIC
DECODER

%𝑿

𝜖
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VAE with weight distributions
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Probabilistic Encoder

Deterministic Decoder
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Results?
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This works as well!

Test Input Reconstructio
n

“4,9”
confusion 

common in 
MNIST
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Other methods for uncertainty quantification
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Here are the other popular types of inference variants other than the vanilla 
version:

• BBB – Bayes by Backprop
• PBP - Probabilistic Backprop 
• MVG – Matrix Variate Gaussian
• BBH – Bayes by Hypernet
• BB- 𝜶 – Black-box 𝜶 divergence
• SGLD – Stochastic Gradient LD
• Dropout 
• Ensemble

Please refer to the paper Quality Uncertainty Quantification for a thorough 
analysis of all the variants

BNNs
MUST TRY 8 VARIETIES OF  PIZZAS

https://arxiv.org/pdf/1503.04069.pdf
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Uncertainty Quantification – Weiwei Pan Research

98

Calibration Metrics

unreliable 
Structure not 

necessarily helpful

Ensemble 
methods 

unpredictabl
e

Don’t trust 
the Gaussian!


