Variational Auto-Encoders Part One

CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Outline

- Motivation for Variational Autoencoders (VAE)
- Inference in Neural Networks
- Bayesian Linear Regression
- Bayesian Neural Networks
- Introduction to variational methods
- Variational Autoencoder as an inference model
- Variational Autoencoders as generative model
- Separability of VAE
- Tips \& tricks
- Other generative models

Outline: Part 1

- Motivation for Variational Autoencoders (VAE)
- Inference in Neural Networks
- Bayesian Linear Regression
- Bayesian Neural Networks
- Introduction to Variational methods
- Variational Autoencoder as an inference model
- Variational Autoencoders as generative model
- Separability of VAE
- Tips \& tricks
- Other generative models

State of the Art in AI - sans NLP

Sculpture Examples

https://nvlabs.github.io/few-shot-vid2vid/
| ACS [Tris

State of the Art in AI - sans NLP

Painting Examples

Generative Modeling

https://github.com/tkarras/progressive growing of gans

Generative Modeling

Generative Modeling

Generative Modeling

Ground truth

Generated

Generative Modeling

(a) MidiNet model 1

(b) MidiNet model 2

(c) MidiNet model 3

Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet.

Another use of generating new data is to give us ideas and options. Suppose we're planning a house. We can give the computer the space we have available, and its location. From this, the computer can can give us some ideas.

Big networks require big data, and getting high-quality, labeled data is difficult. If we're generating that data our selves, we can make as much of it as we like.

ID: 55 Class: 0 Amplitude: 0.47

ID: 83 Class: 0 Amplitude: 0.69

To summarize:
 VAEs are a form of generative models

Variational AutoEncoder

Popular explanations of VAE as generative models

RECAP: Vanilla AutoEncoder

Variational AutoEncoder

Variational Autoencoders

Typical explanations include:

- We want a continuous latent space representation
- We use a simple Reparameterization "trick"
- We add an Estimated Lower Bound (ELBO) error to reconstruction term

Why are Variational Autoencoders built this way?

Variational AutoEncoder: Original Paper

Let us consider some dataset $X=\left\{x^{(i)}\right\}_{i=1}^{N}$ consisting of N i.i.d. samples of some continuous or discrete variable x. We assume that the data are generated by some random process, involving an unobserved continuous random variable z.

We are interested in a general algorithm that works in case of:

1. Intractability: $p_{\theta}(x)=\int p_{\theta}(z) p_{\theta}(x \mid z) d z$ is intract
2. Large Dataset: Sampling based solutions eg. Mo would be too slow

Variational Autoencoders as Inference models

The story of Variational Auto-encoders is like Coca-Cola

- Originally invented by John Pemberton to counter his own morphine addiction.
- Eventually found commercial success as a
sugary drink and now is synonymous with soft beverages.

[^0]
Variational AutoEncoders

Bayesian Linear Regression

Inference Review

Bootstrap combined with Maximum Likelihood can give us the distribution of the coefficients.

Such a method is:

- Easy to understand
- Easy to implement
- Statistically equivalent to analytical solution

Inference Review

Let us begin by considering the case of linear regression:

$$
y=f(x)+\epsilon \quad \text { where } \quad f(x)=\beta_{0}+\beta_{1} x
$$

We interpret the ε term to be noise introduced by random variations in nature, or imprecisions of our scientific instruments and everything else.

If we knew the exact form of $f(x)$, for example, $f(x)=\beta_{0}+\beta_{1} x$, and there was no noise in the data, then estimating the $\hat{\beta}^{\prime} s$ would have been exact.

Confidence intervals for the predictors estimates (cont)

However, two things happen, which result in mistrust of the values of $\hat{\beta}^{\prime} s$:

- observational error is always there - this is called aleatoric error, or irreducible error.
- we do not know the exact form of $f(x)$ - this is called misspecification error and it is part of the epistemic error.

We will put everything into the catch-it-all term ε.
Because of ε, every time we measure the response y for a fix value of x, we will obtain a different observation, and hence a different estimate of $\hat{\beta}^{\prime} s$.

Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of $\{X, Y\}$, our estimates of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are just for this particular realization.

Question: If this is just one realization of the reality how do we know the truth? How do we deal with this conundrum?

Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of $\{X, Y\}$, our estimates of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are just for this particular realization.

Question: If this is just one realization of the reality how do we know the truth? How do we deal with this conundrum?

Imagine (magic realism) we have parallel universes, and we repeat this experiment on each of the other universes.

Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of $\{X, Y\}$, our estimates of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are just for this particular realization

> We use bootstrap to create different dataset.

Question: If this is just one realizati truth? How do we deal with this

Bootstrap is sampling with replacement. Bootstrapping was covered extensively in CS109A.

Imagine (magic realism) we have parallel universes, and we repeat this experiment on each of the other universes.

Confidence intervals for the predictors estimates (cont)

In our magical realisms, we can now sample multiple times. One universe, one sample, one set of estimates for $\hat{\beta}_{0}, \hat{\beta}_{1}$

Confidence intervals for the predictors estimates (cont)

Another sample, another estimate of $\hat{\beta}_{0}, \hat{\beta}_{1}$

Confidence intervals for the predictors estimates (cont)

again

Confidence intervals for the predictors estimates (cont)

and again

Confidence intervals for the predictors estimates (cont)

repeat this for 100 times, until we have enough samples of $\hat{\beta}_{0}, \hat{\beta}_{1}$.

BOOTSTRAP ISSUES?

- Although easy to implement, it is computationally expensive.
- The output distribution is sensitive to input data.
- As it uses maximum likelihood point estimates, it is not a natural candidate for inference.

The marriage of Figaro

The composition is a "collection" of notes, as seen by the waveform above

The Marriage of Figaro - Bootstrap edition

MysteryGuitarMan - The marriage of Figaro

The Marriage of Figaro - Bootstrap edition

What we want

INFERENCE WISHLIST?

- We want the full probability distribution of the parameters given the data, i.e., let $\beta=\left[\beta_{0}, \beta_{1}\right]$, then we are looking for $P(\beta \mid$ data $)$.
- We want the posterior predictive distribution of the output given the data. i.e., $P(Y \mid X)$.

We could use Bayes Theorem

$$
P(\beta \mid \text { data })=\frac{P(\text { data } \mid \beta) * P(\beta)}{P(\text { data })}
$$

Likelihood Prior distribution over $\boldsymbol{\beta}$
$P(\beta \mid$ data $)=\frac{P(\text { data } \mid \beta) * P(\beta)}{P(\text { data })}$
'
Posterior distribution over $\boldsymbol{\beta}$
Evidence
Evidence

$$
P(d a t a)=\int P(d a t a \mid \beta) P(\beta) d \beta
$$

ISSUES WITH ANALYTICAL FORM

- Unless for very simple distributions, the evidence, P (data) is hard to compute.
- It is difficult to express the posterior as a closed form, which we will need to perform inference.

This product may

$$
P(\beta \mid \text { data })=\frac{P(\text { data } \mid \beta) * P(\beta)}{\int P(\text { data } \mid \beta) P(\beta) d \beta}
$$

This integral is very hard to

ISSUES WITH ANALYTICAL FORM

- Unless for very simple distributions, the evidence, P (data) is hard to compute.
- It is difficult to express the posterior as a closed form, which we will need to perform inference.

ISSUES WITH ANALYTICAL FORM

- Unless for very simple distributions, the evidence, P (data) is hard to compute.
- It is difficult to express the posterior as a closed form, which we will need to perform inference.

This integral is very hard to

This product may not have a closed form solution

RECAP: Bayes Theorem

$$
\begin{aligned}
& P(\beta \mid \text { data })=\frac{P(\text { data } \mid \beta) * P(\beta)}{\int P(\text { data } \mid \beta) P(\beta) d \beta} \\
& P(\beta \mid \text { data }) \propto P(\text { data } \mid \beta) * P(\beta)
\end{aligned}
$$

For any given value of β_{0}, β_{1} we can find the posterior probability up to a proportionality constant:

$$
P(\beta \mid \text { data })=C * P(\text { data } \mid \beta) * P(\beta)
$$

RECAP: Bayes Theorem

For any given value of β_{0}, β_{1} we can find the posterior probability up to a proportionality constant:

$$
P(\beta \mid d a t a)=C * P(\text { data } \mid \beta) * P(\beta)
$$

LINEAR REGRESSION EXAMPLE

$$
\begin{array}{ll}
\text { let: } & y=f(x)+\epsilon \\
\text { where: } & f(x)=\beta_{0}+\beta_{1} x
\end{array}
$$

Assume $\beta_{0} \& \beta_{1}$ have normally distributed priors $\sim \mathcal{N}\left(0, \sigma_{0,1}\right)$ where $\sigma_{0,1}$ are arbitrarily large enough variance.

RECAP: Bayes Linear Regression

We assume that the likelihood $P($ data $\mid \beta)$ is also normal, $\mathcal{N}\left(\beta_{0}+\beta_{1} x, \sigma_{D}\right)$ Hence, for given values of parameters, β_{0}, β_{1}, and for each $\left(x_{i}, y_{i}\right) \in$ data

$$
P\left(\left(x_{n}, y_{n}\right) \mid \boldsymbol{\beta}\right)=\frac{1}{\sqrt{2 \pi \sigma_{D}^{2}}} e^{-\left(\frac{\left(y_{n}-\left(\beta_{o}+\beta_{1} x_{n}\right)\right)^{2}}{2 \sigma_{D}^{2}}\right)}
$$

$$
P(\text { data } \mid \boldsymbol{\beta})=\prod_{n}^{N} \frac{1}{\sqrt{ } 2 \pi \sigma_{D}^{2}} e^{-\left(\frac{\left(y_{n}-\left(\beta_{0}+\beta_{1} x_{n}\right)\right)^{2}}{2 \sigma_{D}^{2}}\right)}
$$

RECAP: Bayes Linear Regression

Calculating the prior distribution is much easier for the chosen values of $\beta_{o} \& \beta_{1}$

$$
P(\beta)=\frac{1}{\sqrt{2 \pi \sigma_{0}^{2}}} e^{-\frac{\beta_{0}^{2}}{2 \sigma_{0}^{2}}} * \frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{\beta_{1}^{2}}{2 \sigma_{1}^{2}}}
$$

TECHNICAL DETAIL

Here we assume that the parameters $\beta_{0} \& \beta_{1}$ are independent random variables, hence the joint distribution $\left(\beta_{0}, \beta_{1}\right)$ is the product of the individual distributions

Putting it all together

$$
P(\beta \mid \text { data })=C * P\left(\text { data } \mid \beta^{i}\right) * P\left(\beta^{i}\right)
$$

Proportionality constant

Likelihood

Prior over $\boldsymbol{\beta}$

INFERENCE WISHLIST?

Even if we cannot get the analytical solution for the parameters, we can compare how likely a given value of $\beta^{(i)}$ is to another value $\beta^{(j)}$ using the equations from before

$$
\frac{P\left(\beta^{(i)} \mid \text { data }\right)}{P\left(\beta^{(j)} \mid \text { data }\right)}=\frac{P\left(\text { data } \mid \beta^{(i)}\right) * P\left(\beta^{(i)}\right)}{P\left(\text { data } \mid \beta^{(j)}\right) * P\left(\beta^{(j)}\right)}
$$

This way, we are still using Bayesian inference, and we can work with equations that are computable.

A (very) brief recap of sampling

$$
\frac{P\left(\beta^{(i)} \mid \text { data }\right)}{P\left(\beta^{(j)} \mid \text { data }\right)}=\frac{P\left(\text { data } \mid \beta^{(i)}\right) * P\left(\beta^{(i)}\right)}{P\left(\text { data } \mid \beta^{(j)}\right) * P\left(\beta^{(j)}\right)}
$$

- Sampling methods using Bayesian inference with relative comparison between candidate points are popular methods to calculate paran..... distributions.
- Popular sampling methods include Monte Carlo sampling and Markov Chain Monte Carlo (MCMC) sampling methods.
- We will consider a much popular variant of MCMC, Metropolis ak Zndom walk for our discussion, but other variants can also be used to posterior distributions.

MCMC Sampling

MCMC - Metropolis Hastings

Metropolis-Hastings is very powerful and a widely-used sampler.

If we are looking for the distribution for some parameter, $\boldsymbol{\theta}$, it reduces the problem of sampling from a difficult distribution $p(\theta \mid$ data $)$ to:

- making proposals: $q\left(\theta^{(j)} \mid \theta^{(j-1)}\right)$
- evaluating ratios: $\frac{p\left(\theta^{*} \mid \text { data }\right) / q\left(\theta^{*} \mid \theta^{(j-1)}\right)}{\left.p\left(\theta^{(j-1)} \mid \text { data }\right) / q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}$

The proposals can be trivial, for e.g., random walk (choose $\theta^{(j)}$ from a normal distribution centered at $\theta^{(j-1)}$).

Note: Only efficiency, not correctness is affected by the proposal.

Metropolis Hastings

The Metropolis-Hastings algorithm is outlined below:

1. Select an initial value θ_{0}
2. For $i=1, \ldots, m$ repeat:
a) Draw a candidate $\theta^{*} \sim q\left(\theta^{*} \mid \theta^{(j-1)}\right)$
b) $\quad \alpha=\frac{p\left(\theta^{*} \mid \text { data }\right) / q\left(\theta^{*} \mid \theta^{(j-1)}\right)}{\left.p\left(\theta^{(j-1)} \mid \text { data }\right) / q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\theta^{*} \mid \theta^{(j-1)}\right)}$
c) If $\alpha \geq 1$, accept $\theta^{*} \& \operatorname{set} \theta^{(j)} \leftarrow \theta^{*}$

Else if $0<\alpha<1$ accept $\theta^{*} \&$ set $\theta^{(j)} \leftarrow \theta^{*}$ with probability η

$$
\text { reject } \theta^{*} \& \operatorname{set} \theta^{(j)} \leftarrow \theta^{*} \text { with probability } 1-\eta
$$

Metropolis Hastings

TECHNICAL DETAILS

The Metropolis-Hastings algorithm is outlined below:
$\mathrm{q}($.$) is the proposal. For example,$

1. Select an initial value θ_{0}

$$
\theta^{*} \sim \mathrm{~N}\left(\theta^{(j-1)}, \sigma\right)
$$

2. For $i=1, \ldots, m$ repeat:

How? Draw a random number, ρ.

If $\rho>(1-\alpha)$
accept.
a) Draw a candidate $\theta^{*} \sim q\left(\theta^{*} \mid \theta^{(j-1)}\right)$
b) $\quad \alpha=\frac{p\left(\theta^{*} \mid \text { data }\right) / q\left(\theta^{*} \mid \theta^{(j-1)}\right)}{\left.p\left(\theta^{(j-1)} \mid \text { data }\right) / q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\theta^{*} \mid \theta^{(j-1)}\right)}$
c) If $\alpha \geq 1$, accept $\theta^{*} \& \operatorname{set} \theta^{(j)} \leftarrow \theta^{*}$

Else if $0<\alpha<1$ accept $\theta^{*} \&$ set $\theta^{(j)} \leftarrow \theta^{*}$ with probability α reject θ^{*} with probability $1-\alpha$

Metropolis Hastings - Random Walk

A special case of the Metropolis-Hastings algorithm is the Metropolis where the distribution q is symmetric i.e.,

$$
q\left(\theta^{*} \mid \theta^{(j-1)}\right)=q\left(\theta^{(j-1)} \mid \theta^{*}\right)
$$

This makes the algorithm much simpler, as

$$
\alpha=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\theta^{*} \mid \theta^{(j-1)}\right)}
$$

Metropolis Hastings - Random Walk

A special case of the Metropolis-Hastings algorithm is the Metropolis where the distribution q is symmetric i.e.,

$$
q\left(\theta^{*} \mid \theta^{(j-1)}\right)=q\left(\theta^{(j-1)} \mid \theta^{*}\right)
$$

This makes the algorithm much simpler, as

$$
\alpha=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(j-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\delta^{*} \mid{ }^{(j-1)}\right)}
$$

Metropolis Hastings - Random Walk

A special case of the Metropolis-Hastings algorithm is the Metropolis where the distribution q is symmetric i.e.,

$$
q\left(\theta^{*} \mid \theta^{(j-1)}\right)=q\left(\theta^{(j-1)} \mid \theta^{*}\right)
$$

This makes the algorithm much simpler, as

$$
\alpha=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(0-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\theta^{*} \mid \theta^{(j-1)}\right)}=\frac{p\left(\theta^{*} \mid \text { data }\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right)}
$$

Metropolis Hastings - Random Walk

A special case of the Metropolis-Hastings algorithm is the Metropolis where the distribution q is symmetric i.e.,

$$
q\left(\theta^{*} \mid \theta^{(j-1)}\right)=q\left(\theta^{(j-1)} \mid \theta^{*}\right)
$$

This makes the algorithm much simpler, as

$$
\alpha=\frac{\left.p\left(\theta^{*} \mid \text { data }\right) q\left(\theta^{(0-1)}\right) \mid \theta^{*}\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right) q\left(\theta^{*} \mid \theta^{(j-1)}\right)}=\frac{p\left(\theta^{*} \mid \text { data }\right)}{p\left(\theta^{(j-1)} \mid \text { data }\right)}
$$

We can show using Bayes theorem:

$$
\alpha=\frac{p\left(\operatorname{data} \mid \theta^{*}\right)}{p\left(\operatorname{data} \mid \theta^{(j-1)}\right)} \frac{p\left(\theta^{*}\right)}{p\left(\theta^{(j-1)}\right)}
$$

MCMC Factory

MCMC Factory - What is a generator

- The candidate $\boldsymbol{\beta}^{*}$ generator takes the currently accepted $\beta^{(j-1)}$ value and draws a value from a distribution, for example:

$$
\beta^{*} \sim \mathcal{N}\left(\beta^{(j-1)}, \sigma\right)
$$

- This ensures that we don't get wildly crazy candidates, but ones quite similar to the current $\boldsymbol{\beta}$.

Exercise: Linear Regression MCMC from scratch

The aim of this exercise is to perform Monte Carlo Markov Chain (MCMC) from scratch for linear regression. On completing the exercise you should be able to see the following distribution. One for each of the beta value:

Bayesian Neural Network

Bayesian Linear Regression

We assume that the likelihood $P($ data $\mid \beta)$ is also normal, $\mathcal{N}\left(\beta_{0}+\beta_{1} x, \sigma_{D}\right)$ Hence, for given values of parameters, β_{0}, β_{1}, and for each $\left(x_{i}, y_{i}\right) \in$ data

$$
P\left(\left\{x_{n}, y_{n}\right\} \mid \boldsymbol{\beta}\right)=\frac{1}{\sqrt{ } 2 \pi \sigma_{D}^{2}} e^{-\left(\frac{\left(y_{n}-\left(\beta_{o}+\beta_{1} x_{n}\right)\right)^{2}}{2 \sigma_{D}^{2}}\right)}
$$

$$
P(\text { data } \mid \boldsymbol{\beta})=\prod_{n}^{N} \frac{1}{\sqrt{2 \pi \sigma_{D}^{2}}} e^{-\left(\frac{\left(y_{n}-\left(\beta_{0}+\beta_{1} x_{n}\right)\right)^{2}}{2 \sigma_{D}^{2}}\right)}
$$

Bayesian Neural Network

We assume that the likelihood $P($ data $\mid \beta)$ is also normal, $\mathcal{N}\left(N N_{W}(x), \sigma_{D}\right)$ Hence, for given values of parameters, W, and for each $\left(x_{i}, y_{i}\right) \in$ data

$$
P\left(\left\{x_{n}, y_{n}\right\} \mid W\right)=\frac{1}{\sqrt{2 \pi \sigma_{D}^{2}}} e^{-\left(\frac{\left(y_{n}\left(N N_{W}\left(x_{n}\right)\right)^{2}\right)}{2}\right)}
$$

$$
P(\text { data } \mid W)=\prod_{n}^{N} \frac{1}{\sqrt{2 \pi \sigma_{D}^{2}}} e^{-\left(\frac{\left(y_{n}\left(N_{W}\left(x_{n}\right)^{2}\right)\right.}{2}\right)}
$$

Bayesian Neural Network

Current $W^{(j-1)}$

REPEAT

Example: A simple Bayesian Neural Network (BNN)

Neural Network Architecture

Bayesian Neural Network (BNN)

1. Select an initial value $W^{(0)}$ (this represent all weights in the network)
2. For $i=1, \ldots, m$ repeat:
a) Draw a candidate $W^{*} \sim q\left(W^{*} \mid W^{(j-1)}\right)$
b) $\quad \alpha=\frac{p\left(\operatorname{data} \mid W^{*}\right)}{p\left(\operatorname{data} \mid W^{(j-1)}\right)} \frac{p\left(W^{*}\right)}{p\left(W^{(j-1)}\right)}$
c) If $\alpha \geq 1$, accept $W^{*} \&$ set $W^{(j)} \leftarrow W^{*}$
 else if $0<\alpha<1$ accept $W^{*} \&$ set $W^{(j)} \leftarrow W^{*}$ with probability α reject θ^{*} probability $1-\alpha$

Bayesian Neural Network

Let us consider the dataset below for regression

Exercise: MCMC from Scratch for Neural Networks

The aim of this exercise is to perform Metropolis Monte Carlo Markov Chain (MCMC) from scratch (as in exercise 1) for a simple neural network.
On completing the exercise, you should be able to see the following distribution. One for each of the beta value:

Warning: This is not going to converge unless we start very near the mode of the distribution!

FULL MCMC ISSUES

MCMC we will not work for NN's with more than a few dozens of parameters.

Why?

For each parameter (weight) we sample and calculate the likelihood $5 * n$ times, where n being the length of the chain.

We also throw away a significant number of samples.

Sufficient n also grows with the number of parameters and complexity of the posterior.

FULL MCMC ISSUES

MCMC we will not work for NN's with more than a few dozens of parameters.

Five times because we usually have acceptance rate of $\sim 20 \%$.

Why?

For each Darameter wro vo sarmpre and

Typically, we throw the first $10-20 \%$ of the samples for burn in. elihood $5 * n$ times, where n being chain.

We also throw away a significant number of samples.

Sufficient n also grows with the number of parameters and complexity of the posterior. know that the chain has

Bayesian Neural Network: Full MCMC with HMC

POSTERIOR DISTRIBUTION y
Full Bayesian NN prediction $(\mu \pm 2 \sigma)$

Instead of the simple Metropolis MCMC, we could use a more sophisticated sampler HMC, as we did in HW3 and lab.

Here with Tensorflow Probability

Bayesian Neural Network: Full MCMC with HMC

NEURAL NET WEIGHT DISTRIBUTIONS

- The first set of plots on the right represents the distribution of the individual weights.
- The second set of plots on the right show the individual values of the weights considered while running the sampling algorithm.

Bayesian Neural Network: Full MCMC with HMC

NFIIRAI NFT WFY

OTRIITIONS

- The first set of plots on the right represents the distribution of the individual weights.
- The second set of plots on the right show the individual values of the weights considered while running the sampling algorithm.

Activation: sin()

Burn rate: 30\%

Bayesian Neural Network - Roadblocks MCMC doesn't work for higher dimension

End of Part 1

Bayesian Neural Network: Hacks

[^0]: Source : https://en.wikipedia.org/wiki/Coca-Cola

