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Outline

• Motivation for Variational Autoencoders (VAE)

• Inference in Neural Networks
• Bayesian Linear Regression 

• Bayesian Neural Networks

• Introduction to variational methods

• Variational Autoencoder as an inference model

• Variational Autoencoders as generative model
• Separability of VAE

• Tips & tricks

• Other generative models
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State of the Art in AI – sans NLP  

4

https://nvlabs.github.io/few-shot-vid2vid/

https://nvlabs.github.io/few-shot-vid2vid/
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State of the Art in AI – sans NLP 
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https://nvlabs.github.io/few-shot-vid2vid/

https://nvlabs.github.io/few-shot-vid2vid/
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Generative Modeling
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https://github.com/tkarras/progressive_growing_of_gans

https://github.com/tkarras/progressive_growing_of_gans
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Generative Modeling
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https://github.com/tkarras/progressive_growing_of_gans

https://github.com/tkarras/progressive_growing_of_gans
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Generative Modeling

9https://arxiv.org/pdf/1708.05509.pdf
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Generative Modeling
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Generative Modeling
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Another use of generating new data is to give us ideas and options. Suppose we’re planning a house. 
We can give the computer the space we have available, and its location. From this, the computer can 
can give us some ideas.  



CS109B, PROTOPAPAS, GLICKMAN, TANNER 14

Big networks require big data, and getting high-quality, labeled data is difficult. If we’re generating that data 
our selves, we can make as much of it as we like. 
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To summarize:
VAEs are a form of generative models

15
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Variational AutoEncoder

16

Popular explanations of VAE as generative models
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AUTOENCODER

𝑋 "𝑋𝑍

RECAP: Vanilla AutoEncoder
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𝑋

"𝑋𝑍

𝜇(𝑋),𝜎(𝑋)

Variational AutoEncoder

VARIATIONAL
AUTOENCODER



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Variational Autoencoders

19

Typical explanations include:

• We want a continuous latent space representation

• We use a simple Reparameterization “trick”

• We add an Estimated Lower Bound (ELBO) error to reconstruction term
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Why are Variational Autoencoders built this way?

20
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Variational AutoEncoder: Original Paper 
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Let us consider some dataset 𝑋 = {𝑥(")}"$%& consisting of 𝑁 i.i.d. 
samples of some continuous or discrete variable 𝑥. We 
assume that the data are generated by some random process, 
involving an unobserved continuous random variable 𝑧.

…
We are interested in a general algorithm that works in case of: 

1. Intractability: 𝑝' 𝑥 = ∫𝑝' 𝑧 𝑝' 𝑥|𝑧 𝑑𝑧 is intractable 

2. Large Dataset: Sampling based solutions eg. Monte Carlo EM 
would be too slow

Auto-Encoding Variational Bayes (Diederik P. Kingma et al)

https://arxiv.org/pdf/1312.6114.pdf
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Variational Autoencoders as Inference models
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The story of Variational Auto-encoders is like Coca-Cola

• Originally invented by John Pemberton to 

counter his own morphine addiction.

• Eventually found commercial success as a 

sugary drink and now is synonymous with soft 

beverages. 

Source : https://en.wikipedia.org/wiki/Coca-Cola
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Variational AutoEncoders
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GENERATIVE 

MODEL

INFERENCE

MODEL
VAE



VARIATIONAL
AUTO-ENCODERS

BAYESIAN
LINEAR REGRESSION

VARIATIONAL
METHODS

Are you ready?

BAYESIAN 
NEURAL NETWORKS
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Bayesian Linear Regression
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Inference Review

26

Bootstrap combined with Maximum Likelihood can give us the distribution 
of the coefficients.

Such a method is:

• Easy to understand

• Easy to implement

• Statistically equivalent to analytical solution
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Inference Review

27

Let us begin by considering the case of linear regression:

We interpret the 𝜀 term to be noise introduced by random variations in 
nature, or imprecisions of our scientific instruments and everything else. 

If we knew the exact form of 𝑓 𝑥 , for example, 𝑓 𝑥 = 𝛽! + 𝛽"𝑥, and there was 
no noise in the data , then estimating the (𝛽#𝑠 would have been exact. 

Sometimes 𝜺 is considered as “catch-it-all” term

where     𝑓 𝑥 = 𝛽! + 𝛽"𝑥y = f(x) + ✏
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Confidence intervals for the predictors estimates (cont)

However, two things happen, which result in mistrust of the values of (𝛽#𝑠 : 

• observational error is always there – this is called aleatoric error, or 
irreducible error.

• we do not know the exact form of 𝑓 𝑥 - this is called misspecification
error and it is  part of the epistemic error.

We will put everything into the catch-it-all term 𝛆.

Because of 𝜀, every time we measure the response 𝑦 for a fix value of x,we 
will obtain a different observation, and hence a different estimate of (𝛽#𝑠.

28
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Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of {𝑋, 𝑌}, our estimates of (𝛽!
and (𝛽" are just for this particular realization.  

Question: If this is just one realization of the reality how do we know the 
truth? How do we deal with this conundrum?  

29
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Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of {𝑋, 𝑌}, our estimates of (𝛽!
and (𝛽" are just for this particular realization.  

Question: If this is just one realization of the reality how do we know the 
truth? How do we deal with this conundrum?  

Imagine (magic realism) we have parallel universes, and we repeat this 
experiment on each of the other universes. 

30

Universe A Universe B Universe C
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Confidence intervals for the predictors estimates (cont)

So, if we just have one set of measurements of {𝑋, 𝑌}, our estimates of (𝛽!
and (𝛽" are just for this particular realization.  

Question: If this is just one realization of the reality how do we know the 
truth? How do we deal with this conundrum?  

Imagine (magic realism) we have parallel universes, and we repeat this 
experiment on each of the other universes. 

31

Universe A Universe B Universe C

We use bootstrap to create different 
dataset. 

Bootstrap is sampling with replacement. 
Bootstrapping was covered extensively in 

CS109A.
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Confidence intervals for the predictors estimates (cont)

32

In our magical realisms, we can now sample multiple times. One 
universe, one sample, one set of estimates for (𝛽!, (𝛽"

There will be an equivalent plot for $𝛽! which we don’t show here for simplicity BOOTSTRAP
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Confidence intervals for the predictors estimates (cont)
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Another sample, another estimate of (𝛽!, (𝛽"

BOOTSTRAP
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Confidence intervals for the predictors estimates (cont)
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again

BOOTSTRAP
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Confidence intervals for the predictors estimates (cont)
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and again

BOOTSTRAP
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Confidence intervals for the predictors estimates (cont)
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repeat this for 100 times, until we have enough samples of (𝛽!, (𝛽".

BOOTSTRAP
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Inference reviewBOOTSTRAP ISSUES?

• Although easy to implement, it is computationally expensive.

• The output distribution is sensitive to input data.

• As it uses maximum likelihood point estimates, it is not a natural candidate 
for inference.
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The marriage of Figaro
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The composition is a “collection” of notes, as seen by the waveform above
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The Marriage of Figaro – Bootstrap edition
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MysteryGuitarMan – The marriage of Figaro

https://www.youtube.com/watch?v=MuU00Q3RhDg&ab_channel=JoePenna%2FMysteryGuitarMan
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The Marriage of Figaro – Bootstrap edition
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What we want

41

• We want the full probability distribution of the parameters given 
the data, i.e., let 𝛽=[𝛽(, 𝛽%], then we are looking for 𝑃 𝛽 𝑑𝑎𝑡𝑎).

• We want the posterior predictive distribution of the output given 
the data. i.e., 𝑃 𝑌 𝑋).

INFERENCE WISHLIST?

We could use Bayes Theorem 

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽

𝑃 𝑑𝑎𝑡𝑎
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RECAP: Bayes Theorem

42

Posterior distribution over 𝜷 Evidence

Likelihood Prior distribution over 𝜷

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽

𝑃 𝑑𝑎𝑡𝑎

𝑃 𝑑𝑎𝑡𝑎 = )𝑃 𝑑𝑎𝑡𝑎 𝛽)𝑃 𝛽 𝑑𝛽

Evidence
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Inference review

• Unless for very simple distributions, the evidence, 𝑃 𝑑𝑎𝑡𝑎 is hard to 
compute.

• It is difficult to express the posterior as a closed form, which we will need to 
perform inference.

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
∫𝑃 𝑑𝑎𝑡𝑎 𝛽)𝑃 𝛽 𝑑𝛽

This integral is very hard to 
compute

This product may 
not have a closed 

form solution 

ISSUES WITH ANALYTICAL FORM
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Inference review

• Unless for very simple distributions, the evidence, 𝑃 𝑑𝑎𝑡𝑎 is hard to 
compute.

• It is difficult to express the posterior as a closed form, which we will need to 
perform inference.

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
∫𝑃 𝑑𝑎𝑡𝑎 𝛽)𝑃 𝛽 𝑑𝛽

This integral is very hard to 
compute

This product may 
not have a closed 

form solution 

ISSUES WITH ANALYTICAL FORM

This is a 
problem! 
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Inference review

• Unless for very simple distributions, the evidence, 𝑃 𝑑𝑎𝑡𝑎 is hard to 
compute.

• It is difficult to express the posterior as a closed form, which we will need to 
perform inference.

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
∫𝑃 𝑑𝑎𝑡𝑎 𝛽)𝑃 𝛽 𝑑𝛽

This integral is very hard to 
compute

This product may 
not have a closed 

form solution 

ISSUES WITH ANALYTICAL FORM

Maybe you 
should look at 
my notes
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RECAP: Bayes Theorem

𝑃 𝛽 𝑑𝑎𝑡𝑎) =
𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
∫𝑃 𝑑𝑎𝑡𝑎 𝛽)𝑃 𝛽 𝑑𝛽

𝑃 𝛽 𝑑𝑎𝑡𝑎) ∝ 𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽

For any given value of 𝛽! , 𝛽" we can find the posterior probability up to a 
proportionality constant:

𝑃 𝛽 𝑑𝑎𝑡𝑎) = 𝐶 ∗ 𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
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RECAP: Bayes Theorem

𝑓 𝑥 = 𝛽( + 𝛽%𝑥

Assume 𝛽! & 𝛽" have normally distributed priors ~ 𝒩 0, 𝜎!,"
where 𝜎!," are arbitrarily large enough variance.  

LINEAR REGRESSION EXAMPLE

let:

where:

For any given value of 𝛽! , 𝛽" we can find the posterior probability up to a 
proportionality constant:

𝑃 𝛽 𝑑𝑎𝑡𝑎) = 𝐶 ∗ 𝑃 𝑑𝑎𝑡𝑎 𝛽) ∗ 𝑃 𝛽
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RECAP: Bayes Linear Regression

We assume that the likelihood 𝑃 𝑑𝑎𝑡𝑎 𝛽) is also normal, 𝒩 𝛽! + 𝛽"𝑥, 𝜎'

Hence, for given values of parameters, 𝛽!, 𝛽", and for each (𝑥(, 𝑦() ∈ 𝑑𝑎𝑡𝑎

𝑃( 𝑥!, 𝑦!) 𝜷) =
1

√2𝜋𝜎"#
𝑒
$ %! $('"('#)!) $

#+%
$

𝑃 𝑑𝑎𝑡𝑎 𝜷) = 5
!

,
1

√2𝜋𝜎"#
𝑒
$ %! $('"('#)!) $

#+%
$
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𝑃 𝛽 =
1

√2𝜋𝜎!"
𝑒
# $<=

"%<= ∗
1

√2𝜋𝜎&"
𝑒
# $>=

"%>=

Calculating the prior distribution is much easier for the chosen values of 𝛽) & 𝛽"

Here we assume that the parameters 𝛽! & 𝛽" are independent random variables, 
hence the joint distribution 𝛽!, 𝛽" is the product of the individual distributions

TECHNICAL DETAIL

RECAP: Bayes Linear Regression
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Putting it all together

50

𝑃 𝛽 𝑑𝑎𝑡𝑎) = 𝐶 ∗ 𝑃 𝑑𝑎𝑡𝑎 𝛽-) ∗ 𝑃 𝛽-

𝑃 𝛽 𝑑𝑎𝑡𝑎) = 𝐶 ∗A
*

+
1

2𝜋𝜎',
𝑒
-!.(0"10#2!) $

,4%$ ∗
1

√2𝜋𝜎()
𝑒
* +!"

),!" ∗ 1
√2𝜋𝜎%)

𝑒
* +#"

),#"

Likelihood Prior over 𝜷Proportionality
constant

Now we can crunch 
some numbers
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Even if we cannot get the analytical solution for the parameters, we can 
compare how likely a given value of 𝛽(() is to another value 𝛽(5) using the 
equations from before

This way, we are still using Bayesian inference, and we can work with 
equations that are computable.

𝑃 𝛽(-) 𝑑𝑎𝑡𝑎)
𝑃 𝛽(.) 𝑑𝑎𝑡𝑎)

=
𝑃 𝑑𝑎𝑡𝑎 𝛽(-)) ∗ 𝑃 𝛽(-)

𝑃 𝑑𝑎𝑡𝑎 𝛽(.)) ∗ 𝑃 𝛽(.)

51

INFERENCE WISHLIST?
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A (very) brief recap of sampling

52

• Sampling methods using Bayesian inference with relative comparison 
between candidate points are popular methods to calculate parameter 
distributions.

• Popular sampling methods include Monte Carlo sampling, Gibbs sampling, 
and Markov Chain Monte Carlo (MCMC) sampling methods.

• We will consider a much popular variant of MCMC, Metropolis aka random 
walk for our discussion, but other variants can also be used to derive 
posterior distributions.

𝑃 𝛽(-) 𝑑𝑎𝑡𝑎)
𝑃 𝛽(.) 𝑑𝑎𝑡𝑎)

=
𝑃 𝑑𝑎𝑡𝑎 𝛽(-)) ∗ 𝑃 𝛽(-)

𝑃 𝑑𝑎𝑡𝑎 𝛽(.)) ∗ 𝑃 𝛽(.)

But how can we 
find the 

parameter 
distributions by 

such a 
comparison?
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MCMC Sampling

53
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MCMC - Metropolis Hastings

54

Metropolis-Hastings is very powerful and a widely-used sampler.

If we are looking for the distribution for some parameter, 𝜽, it reduces the problem 
of sampling from a difficult distribution 𝑝 𝜃|𝑑𝑎𝑡𝑎 to: 

• making proposals: 𝑞 𝜃(5)|𝜃(5.")

• evaluating ratios: 
-('∗|/010)/3('∗|'(&'#))

-(' &'# |/010)/3('(&'#))|'∗)

The proposals can be trivial, for e.g., random walk (choose 𝜃(5) from a normal 
distribution centered at 𝜃(5.")). 

Note: Only efficiency, not correctness is affected by the proposal.
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Metropolis Hastings

55

The Metropolis-Hastings algorithm is outlined below:

1. Select an initial value 𝜃!

2. For 𝑖 = 1,… ,𝑚 repeat:

a) Draw a candidate 𝜃∗~ 𝑞 𝜃∗ 𝜃(5.")

b) 𝛼 = 7(8∗|:;<;)/>(8∗|8(()#))
7(8 ()# |:;<;)/>(8(()#))|8∗) =

7(8∗|:;<;)>(8(()#))|8∗)
7(8 ()# |:;<;)>(8∗|8(()#))

c) If 𝛼 ≥ 1, accept 𝜃∗ & set 𝜃(5) ← 𝜃∗

Else if 0 < 𝛼 < 1 accept 𝜃∗ & set 𝜃(5) ← 𝜃∗ with probability 𝜂
reject 𝜃∗ & set 𝜃(5) ← 𝜃∗ with probability 1 − 𝜂

TECHNICAL DETAILS
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Metropolis Hastings

56

The Metropolis-Hastings algorithm is outlined below:

1. Select an initial value 𝜃!

2. For 𝑖 = 1,… ,𝑚 repeat:

a) Draw a candidate 𝜃∗~ 𝑞 𝜃∗ 𝜃(5.")

b) 𝛼 = 7(8∗|:;<;)/>(8∗|8(()#))
7(8 ()# |:;<;)/>(8(()#))|8∗) =

7(8∗|:;<;)>(8(()#))|8∗)
7(8 ()# |:;<;)>(8∗|8(()#))

c) If 𝛼 ≥ 1, accept 𝜃∗ & set 𝜃(5) ← 𝜃∗

Else if 0 < 𝛼 < 1 accept 𝜃∗ & set 𝜃(5) ← 𝜃∗ with probability 𝛼
reject 𝜃∗ with probability 1 − 𝛼

TECHNICAL DETAILS

q(.)	is the proposal. For example, 
𝜃∗ ∼ N(𝜃 #$% , 𝜎)

How? Draw a 
random number,	𝜌.	

If 𝜌 > (1 − 𝛼)
accept.
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A special case of the Metropolis-Hastings algorithm is the Metropolis where 

the distribution 𝑞 is symmetric i.e., 

𝑞 𝜃∗ 𝜃(5.") = 𝑞(𝜃(5.")|𝜃∗)

This makes the algorithm much simpler, as

𝛼 =
𝑝 𝜃∗ 𝑑𝑎𝑡𝑎 𝑞(𝜃(5."))|𝜃∗)
𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)𝑞(𝜃∗|𝜃(5."))

Metropolis Hastings – Random Walk

57
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A special case of the Metropolis-Hastings algorithm is the Metropolis where 

the distribution 𝑞 is symmetric i.e., 

𝑞 𝜃∗ 𝜃(5.") = 𝑞(𝜃(5.")|𝜃∗)

This makes the algorithm much simpler, as

𝛼 =
𝑝 𝜃∗ 𝑑𝑎𝑡𝑎 𝑞(𝜃(5."))|𝜃∗)
𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)𝑞(𝜃∗|𝜃(5."))

Metropolis Hastings – Random Walk

58
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A special case of the Metropolis-Hastings algorithm is the Metropolis where 

the distribution 𝑞 is symmetric i.e., 

𝑞 𝜃∗ 𝜃(5.") = 𝑞(𝜃(5.")|𝜃∗)

This makes the algorithm much simpler, as

𝛼 =
𝑝 𝜃∗ 𝑑𝑎𝑡𝑎 𝑞(𝜃(5."))|𝜃∗)
𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)𝑞(𝜃∗|𝜃(5."))

=
𝑝(𝜃∗|𝑑𝑎𝑡𝑎)

𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)

Metropolis Hastings – Random Walk

59
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A special case of the Metropolis-Hastings algorithm is the Metropolis where 

the distribution 𝑞 is symmetric i.e., 

𝑞 𝜃∗ 𝜃(5.") = 𝑞(𝜃(5.")|𝜃∗)

This makes the algorithm much simpler, as

𝛼 =
𝑝 𝜃∗ 𝑑𝑎𝑡𝑎 𝑞(𝜃(5."))|𝜃∗)
𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)𝑞(𝜃∗|𝜃(5."))

=
𝑝(𝜃∗|𝑑𝑎𝑡𝑎)

𝑝(𝜃 5." |𝑑𝑎𝑡𝑎)

We can show using Bayes theorem:

𝛼 =
𝑝(𝑑𝑎𝑡𝑎|𝜃∗)

𝑝(𝑑𝑎𝑡𝑎|𝜃(5."))
𝑝(𝜃∗)

𝑝(𝜃(5."))

Metropolis Hastings – Random Walk
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MCMC Factory

Candidate 𝜷∗
generator

Dataset 

𝑃 𝛽∗ 𝑑𝑎𝑡𝑎)
𝑃 𝛽(5.") 𝑑𝑎𝑡𝑎)

=
𝑃 𝑑𝑎𝑡𝑎 𝛽∗) ∗ 𝑃 𝛽∗

𝑃 𝑑𝑎𝑡𝑎 𝛽(5.")) ∗ 𝑃 𝛽(5.")

Bayesian Inference 
Machine

Current 𝜷(𝒋$𝟏)

ACC
EPT

REJECT

REPEAT

𝛽(#) =𝛽∗

𝛽(#) =𝛽(#$%)
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MCMC Factory  - What is a generator

Candidate 𝜷∗
generatorCurrent 𝜷(𝒋$𝟏)

• The candidate 𝜷∗ generator takes the currently accepted 𝛽(5.") value 
and draws a value from a distribution, for example: 

𝛽∗ ∼ 𝒩 𝛽(5."), 𝜎

• This ensures that we don’t get wildly crazy candidates, but ones quite 
similar to the current 𝜷.  
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MCMC Factory

Candidate 𝜷∗
generator

Dataset 

Bayesian Inference 
Machine

Current 𝜷(𝒋$𝟏)

ACC
EPT

REJECT

‘Burn-in’ rate: We throw away a chunk of our initially accepted values 

TECHNICAL DETAIL

𝑃 𝛽∗ 𝑑𝑎𝑡𝑎)
𝑃 𝛽(5.") 𝑑𝑎𝑡𝑎)

=
𝑃 𝑑𝑎𝑡𝑎 𝛽∗) ∗ 𝑃 𝛽∗

𝑃 𝑑𝑎𝑡𝑎 𝛽(5.")) ∗ 𝑃 𝛽(5.")

𝛽(#) =𝛽∗

𝛽(#) =𝛽(#$%)
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Exercise: Linear Regression MCMC from scratch

The aim of this exercise is to perform Monte Carlo Markov 
Chain (MCMC) from scratch for linear regression.
On completing the exercise you should be able to see the 
following distribution. One for each of the beta value:
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Time to scale the hills of 
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Bayesian Neural Network

66
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Bayesian Linear Regression

We assume that the likelihood 𝑃 𝑑𝑎𝑡𝑎 𝛽) is also normal, 𝒩 𝛽! + 𝛽"𝑥, 𝜎'

Hence, for given values of parameters, 𝛽!, 𝛽", and for each (𝑥(, 𝑦() ∈ 𝑑𝑎𝑡𝑎

𝑃({𝑥!, 𝑦!}|𝜷) =
1

√2𝜋𝜎"#
𝑒
$ %! $('"('#)!) $

#+%
$

𝑃 𝑑𝑎𝑡𝑎 𝜷) = 5
!

,
1

√2𝜋𝜎"#
𝑒
$ %! $('"('#)!) $

#+%
$
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Bayesian Neural Network

Hence, for given values of parameters, 𝑊, and for each (𝑥(, 𝑦() ∈ 𝑑𝑎𝑡𝑎

𝑃({𝑥!, 𝑦!}|𝑊) =
1

√2𝜋𝜎"#
𝑒
$ %! $,,&()!) $

#+%
$

𝑃 𝑑𝑎𝑡𝑎 𝑊) = 5
!

,
1

√2𝜋𝜎"#
𝑒
$ %! $,,&()!) $

#+%
$

We assume that the likelihood 𝑃 𝑑𝑎𝑡𝑎 𝛽) is also normal, 𝒩 𝑁𝑁L(𝑥), 𝜎'
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Bayesian Neural Network

Candidate 𝑾∗

generator

𝑃 𝑑𝑎𝑡𝑎 𝑊∗)∗𝑃 𝑊∗

𝑃 𝑑𝑎𝑡𝑎 𝑊(#$%))∗𝑃 𝑊(#$%)

ACC
EPT

REPEAT

FORWARD PASS

𝑃 𝑑𝑎𝑡𝑎 𝑊∗)

Current𝑾(𝒋$𝟏)

Dataset 

REJECT

Bayesian Neural Network

𝑊(#) =𝑊∗

𝑊(#) =𝑊(#$%)
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Example: A simple Bayesian Neural Network (BNN)

HIDDEN LAYER
OUTPUT LAYER

𝑥 +𝑦𝑎!
𝑎"

𝑎#

𝑤%,%

𝑤%,)

𝑤),%

𝑤),%

𝑏%

𝜙 𝑥 WN𝜙(𝑥)x !𝑦

INPUT

Neural Network Architecture
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Bayesian Neural Network (BNN)

𝑥 0𝑦

𝜙 𝑥 WN𝜙(𝑥)x !𝑦

FORWARD PASS

1. Select an initial value 𝑊(!) (this represent all weights in the network)
2. For 𝑖 = 1,… ,𝑚 repeat:

a) Draw a candidate 𝑊∗~ 𝑞 𝑊∗ 𝑊(5.")

b) 𝛼 = 7(:;<;|L∗)
7(:;<;|L(()#))

7(L∗)
7(L(()#))

c) If 𝛼 ≥ 1, accept 𝑊∗ & set 𝑊(5) ← 𝑊∗

else if 0 < 𝛼 < 1 accept 𝑊∗ & set 𝑊(5) ← 𝑊∗ with probability 𝛼
reject 𝜃∗ probability 1 − 𝛼
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Bayesian Neural Network 

73

Let us consider the dataset below for regression
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Exercise: MCMC from Scratch for Neural 
Networks

The aim of this exercise is to perform Metropolis Monte 
Carlo Markov Chain (MCMC) from scratch (as in exercise 1) 
for a simple neural network.
On completing the exercise, you should be able to see the 
following distribution. One for each of the beta value:

Warning: This is not going to converge unless we start very 
near the mode of the distribution! 
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FULL MCMC ISSUES

MCMC we will not work for NN’s with more than a 
few dozens of parameters. 

Why? 

For each parameter (weight)  we sample and 
calculate the likelihood 5 ∗ 𝑛 times, where 𝑛 being 
the length of the chain.  

We also throw away a significant number of 
samples. 

Sufficient 𝑛 also grows with the number of 
parameters and complexity of the posterior.
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FULL MCMC ISSUES

MCMC we will not work for NN’s with more than a 
few dozens of parameters. 

Why? 

For each parameter (weight)  we sample and 
calculate the likelihood 5 ∗ 𝑛 times, where 𝑛 being 
the length of the chain.  

We also throw away a significant number of 
samples. 

Sufficient 𝑛 also grows with the number of 
parameters and complexity of the posterior.

Five times because we 
usually have acceptance 

rate of ∼ 20%.

Typically, we throw the 
first 10-20% of the 

samples for burn in. 

I do not know of a 
convergence bounds for 
MCMC. There are some 

works but for specific 
problems only.

Typically, we depend on 
empirical diagnostics to 
know that the chain has 

converged
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Instead of the simple Metropolis 
MCMC, we could use a more 
sophisticated sampler HMC, as 
we did in HW3 and lab.

Here with Tensorflow Probability

POSTERIOR DISTRIBUTION 𝐲

Bayesian Neural Network: Full MCMC with HMC
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Bayesian Neural Network: Full MCMC with HMC

78

• The first set of plots on the 
right represents the 
distribution of the individual 
weights. 

• The second set of plots on the 
right show the individual 
values of the weights 
considered while running the 
sampling algorithm.

NEURAL NET WEIGHT DISTRIBUTIONS
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Bayesian Neural Network: Full MCMC with HMC

79

• The first set of plots on the 
right represents the 
distribution of the individual 
weights. 

• The second set of plots on the 
right show the individual 
values of the weights 
considered while running the 
sampling algorithm.

NEURAL NET WEIGHT DISTRIBUTIONS
HMC is a smart way of proposing which is 
much more efficient. It is based on introducing 
a “fake” variable called momentum and follow 
Hamiltonian mechanics to propose new 
variables. 

https://arogozhnikov.github.io/2016/12/19/mar
kov_chain_monte_carlo.html

Activation: sin()
Burn rate: 30%

https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html


CS109B, PROTOPAPAS, GLICKMAN, TANNER

Bayesian Neural Network – Roadblocks
MCMC doesn’t work for higher dimension 

80
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Guess we’ll need 
an alternate route!
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End of Part 1

82
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Bayesian Neural Network: Hacks

83

💡 Pavlos
Idea #3622

We could ‘estimate’ 
some weights, or try 
other tricks

𝑊"" 𝑊2# ML estimate&


