Lecture 25: Transformers
NLP Lectures: Part 4 of 4

|IACS |1 B0 58

Harvard IACS avy

VA AL
\/
CS109B '

Pavlos Protopapas, Mark Glickman, and Chris Tanner

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

Outline

=== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

First, we learned about language models (LMs)

P("What is the weather today?")
P("What is the whether two day?")

P("What is the whether too day?”)

Being able to correctly estimate the likelihood

of sentences is useful for many other tasks

First, we learned about language models (LMs)

Text Classification

Speech Recognition

Being able to correctly estimate the likelihood

of sentences is useful for many other tasks

Next, we learned about word embeddings

TYPE-BASED TOKEN-BASED

a single, global word embedding for contextualized embeddings are
each word, independent of its context. distinct for every occurrence of a word,

completely dependent on its context

she easily the test easily passed the test

00000) (00000) (60000) (00000 (©000) 0000

~1t T N

0 :
;O O0000) =P (OOOOCQO) =P (CO000) =P (CO000

T Y | vt Al
passed @l IE] IE] m
she

easily passed the

word2vec (skip-gram) Bidirectional LSTM

Next, we learned about word embeddings

TYPE-BASED

a single, global word embedding for * These models output embeddings we can

each word, independent of its context. , ,
save to a file and use however we wish

she easily the test

56000) (66660) (66000) (66000 « We then create a separate model that uses

~ el these embeddings

000

T

* Kind of limiting

passed

» Often inferior, as of 2015

word2vec (skip-gram)

Next, we learned about word embeddings

« These models are trained on a specific TOKEN-BASED

task (e.g., LM, text classitication, etc) contextualized embeddings are

distinct for every occurrence of a word,

* The hidden layer(s) contains the completely dependent on its context
“meaning” and are very useful

* We can extract those embeddings if we
wish, or grab the learned weights and
re-use for another task

* Dominating NLP from 2015 - present
Bidirectional LSTM

Next, we learned about word embeddings

TOKEN-BASED

contextualized embeddings are

» LSTMs are amazing but ultimately only distinct for every occurrence of a word

look at 1 word at a time, sequentially completely dependent on its context

passed

0000

* Sure, they maintain long-term memory, UT

but they are short-sighted in terms of (G0000Q) v

knowing what to hold onto and how to WT

weight each input casily

Bidirectional LSTM

Next, we learned about seq2seq and Attention

chien brun
V2

—p

[hY; cP] [hE;c2] [hY; cF1 [hE; ¢ [RD; P

Hidden layer

¥

=P (00000,

=) (00000) .

= [0| = o= [o| =

=P (0000 0)
=P (O0000)
=P (O0000)
=) (00000)
=) (0000J]

? = (00000]

Inputlayer The brown dog

ENCODER RNN DECODER RNN

chien brun

A
n
V
—
®

Next, we learned about seq2seq and Attention

« Revolutionary idea

* Decoder has access to all input
words and appropriately focuses on
select parts

Hidden layer

¥

* |t's conditioned on the current word
we're decoding

=P (0000 0) Sk

Inputlayer The brown dog

ENCODER RNN

Outline

=== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

12

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

13

Goals
e

« Each word in a sequence to be transformed into a rich, abstract

representation (context embedding) based on the weighted sums of

the other words in the same sequence (akin to deep CNN layers)

* Inspired by Attention, we want each word to determine, "how much

should | be influenced by each of my neighbors”

« Want positionality

Self-Attention
]

N
N
N
N
w
N
N

Output Self-Attention’s goal is to create

representation great representations, z,, of the input

27?0777

Input vectors

(©0000)

brown dog

Self-Attention

N

Output
representation

Self-Attention’s goal is to create

great representations, z,, of the input

z, will be based on a weighted

contribution of x4, X5, X3, X4

Input vectors

(©0000)

Self-Attention

N

Output
representation

Self-Attention’s goal is to create

great representations, z,, of the input

z, will be based on a weighted

contribution of x4, X5, X3, X4

1

Input vectors a; is "just” a weight. More is

(©0000)

happening under the hood, but
it's effectively weighting

versions of X4, X5, X3, X4

Self-Attention

N

Under the hood, each x; has
Output

representation 3 small, associated vectors.

For example, x; has:

* Query q;
¢ Key ki

[
—_— 00000

Q
=

Q
N

Q
W

Q
B

« Value;
Input vectors

=) (00000)
=) (00000)

_|
x* 2 wap (O0O000)

Self-Attention
Under the hood, each x, has 3

Step 1: Our Self-Attention Head | has just 3 weight small, associated vectors. For
matrices W, W,, W, in total. These same 3 weight example, x; has:

matrices are multiplied by each x;to create all vectors: o
© Luery qq

qi — Wq X; ‘ Key k1
ki = wy x Value v;

Vi - Wv X

=P (00000)
= (00000

O
O
O
O
O
The
X1

Self-Attention

Step 2: For word x;, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

Self-Attention

Step 2: For word x;, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

Self-Attention

Step 2: For word x;, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

s3=qq-ks=16
s, =qqky= 96
§1= q1’k1 =112

Self-Attention

Step 2: For word x;, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

s4=Qqqky=8
s3=qq-ks=16
s, =qqky= 96
s1=qq'ki =112

Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

s,=qs-k,=8 a,=0(54/8)=0

s3=qq-ks=16 az;=0(s3/8)=.01
s, = qq-k, = 96 a,=0(s,/8)=.12
s;=qqky=112 a;=0a(s1/8)=.87

Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

s,=q1k,=8 a,=0(s4/8)=0 Instead of these a; values directly

s3= qrks =16 a;=0(s5/8) = .01 weighting our original x; word vectors,
they directly weight our v; vectors.

s, = qq-k, =96 a,=0(s,/8)=.12

S1=q1’k1=112 a1=0'(51/8)=.87

Self-Attention

Step 4: Let’s weight our v; vectors and simply sum them up!

Z1 = al°V1 + a2°V2 + a3°V3 + a4'V4

= 0.87v4+0.12:v, + 0.01°v3 + 0-v,

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z, representations!

Zy

Z, = a;°Vq +a,°Vo + a3°V3 + a,°V,

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z, representations!

Z3=a;°Vq +a,°Vo + a3°V3 + a;°V,

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z, representations!

Z4

Z4 = al‘V1 + az'VZ + a3°V3 + a4°V4

Let’s illustrate another example:

Zy

22 = al'V1 + a2°V2 + a3°V3 + a4'V4

Remember, we use the same 3 weight matrices
W, W,, W, as we did for computing z;.

This gives us q, k; v,

Self-Attention
Under the hood, each x, has 3

Step 1: Our Self-Attention Head | has just 3 weight small, associated vectors. For
matrices W, W,, W, in total. These same 3 weight example, x; has:

matrices are multiplied by each x;to create all vectors: o
© Luery qq

qi — Wq X; ‘ Key k1
ki = wy x Value v;

Vi - Wv X

=P (00000)
= (00000

O
O
O
O
O
The
X1

Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

3= Qpk3 = 22
S, = qz‘kz =124
s1=qky=92

Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

sy=Qyks=8
3= Qpk3 = 22
s, =Qqyk, =124
s1=qky=92

Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

s4= q2°k4=8 a4=0'(S4/8)=0
53 = q2’k3 = 22 a3 = 0.(53/8) = ‘01
s, =Qqyk, =124 a,=0(s,/8)=.91

§1= q2’k1 = 92 a; = 6(51/8) = .08

=) (00000

Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

sys=0yk,=8 a,=0(54/8)=0 Instead of these a; values directly
weighting our original x; word vectors,

= °k = 22 d; =0(S 8 = .01
3T = 0(53/8) they directly weight our v; vectors.
s, =Qqyk, =124 a,=0(s,/8)=.91

§1= q2’k1 = 92 a; = 6(51/8) = .08

=) [(00000)

Self-Attention

Step 4: Let’s weight our v; vectors and simply sum them up!

Zy=ay;'Vpta'Vp+asVz+a, vy

= 0.08:v;+0.91'v, + 0.01'v3 + 0°v,

Self-Attention

Tada! Now we have great, new representations z; via a self-attention head

Z; Z3

.
.
& [

Takeaway:

Self-Attention is powerful; allows us to
create great, context-aware
representations

Self-Attention may seem strikingly
like Attention in seg2seq models

Attention

¥

=P (OO0 O)

=P (00000,

=P (00000) =,

brown dog

ENCODER RNN DECODER RNN

S4= hll)* hlf
S3= hll)* hg
s;= hi « hE

51=h11)*h]15

Attention

We multiply each encoder’s hidden

layer by its a] attention weights to
create a context vector ¢}

¥

=P (OO0 O)

=P (00000,

=P (00000) =,

- (00000)] =

The brown dog
ENCODER RNN DECODER RNN

S4= hll)* hlf
S3= hll)* hg
s;= hi « hE

51=h11)*h]15

Attention

We multiply each encoder’s hidden

layer by its a] attention weights to
create a context vector ¢}

¥

=P (OO0 O)

=P (00000,

=P (00000) =,

c? =a;'hE+a,s hyE+a; hyE+a, hE

brown dog
ENCODER RNN DECODER RNN

4= 'k4 = °
uT =0t/8 1 Galf-Attention
s3= Qz-k3 a;=0(s3/8)

$2= q2°k2 a,=0(s,/8)
s1 =02k a,=0(s1/8)

We multiply each word’s value

vector by its a; attention weights to
create a better vector z;

¥

=P (O0000)

=P (00000) =,

z,=a;"V{E+a," V,F+a; vsF+a, v F

=P (0000 0) S

brown dog

ENCODER RNN

Self-
Attention

Attention Description

item being
compared

item being
weighted

belf-Attention

>
NI

=P (0000 0)
=P (O0000)

brown dog
ENCODER RNN

= (00000) I,

Self-

Attention Attention Description

item being
compared

item being
weighted

t All of these are like

surrogates/proxies/abstractions.

This provides flexibility and fewer
constraints.
More room for rich abstractions.

belf-Attention

1]

I
<

=P (O0000)

=P (OO0O) i

brown dog
ENCODER RNN

=P (00000 I,

Self-Attention

Let’s further pass each z through a
FFNN

N

Self-Attention + FFNN

-

—_
-

D

Let’s further pass each z through a

Self-Attention + FFNN

'

X2

00000

e

(eleleTeTe)

Z4

Self-atte n Head

ntio
@
@

Let’s further pass each z through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow.

Self-Attention + FFNN

Let’s further pass each z through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

®|z, We perform LayerNorm to stabilize
® the network and allow for proper

gradient flow.
Self-attention Head

0 Each z can be computed in parallel,
: unlike LSTMs!

'

€29
Ee9)
@e9)
00000
€29
Ee9)
@e9)
(eleleTeTe)
€29
@e9)
@e9)

X2

Transformer Encoder

—_
N

)

Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder

00

)
%

TAS

Transformer Encoder

0000) ~°

= (X

Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Transformer Encoder

0000) ~°

= (X

Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Solution: append each input
word x; with a positional
encoding: sin(i) cos(i)

A Self-Attention Head has just one set of

query/key/value weight matrices w, w;_ w,

Words can relate in many ways, so it's restrictive to

rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

Transformer Encoder

0000 5

= (X

Each Self-Attention Head

produces a z; vector.

O e fi Wecan,in parallel, use
Z1A Z1BZ1C Z3A Z3B Z3C Z4A 24B Z4C i
QARG o|lo/® multiple heads and
000 0/0|® 000 :

o/ o|o 3ICC d|bd L concat the z's.

et il

—
o

e =(OOO0OO)
€29
€29
o9

Transformer Encoder

—_
N

)

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized

0000

= (X

embedding r, of each

+ xq Residual Connection +LayerNorm word X

.
| |
» AN NN NN NN NN NN NN NN NS NSNS NN NS NSNS NN NSNS EEEENEEEEEEEEEEENEEEEEEEEN 13

Z1A Z1BZ1C Z3A 238 Z3C Z4A Z4B Z4C

Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r, of each
word Xx;

-
RN

-
w

-
N

00000

Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r; of each
word Xx;

-
RN
-
w
-
N

Why stop with just 1
Transformer Encoder?
We could stack severall

00000

Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r; of each
word Xx;

-
-
-
N
-
w

00000
00000

Why stop with just 1
Transformer Encoder?
We could stack severall

The original Transformer model was intended for
Machine Translation, so it had Decoders, too

Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

Transformer Encoders
produce contextualized
embeddings of each word

Transformer Decoders
generate new sequences
of text

Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head
in between the Self-
Attention and FENN
layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.

Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

The query vector for a
Transformer Decoder's
Attention Head (not Self-
Attention Head) is from
the output of the previous
decoder layer.

However, the key and
value vectors are from the
Transformer Encoders’
outputs.

Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention
Head) are all from the
output of the previous
decoder layer.

Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

IMPORTANT

The Transformer
Decoders have positional
embeddings, too, just like
the Encoders.

Critically, each position is
only allowed to attend to
the previous indices. This
masked Attention
preserves it as being an
auto-regressive LM,

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type

Complexity per Layer

Sequential Maximum Path Length
Operations

Self-Attention

Recurrent

Convolutional
Self-Attention (restricted)

O(n? - d)
O(n - d?)
O(k - n-d?)
O(r-n-d)

O(1) O(1)
O(n) O(n)
O(1) O(logy(n))
O(1) O(n/r)

Machine Translation results: state-of-the-art (at the time)

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-101% 1.4.102%0
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%0
MoE [32] 26.03 40.56 2.0-10" 1.2.102%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1020
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 7.7-101° 1.2.10%1

Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to

Language C

* What if we don‘t want to decode/translate?
« Just want to perform a particular task (e.g., classification)
« Want even more robust, flexible, rich representation!

» Want positionality to play a more explicit role, while not

being restricted to a particular form (e.g., CNNs)

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

71

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

72

BERT

Bidirectional Encoder Representations from Transformers

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs, let's look in both directions

BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders

BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations

brown 0.92

lazy 0.05 BERT has 2 training objectives:
playful 0.03

1. Predict the Masked word (a la CBOW)
Encoder #8

f """"""" T i 15%ofall input words are randomly masked.
° E

80% become [MASK]
10% become revert back

10% become are deliberately corrupted
as wrong words

brown 0.92 . L
rT:Iz; 0.05 BERT has 2 training objectives:

playful 0.03

2. Two sentences are fed in at a time.
Predict the if the second sentence of
input truly follows the first one or not.

BER

ﬁp
=

Mask LM Mask LM

®

c

~—

Tt

1

Ty TIBEH

BERT

e |[Een

— |Es
e O

=P

Masked Sentence A Masked Sentence B

.

*
\ Unlabeled Sentence A and B Pair

Pre-training

paper: https://arxiv.org/pdf/1810.04805.

Every two sentences are separated
by a <SEP> token.

50% of the time, the 2"d sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the
first sentence in the corpus.

BER

ﬁp
-

Mask LM Mask LM

®

Cc

-~

BERT

Ew][Esen

— |Es
o O

=)

o

- G

Masked Sentence A Masked Sentence B

. 3
Unlabeled Sentence A and B Pair

Pre-training

paper: https://arxiv.org/pdf/1810.04805.

NOTE: BERT also embeds the inputs
by their WordPiece embeddings.

WordPiece is a sub-word tokenization

earns to merge and use characters

pased on which pairs maximize the

ikelihood of the training data if
added to the vocab.

Most of the time, people use BERT

to fine-tune on a separate task

Input

Features

s

Help Prince Mavuko Transfer
J

Huge Inheritance

-

_

Classifier

softmax)

~

(Feed-forward
neural network +

_

Picture: https://jalammar.qgithub.io/illustrated-bert/

Output

Prediction

85% Spam

15% Not Spam

Most of the time, people use BERT

to fine-tune on a separate task

y
(XIIX)

217

-

-
-

N

00000 7

00000 =

=
S S
<

Most of the time, people use BERT

to fine-tune on a separate task

Class

. p . \ /7 \ R
M] :'

|

| |
Sentence 1 Sentence 2 Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColA
RTE, SWAG

Picture: https://jalammar.qgithub.io/illustrated-bert/

Most of the time, people use BERT

to fine-tune on a separate task

StartvEnd Span

G-

e] E |- !

(=) =) (2]
D = G

Paragraph Single Sentence

(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQuAD v1.1 CoNLL-2003 NER

Picture: https://jalammar.qgithub.io/illustrated-bert/

One could also extract the contextualized embeddings

Generate Contexualized Embeddings The output of each encoder layer along
each token's path can be used as a
feature representing that token.

ENCODER JE A I R B B

B R B B e

ENCODER

ey Lt

CITT]I 1 CI1 1

ENCODER

CITTICTTTICTTT)
HEEEpEEEEREER

But which one should we use?

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings

Dev F1 Score

First Layer 91.0

Last Hidden Layer 94.9

Sum All 12
Layers

Second-to-Last
Hidden Layer

Sum Last Four
Hidden

Concat Last
Four Hidden
Picture: https://jalammar.github.io/illustrated-bert/

BERT yields state-of-the-art (SOTA) results on many tasks

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 913 454 80.0 82.3 56.0 75.1
BERTBAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

paper: https://arxiv.org/pdf/1810.04805.

\/\/\/\/\

Takeaway

BERT is incredible for learning
contextualized embeddings of words
and using transfer learning for other
tasks (e.g., classification).

Can’t generate new sentences though,
due to no decoders.

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

89

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

90

Transformer
e

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

GPT-2 (a Transformer variant)
.

e GPT-2 uses only Transformer Decoders (no Encoders) to generate

new sequences (from scratch or from a starting sequence)

« Oddly, there is no Attention (since there is no Transformer

Encoder to attend to). So, there is only Self-Attention.

 As it processes each word/token, it cleverly masks the “future”

words and conditions itself on the previous words

GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the “future”
words and conditions itself on the previous words

.

DECODER BLOCK #2

C
C

[Masked Self-Attention

Input

GPT-2 (a Transformer variant)
.

As it processes each word/token, it cleverly masks the “future”
words and conditions itself on the previous words

Self-Attention Masked Self-Attention
A

GPT-2 (a Transformer variant)

 Technically, it doesn’t use words as input but Byte Pair Encodings

(sub-words), similar to BERT's WordPieces.
* Includes positional embeddings as part of the input, too.

« Easy to fine-tune on your own dataset (language)

GPT-2 Results

|
Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)

The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear
research site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information.

GPT-2 Results

Question

Generated Answer

Correct

Probability

Who wrote the book the origin of species?

Who is the founder of the ubuntu project?

Who is the quarterback for the green bay packers?

Panda is a national animal of which country?

Who came up with the theory of relativity?

When was the first star wars film released?

What is the most common blood type in sweden?

Who is regarded as the founder of psychoanalysis?

Who took the first steps on the moon in 1969?

Who is the largest supermarket chain in the uk?

What is the meaning of shalom in english?

Who was the author of the art of war?

Largest state in the us by land mass?

Green algae is an example of which type of reproduction?
Vikram samvat calender is official in which country?
Who is mostly responsible for writing the declaration of independence?

Charles Darwin
Mark Shuttleworth
Aaron Rodgers
China

Albert Einstein
1977

A

Sigmund Freud
Neil Armstrong
Tesco

peace

Sun Tzu
California
parthenogenesis
India

Thomas Jefferson

v
v
v
v
v
v
X
v
v
v
v
v
X
X
v
v

83.4%
82.0%
81.1%
76.8%
76.4%
71.4%
70.6%
69.3%
66.8%
65.3%
64.0%
59.6%
59.2%
56.5%
55.6%
53.3%

97

GPT-2 Results

Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103
(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL)

SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3

117M 35.13 45.99 87.65 83.4 2941 65.85 1.16 1.17 37.50
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

Takeaway:

GPT-2 is astounding for generating
realistic-looking new text

Can fine-tune toward other tasks, too.

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

100

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

101

BERT (a Transformer variant)
.

BERT is trained on a lot of text data:
* BooksCorpus (800M words)
 English Wikipedia (2.5B words)

Yay, for transfer learning!

BERT-Base model has 12 transformer blocks, 12 attention heads,

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads,

340M parameters!

GPT-2 (a Transformer variant)

GPT-2 is:
* trained on 40GB of text data (8M webpages)!

* 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but

isn't open-source

Yay, for transfer learning!

Concerns
e

There are several issues to be aware of:

* Itis very costly to train these large models. The companies who

develop these models easily spend an entire month training one
model, which uses incredible amounts of electricity.

« BERT alone is estimated to cost over $1M for their final models

e $2.5k - $50k (110 million parameter model)
e $10k - $200k (340 million parameter model)
e $80k - $1.6m (1.5 billion parameter model)

Source: https://arxiv.org/pdf/2004.08900.pdf

Concerns
e

It is very costly to train these large models.

Data Size Model Size
(billion words) (billion parameters)

17.0

OpenWebText
ELECTRA-1.75M
MegatronL.M

Source: https://arxiv.org/pdf/2004.08900.pdf

Training Volumet
(trillion tokens)

RoBERTa

XLNet
ELECTRA-1.75M
MegatronLM

Concerns
e

Further, these very large language models have been shown to

be biased (e.qg., in terms of gender, race, sex, etc).

Converting from one language to another often converts gender

neutral pronouns to sexist stereotypes

Using these powerful LMs comes with risks of producing such

text and/or evaluating/predicting tasks based on these biased

assumptions.

People are researching how to improve this

Concerns

* As computer-generated text starts to become indistinguishable
from authentic, human-generated text, consider the ethical

impact of fraudulently claiming text to be from a particular

author.

If used maliciously, it can easily contribute toward the problem of

Fake News

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

B Summary

108

Outline

mm== Recap

B Transformers

== BERT
= GPT-2

== Concerns

EESS Summary

109

Summary
|

« There has been significant NLP progress in the past few years.

« Some of the complex models are incredible, but rely on having a

lot of data and computational resources (e.g., Transformers)

« With all data science and machine learning, it's best to
understand your data and task very well, clean your data, and
start with a simple model (instead of jumping to the most

complex model)

Summary
|

* NLP is incredibly fun, with infinite number of problems to work on

* I'll teach an NLP course next year (most likely Spring 2022).

Some definitions to remember
]

Models

N-gram: count statistics; elementary sequence modelling

FFNN: fixed-length context window; not ideal for sequential modelling
(Vanilla) RNN: uses context; fair sequence modelling

LSTM: a variant of an RNN that handles long-range context better

Seg2Seq: maps 1 sequence to another (n->m sequences)

Attention: determines which elements in sequence A pertain to sequence B
Self-Attention: determines which elements to focus on in its own sequence A

Transformers: learns excellent representation, via a segZ2seq framework with self-attention
and attention
« BERT: Transformer Encoders that learn great representations and can be fine-tuned on
other tasks
« GPT-2: Transformer Decoders that generate realistic text and can be fine-tuned on other
tasks

QUESTIONS?

BACKUP SLIDES

Transformer vs CNN vs RNN

Source: https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html#tsubsec-cnn-rnn-self-attention

