Lecture 25: Transformers

NLP Lectures: Part 4 of 4

Harvard IACS
 CS109B

Pavlos Protopapas, Mark Glickman, and Chris Tanner

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

First, we learned about language models (LMs)
$P($ "What is the weather today?")
P ("What is the whether two day?")
P ("What is the whether too day?")

Being able to correctly estimate the likelihood of sentences is useful for many other tasks

First, we learned about language models (LMs)

Auto-complete

Machine Translation Text Classification

Speech Recognition

Being able to correctly estimate the likelihood of sentences is useful for many other tasks

Next, we learned about word embeddings

TYPE-BASED

a single, global word embedding for each word, independent of its context.

word2vec (skip-gram)

TOKEN-BASED

contextualized embeddings are distinct for every occurrence of a word, completely dependent on its context

Bidirectional LSTM

Next, we learned about word embeddings

TYPE-BASED

a single, global word embedding for each word, independent of its context.

- These models output embeddings we can save to a file and use however we wish
- We then create a separate model that uses these embeddings
- Kind of limiting
- Often inferior, as of 2015
word2vec (skip-gram)

Next, we learned about word embeddings

- These models are trained on a specific task (e.g., LM, text classification, etc)
- The hidden layer(s) contains the "meaning" and are very useful
- We can extract those embeddings if we wish, or grab the learned weights and re-use for another task
- Dominating NLP from 2015 - present

TOKEN-BASED

contextualized embeddings are distinct for every occurrence of a word, completely dependent on its context

Bidirectional LSTM

Next, we learned about word embeddings

- LSTMs are amazing but ultimately only look at 1 word at a time, sequentially
- Sure, they maintain long-term memory, but they are short-sighted in terms of knowing what to hold onto and how to weight each input

TOKEN-BASED

contextualized embeddings are distinct for every occurrence of a word, completely dependent on its context

Bidirectional LSTM

Next, we learned about seq2seq and Attention

Next, we learned about seq2seq and Attention

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Goals

- Each word in a sequence to be transformed into a rich, abstract representation (context embedding) based on the weighted sums of the other words in the same sequence (akin to deep CNN layers)
- Inspired by Attention, we want each word to determine, "how much should I be influenced by each of my neighbors"
- Want positionality

Self-Attention

Self-Attention

Output
representation

Input vectors

Self-Attention

Output
representation

Input vectors
great representations, z_{i}, of the input

Self-Attention

Self-Attention

Step 1: Our Self-Attention Head I has just 3 weight matrices W_{q}, W_{k}, W_{v} in total. These same 3 weight matrices are multiplied by each x_{i} to create all vectors:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{q}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{k}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Under the hood, each x_{i} has 3 small, associated vectors. For example, x_{1} has:

- Query q_{1}
- Key k ${ }_{1}$
- Value \mathbf{v}_{1}

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{1}=q_{1} \cdot k_{1}=112$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{3}=q_{1} \cdot k_{3}=16 \\
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{4}=q_{1} \cdot k_{4}=8 \\
& s_{3}=q_{1} \cdot k_{3}=16 \\
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 3: Our scores $s_{1}, s_{2}, s_{3}, s_{4}$ don't sum to 1 . Let's divide by $\sqrt{ } l e n\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
s_{4}=\mathrm{q}_{1} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{1} \cdot \mathrm{k}_{3}=16 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{1} \cdot \mathrm{k}_{2}=96 & \mathrm{a}_{2}=\sigma\left(s_{2} / 8\right)=.12 \\
\mathrm{~s}_{1}=\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112 & \mathrm{a}_{1}=\sigma\left(s_{1} / 8\right)=.87
\end{array}
$$

The

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{1} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{1} \cdot \mathrm{k}_{3}=16 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{1} \cdot \mathrm{k}_{2}=96 & \mathrm{a}_{2}=\sigma\left(s_{2} / 8\right)=.12 \\
\mathrm{~s}_{1}=\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112 & \mathrm{a}_{1}=\sigma\left(s_{1} / 8\right)=.87
\end{array}
$$

The

$\begin{array}{lll}q_{1} & k_{1} & v_{1}\end{array}$

x_{1}

Instead of these a_{i} values directly weighting our original x_{i} word vectors, they directly weight our v_{i} vectors.

Self-Attention

Step 4: Let's weight our v_{i} vectors and simply sum them up!

$$
\begin{aligned}
z_{1} & =a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4} \\
& =0.87 \cdot v_{1}+0.12 \cdot v_{2}+0.01 \cdot v_{3}+0 \cdot v_{4}
\end{aligned}
$$

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{2}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{3}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{4}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Let's illustrate another example:

$$
z_{2}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Remember, we use the same 3 weight matrices
$W_{\mathrm{q}}, W_{\mathrm{k}}, W_{\mathrm{v}}$ as we did for computing z_{1}.
This gives us $\mathrm{q}_{2}, \mathrm{k}_{2}, \mathbf{v}_{2}$

Self-Attention

Step 1: Our Self-Attention Head I has just 3 weight matrices W_{q}, W_{k}, W_{v} in total. These same 3 weight matrices are multiplied by each x_{i} to create all vectors:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{q}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{k}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Under the hood, each x_{i} has 3 small, associated vectors. For example, x_{1} has:

- Query q_{1}
- Key k ${ }_{1}$
- Value \mathbf{v}_{1}

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{2}=q_{2} \cdot k_{2}=124 \\
& s_{1}=q_{2} \cdot k_{1}=92
\end{aligned}
$$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{3}=q_{2} \cdot k_{3}=22$
$s_{2}=q_{2} \cdot k_{2}=124$
$s_{1}=q_{2} \cdot k_{1}=92$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8$
$\mathrm{s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22$
$\mathrm{s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124$
$\mathrm{s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\boldsymbol{\sigma}\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\boldsymbol{\sigma}\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\boldsymbol{\sigma}\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Instead of these a_{i} values directly weighting our original x_{i} word vectors, they directly weight our v_{i} vectors.

Self-Attention

Step 4: Let's weight our v_{i} vectors and simply sum them up!

$$
\begin{aligned}
z_{2} & =a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4} \\
& =0.08 \cdot v_{1}+0.91 \cdot v_{2}+0.01 \cdot v_{3}+0 \cdot v_{4}
\end{aligned}
$$

Self-Attention

Tada! Now we have great, new representations z_{i} via a self-attention head

Self-Attention may seem strikingly like Attention in seq2seq models

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\boldsymbol{\sigma}\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\boldsymbol{\sigma}\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1}\right)
\end{array}
$$

Attention

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\sigma\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\sigma\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\sigma\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\sigma\left(s_{1}\right)
\end{array}
$$

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}

Attention

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\sigma\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\sigma\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\sigma\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\sigma\left(s_{1}\right)
\end{array}
$$

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}
$c_{1}^{D}=a_{1} \cdot h_{1}{ }^{E}+a_{2} \cdot h_{2}{ }^{E}+a_{3} \cdot h_{3}{ }^{E}+a_{4} \cdot h_{4}{ }^{E}$

Attention

$$
\begin{array}{ll}
s_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4} & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right) \\
\mathrm{s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3} & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right) \\
\mathrm{s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2} & \mathrm{a}_{2}=\sigma\left(s_{2} / 8\right) \\
\mathrm{s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1} & \mathrm{a}_{1}=\sigma\left(s_{1} / 8\right)
\end{array}
$$

We multiply each word's value vector by its a_{i}^{1} attention weights to create a better vector z_{1}
$z_{1}=a_{1} \cdot v_{1}^{E}+a_{2} \cdot v_{2}^{E}+a_{3} \cdot v_{3}^{E}+a_{4} \cdot v_{4}^{E}$

Self-Attention

Self-Attention

Let's further pass each z_{i} through a FFNN

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow.

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow.

Each z_{i} can be computed in parallel, unlike LSTMs!

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Solution: append each input word x_{i} with a positional encoding: $\sin (i) \cos (i)$

A Self-Attention Head has just one set of query/key/value weight matrices $\mathrm{w}_{\mathrm{q}}, \mathrm{w}_{\mathrm{k}}, \mathrm{w}_{\mathrm{v}}$

Words can relate in many ways, so it's restrictive to rely on just one Self-Attention Head in the system.

Let's create Multi-headed Self-Attention

Transformer Encoder

Each Self-Attention Head

 produces a z_{i} vector.We can, in parallel, use multiple heads and concat the z_{i}^{\prime} s.

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Why stop with just 1 Transformer Encoder? We could stack several!

Transformer Encoder

> To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Why stop with just 1 Transformer Encoder? We could stack several!

The original Transformer model was intended for Machine Translation, so it had Decoders, too

Transformer Encoders and Decoders

Transformer Encoders produce contextualized embeddings of each word

Transformer Decoders generate new sequences of text

Transformer Encoders and Decoders

Transformer Encoders and Decoders

Transformer Encoders and Decoders

NOTE

The query, key, and value vectors for a Transformer Decoder's Self-Attention Head (not Attention Head) are all from the output of the previous decoder layer.

Transformer Encoders and Decoders

Loss Function: cross-entropy (predicting translated word)

Training Time: ~ 4 days on (8) GPUs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

Machine Translation results: state-of-the-art (at the time)

| Model | BLEU | | | Training Cost (FLOPs) | |
| :--- | :---: | :---: | :--- | :--- | :---: | :---: |
| | EN-DE | EN-FR | | EN-DE | EN-FR |
| ByteNet [18] | 23.75 | | | | |
| Deep-Att + PosUnk [39] | | 39.2 | | | |
| GNMT + RL [38] | 24.6 | 39.92 | | $2.3 \cdot 10^{20}$ | |
| ConvS2S [9] | 25.16 | 40.46 | | $9.6 \cdot 10^{18}$ | $1.5 \cdot 10^{20}$ |
| MoE [32] | 26.03 | 40.56 | | $2.0 \cdot 10^{19}$ | $1.2 \cdot 10^{20}$ |
| Deep-Att + PosUnk Ensemble [39] | | 40.4 | | | $8.0 \cdot 10^{20}$ |
| GNMT + RL Ensemble [38] | 26.30 | 41.16 | | $1.8 \cdot 10^{20}$ | $1.1 \cdot 10^{21}$ |
| ConvS2S Ensemble [9] | 26.36 | $\mathbf{4 1 . 2 9}$ | | $7.7 \cdot 10^{19}$ | $1.2 \cdot 10^{21}$ |
| Transformer (base model) | 27.3 | 38.1 | | $\mathbf{3 . 3} \cdot \mathbf{1 0}^{\mathbf{1 8}}$ | |
| Transformer (big) | $\mathbf{2 8 . 4}$ | $\mathbf{4 1 . 8}$ | | $2.3 \cdot 10^{19}$ | |

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to
Language C

- What if we don't want to decode/translate?
- Just want to perform a particular task (e.g., classification)
- Want even more robust, flexible, rich representation!
- Want positionality to play a more explicit role, while not being restricted to a particular form (e.g., CNNs)

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

BERT

Bidirectional Encoder Representations from Transformers

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs, let's look in both directions

BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders

BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations

BERT

brown 0.92
lazy 0.05
playful 0.03

BERT has 2 training objectives:

1. Predict the Masked word (a la CBOW)
15% of all input words are randomly masked.

- 80\% become [MASK]
- 10\% become revert back
- 10% become are deliberately corrupted as wrong words

BERT

brown 0.92
lazy 0.05
playful 0.03

BERT has 2 training objectives:

2. Two sentences are fed in at a time. Predict the if the second sentence of input truly follows the first one or not.

BERT

Every two sentences are separated by a <SEP> token.
50% of the time, the $2^{\text {nd }}$ sentence is a randomly selected sentence from the corpus.
50% of the time, it truly follows the first sentence in the corpus.

BERT

NOTE: BERT also embeds the inputs by their WordPiece embeddings.

WordPiece is a sub-word tokenization

 learns to merge and use characters based on which pairs maximize the likelihood of the training data if added to the vocab.
BERT

Most of the time, people use BERT
to fine-tune on a separate task

Input

Features

Most of the time, people use BERT
to fine-tune on a separate task

BERT

Most of the time, people use BERT

to fine-tune on a separate task

BERT

Most of the time, people use BERT

to fine-tune on a separate task

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

One could also extract the contextualized embeddings

The output of each encoder layer along each token's path can be used as a feature representing that token.

Later layers have the best contextualized embeddings

BERT

BERT yields state-of-the-art (SOTA) results on many tasks

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT $^{\text {BERT }_{\text {BASE }}}$	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {LARGE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!
Generative Pre-trained Transformer 2

GPT-2 (a Transformer variant)

- GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences (from scratch or from a starting sequence)
- Oddly, there is no Attention (since there is no Transformer Encoder to attend to). So, there is only Self-Attention.
- As it processes each word/token, it cleverly masks the "future" words and conditions itself on the previous words

GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the "future" words and conditions itself on the previous words

GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the "future" words and conditions itself on the previous words

Self-Attention

Masked Self-Attention

GPT-2 (a Transformer variant)

- Technically, it doesn't use words as input but Byte Pair Encodings (sub-words), similar to BERT's WordPieces.
- Includes positional embeddings as part of the input, too.
- Easy to fine-tune on your own dataset (language)

GPT-2 Results

Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)

A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)

The incident occurred on the downtown train line, which runs from Covington and Ashland stations.
In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.
"The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation," said Tom Hicks, the U.S. Energy Secretary, in a statement. "Our top priority is to secure the theft and ensure it doesn't happen again." The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information.

GPT-2 Results

Question	Generated Answer	Correct	Probability
Who wrote the book the origin of species?	Charles Darwin	\checkmark	83.4%
Who is the founder of the ubuntu project?	Mark Shuttleworth	\checkmark	82.0%
Who is the quarterback for the green bay packers?	Aaron Rodgers	\checkmark	81.1%
Panda is a national animal of which country?	China	\checkmark	76.8%
Who came up with the theory of relativity?	Albert Einstein	\checkmark	76.4%
When was the first star wars film released?	1977	\checkmark	71.4%
What is the most common blood type in sweden?	A	70.6%	
Who is regarded as the founder of psychoanalysis?	Sigmund Freud	\checkmark	69.3%
Who took the first steps on the moon in 1969?	Neil Armstrong	\checkmark	66.8%
Who is the largest supermarket chain in the uk?	Tesco	\checkmark	65.3%
What is the meaning of shalom in english?	peace	\checkmark	64.0%
Who was the author of the art of war?	Sun Tzu	\checkmark	59.6%
Largest state in the us by land mass?	California	x	59.2%
Green algae is an example of which type of reproduction?	parthenogenesis	x	56.5%
Vikram samvat calender is official in which country?	India	\checkmark	55.6%
Who is mostly responsible for writing the declaration of independence?	Thomas Jefferson	\checkmark	53.3%

GPT-2 Results

Language Models are Unsupervised Multitask Learners

	LAMBADA (PPL)	LAMBADA (ACC)	CBT-CN (ACC)	CBT-NE (ACC)	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 $($ (PPL $)$
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3
117 M	$\mathbf{3 5 . 1 3}$	45.99	$\mathbf{8 7 . 6 5}$	$\mathbf{8 3 . 4}$	$\mathbf{2 9 . 4 1}$	65.85	1.16	1.17	37.50
345M	$\mathbf{1 5 . 6 0}$	55.48	$\mathbf{9 2 . 3 5}$	$\mathbf{8 7 . 1}$	$\mathbf{2 2 . 7 6}$	47.33	1.01	$\mathbf{1 . 0 6}$	26.37
762M	$\mathbf{1 0 . 8 7}$	$\mathbf{6 0 . 1 2}$	$\mathbf{9 3 . 4 5}$	$\mathbf{8 8 . 0}$	$\mathbf{1 9 . 9 3}$	$\mathbf{4 0 . 3 1}$	$\mathbf{0 . 9 7}$	$\mathbf{1 . 0 2}$	22.05
1542M	$\mathbf{8 . 6 3}$	$\mathbf{6 3 . 2 4}$	$\mathbf{9 3 . 3 0}$	$\mathbf{8 9 . 0 5}$	$\mathbf{1 8 . 3 4}$	$\mathbf{3 5 . 7 6}$	$\mathbf{0 . 9 3}$	$\mathbf{0 . 9 8}$	$\mathbf{1 7 . 4 8}$

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

Outline

Recap

Transformers

- BERT
= GPT-2
- Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
- Concerns

Summary

BERT is trained on a lot of text data:

- BooksCorpus (800M words)

Yay, for transfer learning!

- English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads, 110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads, 340M parameters!

GPT-2 (a Transformer variant)

GPT-2 is:

- trained on 40 GB of text data (8 M webpages)!
- 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but isn't open-source

Yay, for transfer learning!

Concerns

There are several issues to be aware of:

- It is very costly to train these large models. The companies who develop these models easily spend an entire month training one model, which uses incredible amounts of electricity.
- BERT alone is estimated to cost over \$1M for their final models
- $\$ 2.5 \mathrm{k}$ - $\$ 50 \mathrm{k}$ (110 million parameter model)
- \$10k - \$200k (340 million parameter model)
- $\$ 80 \mathrm{k}$ - $\$ 1.6 \mathrm{~m}$ (1.5 billion parameter model)

Concerns

It is very costly to train these large models.

Concerns

- Further, these very large language models have been shown to be biased (e.g., in terms of gender, race, sex, etc).
- Converting from one language to another often converts gender neutral pronouns to sexist stereotypes
- Using these powerful LMs comes with risks of producing such text and/or evaluating/predicting tasks based on these biased assumptions.
- People are researching how to improve this

Concerns

- As computer-generated text starts to become indistinguishable from authentic, human-generated text, consider the ethical impact of fraudulently claiming text to be from a particular author.
- If used maliciously, it can easily contribute toward the problem of Fake News

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Outline

Recap

Transformers

- BERT
= GPT-2
= Concerns

Summary

Summary

- There has been significant NLP progress in the past few years.
- Some of the complex models are incredible, but rely on having a lot of data and computational resources (e.g., Transformers)
- With all data science and machine learning, it's best to understand your data and task very well, clean your data, and start with a simple model (instead of jumping to the most complex model)
- NLP is incredibly fun, with infinite number of problems to work on
- I'll teach an NLP course next year (most likely Spring 2022).

Some definitions to remember

Models

- N-gram: count statistics; elementary sequence modelling
- FFNN: fixed-length context window; not ideal for sequential modelling
- (Vanilla) RNN: uses context; fair sequence modelling
- LSTM: a variant of an RNN that handles long-range context better
- Seq2Seq: maps 1 sequence to another ($n \rightarrow$ m sequences)
- Attention: determines which elements in sequence A pertain to sequence B
- Self-Attention: determines which elements to focus on in its own sequence A
- Transformers: learns excellent representation, via a seq2seq framework with self-attention and attention
- BERT: Transformer Encoders that learn great representations and can be fine-tuned on other tasks
- GPT-2: Transformer Decoders that generate realistic text and can be fine-tuned on other tasks

QUESTIONS?

BACKUP SLIDES

Transformer vs CNN vs RNN

