
Harvard IACS
CS109B
Pavlos Protopapas, Mark Glickman, and Chris Tanner

NLP Lectures: Part 4 of 4

Lecture 25: Transformers

2

Outline

Recap

Transformers

BERT

GPT-2

Concerns

Summary

3

Outline

Recap

Transformers

BERT

GPT-2

Concerns

Summary

First, we learned about language models (LMs)

4

𝑃(“What is the weather today?”)

𝑃(“What is the whether two day?”)

𝑃(“What is the whether too day?”)

Being able to correctly estimate the likelihood

of sentences is useful for many other tasks

First, we learned about language models (LMs)

5

𝑃(“What is the weather today?”)

𝑃(“What is the whether two day?”)

𝑃(“What is the whether too day?”)

Machine Translation

Being able to correctly estimate the likelihood

of sentences is useful for many other tasks

Text Generation

Speech Recognition

Text Classification

Auto-complete

Next, we learned about word embeddings

6

a single, global word embedding for
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are
distinct for every occurrence of a word,
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the test

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

she easily passed the

easily thepassedtest

Next, we learned about word embeddings

7

a single, global word embedding for
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are
distinct for every occurrence of a word,
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the test

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

she easily passed the

easily thepassedtest

• These models output embeddings we can

save to a file and use however we wish

• We then create a separate model that uses

these embeddings

• Kind of limiting

• Often inferior, as of 2015

Next, we learned about word embeddings

8

a single, global word embedding for
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are
distinct for every occurrence of a word,
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the test

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

she easily passed the

easily thepassedtest

• These models are trained on a specific
task (e.g., LM, text classification, etc)

• The hidden layer(s) contains the
“meaning” and are very useful

• We can extract those embeddings if we
wish, or grab the learned weights and
re-use for another task

• Dominating NLP from 2015 - present

Next, we learned about word embeddings

9

a single, global word embedding for
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are
distinct for every occurrence of a word,
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the

𝑊

𝑈

𝑉

easily

passedtest

• LSTMs are amazing but ultimately only

look at 1 word at a time, sequentially

• Sure, they maintain long-term memory,

but they are short-sighted in terms of

knowing what to hold onto and how to

weight each input

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐'&

𝑎!' 𝑎#' 𝑎$' 𝑎%'
%𝑦!
Le

Le

[ℎ#&; 𝑐#&]

%𝑦#
chien

[ℎ$&; 𝑐$&]

%𝑦$
brun

chien

[ℎ%&; 𝑐%&]

%𝑦%
a

brun

[ℎ'&; 𝑐'&]

%𝑦%
couru

a

DECODER RNN

Next, we learned about seq2seq and Attention

Next, we learned about seq2seq and Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐'&

𝑎!' 𝑎#' 𝑎$' 𝑎%'
%𝑦!
Le

Le

[ℎ#&; 𝑐#&]

%𝑦#
chien

[ℎ$&; 𝑐$&]

%𝑦$
brun

chien

[ℎ%&; 𝑐%&]

%𝑦%
a

brun

[ℎ'&; 𝑐'&]

%𝑦%
couru

a

DECODER RNN

• Revolutionary idea

• Decoder has access to all input
words and appropriately focuses on
select parts

• It’s conditioned on the current word
we’re decoding

12

Outline

Recap

Transformers

BERT

GPT-2

Concerns

Summary

13

Outline

BERT

GPT-2

Concerns

Summary

Recap

Transformers

Goals

• Each word in a sequence to be transformed into a rich, abstract

representation (context embedding) based on the weighted sums of

the other words in the same sequence (akin to deep CNN layers)

• Inspired by Attention, we want each word to determine, “how much

should I be influenced by each of my neighbors”

• Want positionality

Self-Attention

Input vectors

The brown dog ran

z1

Output
representation

z2 z3 z4

??????

x1 x2 x3 x4

Self-Attention’s goal is to create

great representations, zi, of the input

Self-Attention

The brown dog ran

z1

Output
representation

z1 will be based on a weighted

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create

great representations, zi, of the input

𝑎!! 𝑎#! 𝑎$! 𝑎%!

Self-Attention

The brown dog ran

z1

Output
representation

z1 will be based on a weighted

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create

great representations, zi, of the input

𝑎!! 𝑎#! 𝑎$! 𝑎%!

𝒂𝒊𝟏 is “just” a weight. More is

happening under the hood, but

it’s effectively weighting

versions of x1, x2, x3, x4

Self-Attention

The brown dog ran

z1

Output
representation

x1 x2 x3 x4

Input vectors

𝑎!! 𝑎#! 𝑎$! 𝑎%!

Under the hood, each xi has

3 small, associated vectors.

For example, x1 has:

• Query qi

• Key ki

• Value vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z1 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.87⋅v1 + 0.12⋅v2 + 0.01⋅v3 + 0⋅v4

z1

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z3 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!

z3

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z4 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z4

Let’s illustrate another example:

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

z2

Remember, we use the same 3 weight matrices

Wq, Wk, Wv as we did for computing z1.

This gives us q2, k2, v2

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head
z4z3z2z1

Takeaway:

Self-Attention is powerful; allows us to
create great, context-aware
representations

Self-Attention may seem strikingly
like Attention in seq2seq models

Attention

∗ ℎ!"ℎ!& a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
∗ ℎ%"ℎ!&

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

<s>

DECODER RNN

Attention

∗ ℎ!"ℎ!& a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
∗ ℎ%"ℎ!&

We multiply each encoder’s hidden

layer by its 𝑎#' attention weights to
create a context vector 𝑐'(

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

<s>

DECODER RNN

Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

∗ ℎ!"ℎ!&

<s>

DECODER RNN

a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
∗ ℎ%"ℎ!&

We multiply each encoder’s hidden

layer by its 𝑎#' attention weights to
create a context vector 𝑐'(

𝒄𝟏𝑫 = a1⋅h1
E + a2⋅ h2

E + a3⋅ h3
E + a4⋅ h4

E

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

qi ℎ01

ki ℎ02

Description

the probe

item being
compared

vi ℎ02
item being
weighted

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

ℎ01

ℎ02

Description

the probe

item being
compared

ℎ02
item being
weighted

All of these are like
surrogates/proxies/abstractions.

This provides flexibility and fewer
constraints.

More room for rich abstractions.

qi

ki

vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Let’s further pass each zi through a
FFNN

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1 Let’s further pass each zi through a
FFNN

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow.

+ x1 Residual Connection +LayerNorm

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow.

Each zi can be computed in parallel,
unlike LSTMs!

+ x1 Residual Connection +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Solution: append each input
word xi with a positional
encoding: sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection +LayerNorm

Words can relate in many ways, so it’s restrictive to
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of
query/key/value weight matrices wq, wk, wv

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Each Self-Attention Head

produces a zi vector.

We can, in parallel, use

multiple heads and

concat the zi‘s.

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

The brown dog ran
x1 x2 x3 x4

Transformer Encoder

Encoder #1

r2 r3 r4r1

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

Transformer Encoder

Encoder #1

r2 r3 r4r1

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

The original Transformer model was intended for
Machine Translation, so it had Decoders, too

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Transformer Encoders
produce contextualized
embeddings of each word

Encoder #1

Encoder #2

Encoder #8

Transformer Decoders
generate new sequences
of text

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query vector for a
Transformer Decoder’s
Attention Head (not Self-
Attention Head) is from
the output of the previous
decoder layer.

However, the key and
value vectors are from the
Transformer Encoders’
outputs.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention
Head) are all from the
output of the previous
decoder layer.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional
embeddings, too, just like
the Encoders.

Critically, each position is
only allowed to attend to
the previous indices. This
masked Attention
preserves it as being an
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Machine Translation results: state-of-the-art (at the time)

:

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to

Language C

• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not

being restricted to a particular form (e.g., CNNs)

71

Outline

BERT

GPT-2

Concerns

Summary

Recap

Transformers

72

Outline

BERT

GPT-2

Concerns

Summary

Recap

Transformers

Bidirectional Encoder Representations from Transformers

BERT

73

Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs, let’s look in both directions

74

Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders

75

Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations

76

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

77

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time.
Predict the if the second sentence of
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

78

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated
by a <SEP> token.

50% of the time, the 2nd sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the
first sentence in the corpus.

79

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs

by their WordPiece embeddings.

WordPiece is a sub-word tokenization

learns to merge and use characters

based on which pairs maximize the

likelihood of the training data if

added to the vocab.

80

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT

to fine-tune on a separate task

81

BERT
Most of the time, people use BERT

to fine-tune on a separate task

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

y

82

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT

to fine-tune on a separate task

83

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT

to fine-tune on a separate task

84

BERT

Picture: https://jalammar.github.io/illustrated-bert/

One could also extract the contextualized embeddings

85

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings

86

BERT
BERT yields state-of-the-art (SOTA) results on many tasks

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf
87

BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

Typically, one uses BERT’s awesome

embeddings to fine-tune toward a

different NLP task (this is called

Sequential Transfer Learning)

yTakeaway
BERT is incredible for learning
contextualized embeddings of words
and using transfer learning for other
tasks (e.g., classification).

Can’t generate new sentences though,
due to no decoders.

88

89

Outline

BERT

GPT-2

Concerns

Summary

Recap

Transformers

90

Outline

Summary

Recap

Transformers

BERT

GPT-2

Concerns

Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

91

GPT-2 (a Transformer variant)

• GPT-2 uses only Transformer Decoders (no Encoders) to generate

new sequences (from scratch or from a starting sequence)

• Oddly, there is no Attention (since there is no Transformer

Encoder to attend to). So, there is only Self-Attention.

• As it processes each word/token, it cleverly masks the “future”

words and conditions itself on the previous words

92

GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the “future”
words and conditions itself on the previous words

93

GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the “future”
words and conditions itself on the previous words

94

GPT-2 (a Transformer variant)

• Technically, it doesn’t use words as input but Byte Pair Encodings

(sub-words), similar to BERT’s WordPieces.

• Includes positional embeddings as part of the input, too.

• Easy to fine-tune on your own dataset (language)

95

GPT-2 Results

Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information. 96

GPT-2 Results

97

GPT-2 Results

98

GPT-2

• GPT-2 uses only Transformer Decoders (no Encoders) to generate

new sequences

• As it processes each word/token, it cleverly masks the “future”

words and conditions itself on the previous words

• Can generate text from scratch or from a starting sequence.

• Easy to fine-tune on your own dataset (language)

• GPT-3 is an even bigger version of GPT-2, but isn’t open-source

Takeaway:
GPT-2 is astounding for generating
realistic-looking new text

Can fine-tune toward other tasks, too.

99

100

Outline

Summary

Recap

Transformers

BERT

GPT-2

Concerns

101

Outline

Summary

Recap

Transformers

BERT

GPT-2

Concerns

BERT is trained on a lot of text data:

• BooksCorpus (800M words)

• English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads,

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads,

340M parameters!

BERT (a Transformer variant)

Yay, for transfer learning!

102

GPT-2 is:

• trained on 40GB of text data (8M webpages)!

• 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but

isn’t open-source

Yay, for transfer learning!

GPT-2 (a Transformer variant)

103

There are several issues to be aware of:

• It is very costly to train these large models. The companies who

develop these models easily spend an entire month training one

model, which uses incredible amounts of electricity.

• BERT alone is estimated to cost over $1M for their final models

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
104

It is very costly to train these large models.

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
105

• Further, these very large language models have been shown to

be biased (e.g., in terms of gender, race, sex, etc).

• Converting from one language to another often converts gender

neutral pronouns to sexist stereotypes

• Using these powerful LMs comes with risks of producing such

text and/or evaluating/predicting tasks based on these biased

assumptions.

• People are researching how to improve this

Concerns

106

• As computer-generated text starts to become indistinguishable

from authentic, human-generated text, consider the ethical

impact of fraudulently claiming text to be from a particular

author.

• If used maliciously, it can easily contribute toward the problem of

Fake News

Concerns

107

108

Outline

Summary

Recap

Transformers

BERT

GPT-2

Concerns

109

Outline

Summary

Recap

Transformers

BERT

GPT-2

Concerns

Summary

• There has been significant NLP progress in the past few years.

• Some of the complex models are incredible, but rely on having a

lot of data and computational resources (e.g., Transformers)

• With all data science and machine learning, it’s best to

understand your data and task very well, clean your data, and

start with a simple model (instead of jumping to the most

complex model)

110

Summary

• NLP is incredibly fun, with infinite number of problems to work on

• I’ll teach an NLP course next year (most likely Spring 2022).

111

Some definitions to remember

Models

• N-gram: count statistics; elementary sequence modelling

• FFNN: fixed-length context window; not ideal for sequential modelling

• (Vanilla) RNN: uses context; fair sequence modelling

• LSTM: a variant of an RNN that handles long-range context better

• Seq2Seq: maps 1 sequence to another (nàm sequences)

• Attention: determines which elements in sequence A pertain to sequence B

• Self-Attention: determines which elements to focus on in its own sequence A

• Transformers: learns excellent representation, via a seq2seq framework with self-attention
and attention
• BERT: Transformer Encoders that learn great representations and can be fine-tuned on

other tasks
• GPT-2: Transformer Decoders that generate realistic text and can be fine-tuned on other

tasks 112

QUESTIONS?

BACKUP SLIDES

Transformer vs CNN vs RNN

Source: https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html#subsec-cnn-rnn-self-attention

