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First, we learned about language models (LMs)

4

𝑃(“What is the weather today?”) 

𝑃(“What is the whether two day?”) 

𝑃(“What is the whether too day?”)

Being able to correctly estimate the likelihood 

of sentences is useful for many other tasks



First, we learned about language models (LMs)

5

𝑃(“What is the weather today?”) 

𝑃(“What is the whether two day?”) 

𝑃(“What is the whether too day?”)

Machine Translation

Being able to correctly estimate the likelihood 

of sentences is useful for many other tasks

Text Generation

Speech Recognition

Text Classification

Auto-complete



Next, we learned about word embeddings
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a single, global word embedding for 
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are 
distinct for every occurrence of a word, 
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Next, we learned about word embeddings

7

a single, global word embedding for 
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are 
distinct for every occurrence of a word, 
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the test

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

she easily passed the

easily thepassedtest

• These models output embeddings we can 

save to a file and use however we wish

• We then create a separate model that uses 

these embeddings

• Kind of limiting

• Often inferior, as of 2015



Next, we learned about word embeddings

8

a single, global word embedding for 
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are 
distinct for every occurrence of a word, 
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the test

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

she easily passed the

easily thepassedtest

• These models are trained on a specific 
task (e.g., LM, text classification, etc)

• The hidden layer(s) contains the
“meaning” and are very useful

• We can extract those embeddings if we 
wish, or grab the learned weights and 
re-use for another task

• Dominating NLP from 2015 - present



Next, we learned about word embeddings

9

a single, global word embedding for 
each word, independent of its context.

TYPE-BASED TOKEN-BASED

contextualized embeddings are 
distinct for every occurrence of a word, 
completely dependent on its context

word2vec (skip-gram) Bidirectional LSTM

passed

she easily the

𝑊

𝑈

𝑉

easily

passedtest

• LSTMs are amazing but ultimately only 

look at 1 word at a time, sequentially

• Sure, they maintain long-term memory, 

but they are short-sighted in terms of 

knowing what to hold onto and how to 

weight each input



Input layer

Hidden layer
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DECODER RNN

Next, we learned about seq2seq and Attention



Next, we learned about seq2seq and Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
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[ℎ#&; 𝑐#&]

%𝑦#
chien
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%𝑦%
a

brun

[ℎ'&; 𝑐'&]

%𝑦%
couru

a

DECODER RNN

• Revolutionary idea

• Decoder has access to all input 
words and appropriately focuses on 
select parts

• It’s conditioned on the current word 
we’re decoding
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Goals

• Each word in a sequence to be transformed into a rich, abstract 

representation (context embedding) based on the weighted sums of 

the other words in the same sequence (akin to deep CNN layers)

• Inspired by Attention, we want each word to determine, “how much 

should I be influenced by each of my neighbors”

• Want positionality



Self-Attention

Input vectors

The brown dog ran

z1

Output 
representation

z2 z3 z4

??????

x1 x2 x3 x4

Self-Attention’s goal is to create 

great representations, zi, of the input
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The brown dog ran

z1

Output 
representation

z1 will be based on a weighted 

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create 

great representations, zi, of the input
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Self-Attention

The brown dog ran

z1

Output 
representation

z1 will be based on a weighted 

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create 

great representations, zi, of the input

𝑎!! 𝑎#! 𝑎$! 𝑎%!

𝒂𝒊𝟏 is “just” a weight. More is 

happening under the hood, but 

it’s effectively weighting 

versions of x1, x2, x3, x4



Self-Attention

The brown dog ran

z1

Output 
representation

x1 x2 x3 x4

Input vectors

𝑎!! 𝑎#! 𝑎$! 𝑎%!

Under the hood, each xi has 

3 small, associated vectors. 

For example, x1 has:

• Query qi

• Key ki

• Value vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3 
small, associated vectors. For 
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight 
matrices Wq, Wk, Wv in total. These same 3 weight 
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly 
weighting our original xi word vectors, 
they directly weight our vi vectors.



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z1 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up! 

= 0.87⋅v1 + 0.12⋅v2 + 0.01⋅v3 + 0⋅v4

z1



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z2



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z3 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!

z3



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z4 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z4



Let’s illustrate another example:

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

z2

Remember, we use the same 3 weight matrices 

Wq, Wk, Wv as we did for computing z1.

This gives us q2, k2, v2



Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3 
small, associated vectors. For 
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight 
matrices Wq, Wk, Wv in total. These same 3 weight 
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘#) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly 
weighting our original xi word vectors, 
they directly weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up! 

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head
z4z3z2z1

Takeaway:

Self-Attention is powerful; allows us to 
create great, context-aware 
representations



Self-Attention may seem strikingly 
like Attention in seq2seq models



Attention

∗ ℎ!"ℎ!& a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
∗ ℎ%"ℎ!&

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

<s>

DECODER RNN
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∗ ℎ!"ℎ!& a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
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We multiply each encoder’s hidden 

layer by its 𝑎#' attention weights to 
create a context vector 𝑐'(

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

<s>

DECODER RNN



Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

∗ ℎ!"ℎ!&

<s>

DECODER RNN

a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ#"ℎ!&
∗ ℎ$"ℎ!&
∗ ℎ%"ℎ!&

We multiply each encoder’s hidden 

layer by its 𝑎#' attention weights to 
create a context vector 𝑐'(

𝒄𝟏𝑫 = a1⋅h1
E + a2⋅ h2

E + a3⋅ h3
E + a4⋅ h4

E



Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to 
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4



Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to 
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

qi ℎ01

ki ℎ02

Description 

the probe 

item being 
compared

vi ℎ02
item being 
weighted



Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"We multiply each word’s value

vector by its 𝑎#' attention weights to 
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

ℎ01

ℎ02

Description 

the probe 

item being 
compared

ℎ02
item being 
weighted

All of these are like 
surrogates/proxies/abstractions.

This provides flexibility and fewer 
constraints.

More room for rich abstractions.

qi

ki

vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Let’s further pass each zi through a 
FFNN



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1 Let’s further pass each zi through a 
FFNN



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a 
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize 
the network and allow for proper 
gradient flow.

+ x1 Residual Connection   +LayerNorm



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a 
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize 
the network and allow for proper 
gradient flow.

Each zi can be computed in parallel, 
unlike LSTMs!

+ x1 Residual Connection   +LayerNorm



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection   +LayerNorm



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of 
words”

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection   +LayerNorm



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of 
words”

Solution: append each input 
word xi with a positional 
encoding: sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection   +LayerNorm



Words can relate in many ways, so it’s restrictive to 
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of 
query/key/value weight matrices wq, wk, wv



The brown dog ran
x1 x2 x3 x4

Self-attention Head

Each Self-Attention Head 

produces a zi vector.

We can, in parallel, use 

multiple heads and 

concat the zi‘s.

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C



The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x1 Residual Connection   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi



The brown dog ran
x1 x2 x3 x4

Transformer Encoder

Encoder #1

r2 r3 r4r1

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi



The brown dog ran
x1 x2 x3 x4

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi

Why stop with just 1 
Transformer Encoder? 
We could stack several!

Transformer Encoder

Encoder #1

r2 r3 r4r1



The brown dog ran
x1 x2 x3 x4

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi

Why stop with just 1 
Transformer Encoder? 
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1



The original Transformer model was intended for 
Machine Translation, so it had Decoders, too



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Transformer Encoders 
produce contextualized 
embeddings of each word

Encoder #1

Encoder #2

Encoder #8

Transformer Decoders 
generate new sequences 
of text

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are 
identical to the Encoders, 
except they have an 
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention 
Head focuses on parts of 
the encoder’s 
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query vector for a 
Transformer Decoder’s 
Attention Head (not Self-
Attention Head) is from 
the output of the previous 
decoder layer.

However, the key and 
value vectors are from the 
Transformer Encoders’ 
outputs.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention 
Head (not Attention 
Head) are all from the 
output of the previous 
decoder layer.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional 
embeddings, too, just like 
the Encoders.

Critically, each position is 
only allowed to attend to 
the previous indices. This 
masked Attention 
preserves it as being an 
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT



Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs



Machine Translation results: state-of-the-art (at the time)

:



Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to 

Language C



• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not 

being restricted to a particular form (e.g., CNNs)
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Bidirectional Encoder Representations from Transformers

BERT
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Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs, let’s look in both directions
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Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders
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Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations
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<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted 
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03
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<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time. 
Predict the if the second sentence of 
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

78



BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated 
by a <SEP> token.

50% of the time, the 2nd sentence is a 
randomly selected sentence from the 
corpus.

50% of the time, it truly follows the 
first sentence in the corpus.
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BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs 

by their WordPiece embeddings.

WordPiece is a sub-word tokenization 

learns to merge and use characters 

based on which pairs maximize the 

likelihood of the training data if 

added to the vocab.
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT

to fine-tune on a separate task

81



BERT
Most of the time, people use BERT 

to fine-tune on a separate task

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

y
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT 

to fine-tune on a separate task
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

Most of the time, people use BERT 

to fine-tune on a separate task
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

One could also extract the contextualized embeddings
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings
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BERT
BERT yields state-of-the-art (SOTA) results on many tasks

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf
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BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

Typically, one uses BERT’s awesome 

embeddings to fine-tune toward a 

different NLP task (this is called 

Sequential Transfer Learning)

yTakeaway
BERT is incredible for learning 
contextualized embeddings of words 
and using transfer learning for other 
tasks (e.g., classification).

Can’t generate new sentences though, 
due to no decoders.
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Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

91



GPT-2 (a Transformer variant)

• GPT-2 uses only Transformer Decoders (no Encoders) to generate 

new sequences (from scratch or from a starting sequence)

• Oddly, there is no Attention (since there is no Transformer 

Encoder to attend to). So, there is only Self-Attention.

• As it processes each word/token, it cleverly masks the “future” 

words and conditions itself on the previous words
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GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the “future” 
words and conditions itself on the previous words
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GPT-2 (a Transformer variant)

As it processes each word/token, it cleverly masks the “future” 
words and conditions itself on the previous words
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GPT-2 (a Transformer variant)

• Technically, it doesn’t use words as input but Byte Pair Encodings

(sub-words), similar to BERT’s WordPieces.

• Includes positional embeddings as part of the input, too.

• Easy to fine-tune on your own dataset (language)
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GPT-2 Results

Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts 
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal 
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and 
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy 
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear 
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information. 96



GPT-2 Results
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GPT-2 Results
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GPT-2

• GPT-2 uses only Transformer Decoders (no Encoders) to generate 

new sequences

• As it processes each word/token, it cleverly masks the “future” 

words and conditions itself on the previous words

• Can generate text from scratch or from a starting sequence.

• Easy to fine-tune on your own dataset (language)

• GPT-3 is an even bigger version of GPT-2, but isn’t open-source

Takeaway:
GPT-2 is astounding for generating 
realistic-looking new text

Can fine-tune toward other tasks, too.
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BERT is trained on a lot of text data:

• BooksCorpus (800M words)

• English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads, 

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads, 

340M parameters!

BERT (a Transformer variant)

Yay, for transfer learning!
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GPT-2 is:

• trained on 40GB of text data (8M webpages)!

• 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but 

isn’t open-source

Yay, for transfer learning!

GPT-2 (a Transformer variant)
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There are several issues to be aware of:

• It is very costly to train these large models. The companies who

develop these models easily spend an entire month training one 

model, which uses incredible amounts of electricity.

• BERT alone is estimated to cost over $1M for their final models

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
104



It is very costly to train these large models.

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
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• Further, these very large language models have been shown to 

be biased (e.g., in terms of gender, race, sex, etc).

• Converting from one language to another often converts gender 

neutral pronouns to sexist stereotypes

• Using these powerful LMs comes with risks of producing such 

text and/or evaluating/predicting tasks based on these biased 

assumptions.

• People are researching how to improve this

Concerns
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• As computer-generated text starts to become indistinguishable 

from authentic, human-generated text, consider the ethical 

impact of fraudulently claiming text to be from a particular 

author.

• If used maliciously, it can easily contribute toward the problem of 

Fake News

Concerns
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Summary

• There has been significant NLP progress in the past few years.

• Some of the complex models are incredible, but rely on having a 

lot of data and computational resources (e.g., Transformers)

• With all data science and machine learning, it’s best to 

understand your data and task very well, clean your data, and 

start with a simple model (instead of jumping to the most 

complex model)
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Summary

• NLP is incredibly fun, with infinite number of problems to work on

• I’ll teach an NLP course next year (most likely Spring 2022).
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Some definitions to remember

Models

• N-gram: count statistics; elementary sequence modelling  

• FFNN: fixed-length context window; not ideal for sequential modelling

• (Vanilla) RNN: uses context; fair sequence modelling

• LSTM: a variant of an RNN that handles long-range context better

• Seq2Seq: maps 1 sequence to another (nàm sequences)

• Attention: determines which elements in sequence A pertain to sequence B

• Self-Attention: determines which elements to focus on in its own sequence A

• Transformers: learns excellent representation, via a seq2seq framework with self-attention 
and attention
• BERT: Transformer Encoders that learn great representations and can be fine-tuned on 

other tasks
• GPT-2: Transformer Decoders that generate realistic text and can be fine-tuned on other 

tasks 112



QUESTIONS?



BACKUP SLIDES



Transformer vs CNN vs RNN

Source: https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html#subsec-cnn-rnn-self-attention


