
Harvard IACS
CS109B
Pavlos Protopapas, Mark Glickman, and Chris Tanner

NLP Lectures: Part 3 of 4

Lecture 24: Attention



2

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



3

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



Previously, we learned about word embeddings

4

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

millions of books word2vec



Previously, we learned about word embeddings

5

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

millions of books word2vec word embeddings

aardvark

apple

before

zoo



6

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5



7

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5

the

food

was

delicious

amazing

+

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

4.8/5



8

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“Waste of money. Tasteless!” 2.4/5

waste

of

money

tasteless

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

2.4/5



9

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“Daaang. What?! Supa Lit” 4.9/5

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths and weaknesses of 
word embeddings (type-based)?



10

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths:

• Leverages tons of existing data

• Don’t need to depend on our 
data to create embeddings



11

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Issues:

• Out-of-vocabulary (OOV) words

• Not tailored to this dataset



Previously, we learned about word embeddings

12

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

LSTM

Input Layer

Hidden layer

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑥! 𝑥" 𝑥#

𝑉 𝑉

Output layer



13

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

Review #1

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

the food was

𝑊

𝑈

#𝑦#

𝑉

delicious

𝑊

𝑈

#𝑦#

𝑉

amazing

4.8

7192.



14

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

it was cold

𝑊

𝑈

#𝑦#

𝑉

and

𝑊

𝑈

#𝑦#

𝑉

tasteless

2.5

7192.

Review #2



15

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

7192.

Review #53,781



16

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

7192.

Review #53,781

Every token in the corpus has a 
contextualized embedding



17

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

7192.

Review #53,781

This is where the “meaning” is 
captured



18

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

Review #53,781

Strengths and weaknesses of 
contextualized embeddings

(aka token-based)?



19

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

Review #53,781

Strengths:

• Tailored to your particular corpus

• No out-of-vocabulary (OOV) words



20

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

Review #53,781

Weaknesses:

• May not have enough data to produce good results

• Have to train new model for each use case

• Can’t leverage a wealth of existed text data (millions of 
books)???



21

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

𝑊

𝑈

#𝑦!

𝑊

𝑈

𝑊

𝑈

#𝑦" #𝑦#

𝑉 𝑉

found a hair

𝑊

𝑈

#𝑦#

𝑉

in

𝑊

𝑈

#𝑦#

𝑉

the

1.0

Review #53,781

Weaknesses:

• May not have enough data to produce good results

• Have to train new model for each use case

• Can’t leverage a wealth of existed text data (millions of 
books)???

WRONG! We can leverage millions of books!



22

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

Language Modelling

Call me Ishmael. It

wasme Ishmael. It

(let’s input 1 million documents)



23

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

Language Modelling

An oak tree belongs

tooak tree. belongs

(let’s input 1 million documents)



24

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

An oak tree belongs

tooak tree. belongs

The contextualized embeddings for 1 million docs aren’t 
useful to us for a new task (e.g., predicting Yelp reviews),
but the learned weights could be!

Learn a rich, robust 𝑊 𝑉and



25

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

An oak tree belongs

tooak tree. belongs

, we can possibly𝑊 𝑉andUsing these “pre-trained”

increase our performance on other tasks (e.g., Yelp reviews), 
since they’re very experienced with producing/capturing 
“meaning”



26

• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be 
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

RECAP



27

• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be 
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

• What if we wish to have M outputs?

RECAP



28

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!



29

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



30

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to 

Language B, it is clearly sub-optimal to translate word by word (like our 

current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to 

work with (a sequence of length N may emit a sequences of length M)

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

ENCODER RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!&

<s>

DECODER RNN

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!&

<s>

DECODER RNN

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le chien



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien

DECODER RNN

ℎ#&

Le

Le chien

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien

DECODER RNN

ℎ#&

Le

Le chien brun

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun

DECODER RNN

ℎ#& ℎ%&

Le

Le chien brun

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun

DECODER RNN

ℎ#& ℎ%&

Le

Le chien brun a

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

ℎ#& ℎ%& ℎ'&

Le

Le chien brun a

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

ℎ#& ℎ%& ℎ'&

Le

Le chien brun a couru

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

Le chien brun a couru

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

Le chien brun a couru <s>

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

#𝑦! #𝑦" #𝑦# #𝑦% #𝑦' #𝑦(



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

#𝑦! #𝑦" #𝑦# #𝑦% #𝑦' #𝑦(

Training occurs like RNNs typically do; the 
loss (from the decoder outputs) is calculated, 
and we update weights all the way to the 
beginning (encoder)



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

#𝑦! #𝑦" #𝑦# #𝑦% #𝑦' #𝑦(

Testing generates decoder outputs one word 
at a time, until we generate a <S> token.

Each decoder’s !𝒚𝒊 becomes the input 𝒙𝒊"𝟏



Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

#𝑦! #𝑦" #𝑦# #𝑦% #𝑦' #𝑦(



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ!$ ℎ"$ ℎ#$ ℎ%$

The brown dog ran

ENCODER RNN

ℎ!& ℎ"&

<s> chien brun a

DECODER RNN

couru

ℎ#& ℎ%& ℎ'&

Le

ℎ(&

#𝑦! #𝑦" #𝑦# #𝑦% #𝑦' #𝑦(

It’s crazy that the entire “meaning” of the 1st sequence 
is expected to be packed into this one embedding, 
and that the encoder then never interacts w/ the 
decoder again. Hands free.



Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to 
a distribution of all of the encoder’s hidden states?



Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to 
a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t 
just consume the original sentence then regurgitate in a new 
language; we continuously look back at the original while 
focusing on different parts.



54

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



55

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

.4? .3? .1? .2?
ℎ!$ ℎ"$ ℎ#$ ℎ%$



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

ℎ!&

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

Separate FFNN

ℎ!$ ℎ!&

𝑒! 1.5

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

Separate FFNN

ℎ"$ ℎ!&

𝑒" 0.9

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

ℎ#$ ℎ!&

𝑒# 0.2

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

ℎ%$ ℎ!&

𝑒% −0.5

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒# 0.2
𝑒" 0.9
𝑒! 1.5

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒# 0.2
𝑒" 0.9
𝑒! 1.5

Attention (softmax’d)

𝑎)! =
exp(𝑒))

∑)* exp(𝑒!)<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒# 0.2
𝑒" 0.9
𝑒! 1.5

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$ ℎ!&

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

𝑎!! 𝑎"! 𝑎#! 𝑎%!

We multiply each encoder’s hidden layer 

by its 𝑎'$ attention weights to create a 
context vector 𝑐$(

𝑐!&

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$

<s>

[ℎ!&; 𝑐!&]

𝑐!&

𝑎!! 𝑎"! 𝑎#! 𝑎%!

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

#𝑦!
Le

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$

<s>

[ℎ!&; 𝑐!&]

𝑐"&

𝑎!" 𝑎"" 𝑎#" 𝑎%"

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

#𝑦!
Le

Le

[ℎ"&; 𝑐"&]

#𝑦"
chien

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$

<s>

[ℎ!&; 𝑐!&]

𝑐#&

𝑎!# 𝑎"# 𝑎## 𝑎%#

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

#𝑦!
Le

Le

[ℎ"&; 𝑐"&]

#𝑦"
chien

[ℎ#&; 𝑐#&]

#𝑦#
brun

chien

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$

<s>

[ℎ!&; 𝑐!&]

𝑐%&

𝑎!% 𝑎"% 𝑎#% 𝑎%%

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

#𝑦!
Le

Le

[ℎ"&; 𝑐"&]

#𝑦"
chien

[ℎ#&; 𝑐#&]

#𝑦#
brun

chien

[ℎ%&; 𝑐%&]

#𝑦%
a

brun

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!$ ℎ"$ ℎ#$ ℎ%$

<s>

[ℎ!&; 𝑐!&]

𝑐'&

𝑎!' 𝑎"' 𝑎#' 𝑎%'

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

#𝑦!
Le

Le

[ℎ"&; 𝑐"&]

#𝑦"
chien

[ℎ#&; 𝑐#&]

#𝑦#
brun

chien

[ℎ%&; 𝑐%&]

#𝑦%
a

brun

[ℎ'&; 𝑐'&]

#𝑦%
couru

a

DECODER RNN



71Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide



72Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide

The Attention mechanism that produces 

scores doesn’t have to be a FFNN like I 

illustrated. It can be any function you wish.



73Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Popular Attention Scoring functions:



seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each encoding word 

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf


seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each encoding word 

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

Takeaway:

Having a separate encoder and decoder
allows for n à m length predictions.

Attention is powerful; allows us to 
conditionally weight our focus

https://arxiv.org/pdf/1409.0473.pdf


76

• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google 
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s 
hidden states

• But, LSTMs require us to iteratively scan each word and wait until we’re 
at the end before we can do anything

SUMMARY



77

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



78

Outline

How to use embeddings

seq2seq

seq2seq + Attention

Transformers (preview)



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

FFNN

r2

FFNN

r3

FFNN

r4

Transformer Encoder uses 
attention on itself (self-attention) 
to create very rich embeddings 
which can be used for any task.

FFNN

r1

Encoder

Transformer Encoder

BERT is a Bidirectional
Transformer Encoder. You can 
attach a final layer that performs 
whatever task you’re interested in 
(e.g., Yelp reviews).

Its results are unbelievably good.



BERT is trained on a lot of text data:

• BooksCorpus (800M words)

• English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads, 

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads, 

340M parameters!

BERT (a Transformer variant)

Yay, for transfer learning!



BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

Typically, one uses BERT’s awesome 

embeddings to fine-tune toward a 

different NLP task (this is called 

Sequential Transfer Learning)

yTakeaway:
BERT is incredible for learning context-
aware representations of words and 
using transfer learning for other tasks 
(e.g., classification).

Can’t generate new sentences though, 
due to no decoders.



Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!
Generative Pre-trained Transformer 2



GPT-2 (a Transformer variant)

• GPT-2 uses only Transformer Decoders (no Encoders) to generate 

new sequences

• As it processes each word/token, it cleverly masks the “future” 

words and conditions itself on the previous words

• Can generate text from scratch or from a starting sequence.

• Easy to fine-tune on your own dataset (language)



GPT-2

• GPT-2 uses only Transformer Decoders (no Encoders) to generate 

new sequences

• As it processes each word/token, it cleverly masks the “future” 

words and conditions itself on the previous words

• Can generate text from scratch or from a starting sequence.

• Easy to fine-tune on your own dataset (language)

• GPT-3 is an even bigger version of GPT-2, but isn’t open-source

Takeaway:
GPT-2 is astounding for generating 
realistic-looking new text

Can fine-tune toward other tasks, too.



GPT-2 is:

• trained on 40GB of text data (8M webpages)!

• 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but 

isn’t open-source

Yay, for transfer learning!

GPT-2 (a Transformer variant)



QUESTIONS?


