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Previously, we learned about word embeddings
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Strengths and weaknesses of
contextualized embeddings

(aka token-based)?

Review #53,781




Strengths:

» Tailored to your particular corpus

* No out-of-vocabulary (OOV) words




Weaknesses:

« May not have enough data to produce good results

 Have to train new model for each use case

« Can't leverage a wealth of existed text data (millions of
books)???




Weaknesses:
« May not have enough data to produce good results
« Have to train new model for each use case

WRONG! We can leverage millions of books!

contextualized embeddings (token-based)
approaches:

* Predictive models (e.g., BiLSTMs, GPT-2, BERT)
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The contextualized embeddings for 1 million docs aren’t

useful to us for a new task (e.g., predicting Yelp reviews),
but the learned weights could be!

Learn a rich, robust W and V
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Using these “pre-trained” W and V, we can possibly

increase our performance on other tasks (e.g., Yelp reviews),
since they're very experienced with producing/capturing
“meaning”
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» Language Modelling may help us for other tasks

* LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

* Given a sequence of N words, we can produce 1 output

* Given a sequence of N words, we can produce N outputs




» Language Modelling may help us for other tasks

* LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

* Given a sequence of N words, we can produce 1 output

* Given a sequence of N words, we can produce N outputs

» What if we wish to have M outputs?




We want to produce a variable-length output

(e.g., n = m predictions)

nank you for visiting! Kujeme za navstevul
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Sequence-to-Sequence (seg2seq)
|

 If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly sub-optimal to translate word by word (like our

current models are suited to do).

 Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

* Seg2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)
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Sequence-to-Sequence (seg2seq)

Training occurs like RNNs typically do; the
loss (from the decoder outputs) is calculated,
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Sequence-to-Sequence (seg2seq)
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Testing generates decoder outputs one word
at a time, until we generate a <S> token.
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Sequence-to-Sequence (seg2seq)
|

See any issues with this traditional seq2seq paradigm?
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Sequence-to-Sequence (seg2seq)

It's crazy that the entire “meaning” of the 15t sequence
is expected to be packed into this one embedding,
and that the encoder then never interacts w/ the
decoder again. Hands free.
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Sequence-to-Sequence (seg2seq)
|

Instead, what if the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?




Sequence-to-Sequence (seg2seq)
|

Instead, what if the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don't

just consume the original sentence then regurgitate in a new

language; we continuously look back at the original while

focusing on different parts.
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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For convenience, here's the Attention calculation summarized on 1 slide

m
Attention output c(t) = aft)sl I a,(,,t)s2 e b4 ofo a,(,t,)s,,, = Z G,E.t)ﬁ'k
! ° -
| “source context for decoder step t” -
(weighted
sum)
®© _ exp(score(hy, s,.)) k=1 m
Tk ym . exp(score(hy, s;))’ B

“attention weight for source token k at decoder step t”

Attention weights (

(softmax)

Attention scores S(jore(ht,_s‘,\.),k =1..m
!
“How relevant is source token k for target step t?”

Attention input S1 520w S h,
all encoder states one decoder state

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html




For convenience, here's the Attention calculation summarized on 1 slide

The Attention mechanism that produces

scores doesn’t have to be a FFNN like |

illustrated. It can be any function you wish.

(hy,s:),k=1..m

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



score(hg, si)
O

f
A“e”“°“] Popular Attention Scoring functions:

function

Dot-product Bilinear Multi-Layer Perceptron

h! I
t ht WZT
e x [ 5, =D x | W || X || s x tanh || W, | X [2]

—

score(hy,s) = ht s, score(hg, si) = hl Ws, score(hy, si) = wa - tanh(W, [k, s.])

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



seg2seq + Attention

Attention:

* greatly improves segZ2seq results

* allows us to visualize the
contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015
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https://arxiv.org/pdf/1409.0473.pdf

Takeaway:

Having a separate encoder and decoder
allows for n = m length predictions.

Attention is powerful; allows us to
conditionally weight our focus



https://arxiv.org/pdf/1409.0473.pdf

SUMMARY

* LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

* segZseq+Attention was an even more revolutionary idea (Google
Translate used it)

» Attention allows us to place appropriate weight to the encoder’s
hidden states

* But, LSTMs require us to iteratively scan each word and wait until we're
at the end before we can do anything
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How to use embeddings
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seg2seq + Attention

Transformers (preview)
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How to use embeddings
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Transformer Encoder Transformer Encoder uses
attention on itself (self-attention)

to create very rich embeddings
which can be used for any task.

-
—_—

00000

BERT is a Bidirectional
: : Transformer Encoder. You can
attach a final layer that performs

.... ;

whatever task you're interested in
(e.g., Yelp reviews).

Its results are unbelievably good.

X2




BERT (a Transformer variant)
.

BERT is trained on a lot of text data:
* BooksCorpus (800M words)
 English Wikipedia (2.5B words)

Yay, for transfer learning!

BERT-Base model has 12 transformer blocks, 12 attention heads,

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads,

340M parameters!




\/\/\/\/\

Takeaway:

BERT is incredible for learning context-
aware representations of words and
using transfer learning for other tasks
(e.g., classification).

Can’t generate new sentences though,
due to no decoders.




Transformer
e

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2




GPT-2 (a Transformer variant)

GPT-2 uses only Transformer Decoders (no Encoders) to generate

new sequences

As it processes each word/token, it cleverly masks the “future”

words and conditions itself on the previous words
Can generate text from scratch or from a starting sequence.

Easy to fine-tune on your own dataset (language)




Takeaway:

GPT-2 is astounding for generating
realistic-looking new text

Can fine-tune toward other tasks, too.




GPT-2 (a Transformer variant)

GPT-2 is:
* trained on 40GB of text data (8M webpages)!

* 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but

isn't open-source

Yay, for transfer learning!




QUESTIONS?



