Lecture 24: Attention

NLP Lectures: Part 3 of 4

Harvard IACS

CS109B

Pavlos Protopapas, Mark Glickman, and Chris Tanner
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Previously, we learned about **word embeddings**

word embeddings *(type-based)*

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)
Previously, we learned about **word embeddings**

word embeddings (**type-based**)

approaches:
- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)
word embeddings (type-based)

approaches:
- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5 ⭐️yelp
“The food was delicious. Amazing!” → 4.8/5

The food was delicious amazing

= average embedding

Feed-forward Neural Net

average embedding

word embeddings (type-based)

approaches:
 • count-based/DSMs (e.g., SVD, LSA)
 • Predictive models (e.g., word2vec, GloVe)
word embeddings (type-based)
approaches:
- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)
“Daaang. What?! Supa Lit” ➔ 4.9/5 ⭐️

Strengths and weaknesses of word embeddings (type-based)?

Word embeddings (type-based)

approaches:

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)
word embeddings (type-based)

approaches:
- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Strengths:
- Leverages tons of existing data
- Don’t need to depend on our data to create embeddings
word embeddings (type-based)

approaches:
- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Issues:
- Out-of-vocabulary (OOV) words
- Not tailored to this dataset
Previously, we learned about **word embeddings**

contextualized embeddings (token-based)

- Predictive models (e.g., BiLSTMs, GPT-2, BERT)
contextualized embeddings (token-based) approaches:
- Predictive models (e.g., BiLSTMs, GPT-2, BERT)
contextualized embeddings (token-based) approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

Review #2

it was cold and tasteless
contextualized embeddings (token-based) approaches:
 • Predictive models (e.g., BiLSTMs, GPT-2, BERT)
contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

Every token in the corpus has a contextualized embedding

Review #53,781

found a hair in the
contextualized embeddings (token-based) approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)

This is where the "meaning" is captured

Review #53,781

found a hair in the
Strengths and weaknesses of contextualized embeddings (aka token-based)?

Review #53,781

contextualized embeddings (token-based) approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)
Strengths:

• Tailored to your particular corpus

• No out-of-vocabulary (OOV) words

contextualized embeddings (token-based) approaches:

• Predictive models (e.g., BiLSTMs, GPT-2, BERT)
Weaknesses:

• May not have enough data to produce good results
• Have to train new model for each use case
• Can’t leverage a wealth of existed text data (millions of books)???

contextualized embeddings (token-based) approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)
Weaknesses:

• May not have enough data to produce good results
• Have to train new model for each use case
• Can’t leverage a wealth of existed text data (millions of books)???

WRONG! We can leverage millions of books!

contextualized embeddings (token-based)
approaches:
• Predictive models (e.g., BiLSTMs, GPT-2, BERT)
Language Modelling
(let’s input 1 million documents)
Language Modelling
(let’s input 1 million documents)

An oak tree belongs to oak tree.

(let’s input 1 million documents)
The contextualized embeddings for 1 million docs aren’t useful to us for a new task (e.g., predicting Yelp reviews), but the learned weights could be!

Learn a rich, robust W and V
Using these “pre-trained” W and V, we can possibly increase our performance on other tasks (e.g., Yelp reviews), since they’re very experienced with producing/capturing “meaning”
• **Language Modelling** may help us for other tasks

• **LSTMs** do a great job of capturing “meaning”, which can be used for almost every task

 • Given a sequence of N words, we can produce 1 output

 • Given a sequence of N words, we can produce N outputs
RECAP

• **Language Modelling** may help us for other tasks

• **LSTMs** do a great job of capturing “meaning”, which can be used for almost every task

 • Given a sequence of \(N \) words, we can produce 1 output

 • Given a sequence of \(N \) words, we can produce \(N \) outputs

 • What if we wish to have \(M \) outputs?
We want to produce a **variable-length** output (e.g., $n \to m$ predictions)

Thank you for visiting!
Děkujeme za návštěvu!
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to Language B, it is clearly sub-optimal to translate word by word (like our current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to work with (a sequence of length N may emit a sequences of length M).

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder
Sequence-to-Sequence (seq2seq)

The brown dog ran

ENCODER RNN
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

The brown dog ran
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

ENCODER RNN

DECODER RNN
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

The brown dog ran

ENCODER RNN

DECODER RNN
The final hidden state of the encoder RNN is the initial state of the decoder RNN.

ENCODER RNN

DECODER RNN

The brown dog ran
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

ENCODER RNN

DECODER RNN

Input layer

Hidden layer

The brown dog ran

Le chien

h_1^E h_2^E h_3^E h_4^E

h_1^D h_2^D h_3^D
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

ENCODER RNN

DECODER RNN

The brown dog ran

Le chien brun
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN.

ENCODER RNN

DECODER RNN
The final hidden state of the encoder RNN is the initial state of the decoder RNN.
Sequence-to-Sequence (seq2seq)

The brown dog ran

ENCODER RNN

DECODER RNN
Sequence-to-Sequence (seq2seq)

Training occurs like RNNs typically do; the loss (from the decoder outputs) is calculated, and we update weights all the way to the beginning (encoder).

Input layer: The, brown, dog, ran

Hidden layer: h_1, h_2, h_3, h_4

ENCODER RNN:
- $h_1 \\ h_2 \\ h_3 \\ h_4$

DECODER RNN:
- $\hat{y}_1, \hat{y}_2, \hat{y}_3, \hat{y}_4, \hat{y}_5, \hat{y}_6$
- $\hat{h}_1^D, \hat{h}_2^D, \hat{h}_3^D, \hat{h}_4^D, \hat{h}_5^D, \hat{h}_6^D$

The brown dog ran
The brown dog ran.

Testing generates decoder outputs one word at a time, until we generate a <S> token.

Each decoder’s \hat{y}_i becomes the input x_{i+1}.
See any issues with this traditional seq2seq paradigm?
Sequence-to-Sequence (seq2seq)

The brown dog ran

ENCODER RNN

DECODER RNN
Sequence-to-Sequence (seq2seq)

It’s crazy that the entire “meaning” of the 1st sequence is expected to be packed into this one embedding, and that the encoder then never interacts w/ the decoder again. Hands free.
Instead, what if the decoder, at each step, pays attention to a distribution of all of the encoder’s hidden states?
Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays *attention* to a *distribution* of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t just consume the original sentence then regurgitate in a new language; we *continuously look back at the original* while focusing on *different parts.*
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!
Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!
Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!

![Diagram showing encoder and decoder RNNs]
Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!

Attention (raw scores)

\[
\begin{align*}
& e_1 = 1.5 \\
& e_2 = 0.9 \\
& e_3 = 0.2 \\
& e_4 = -0.5
\end{align*}
\]
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!

Attention (raw scores)

\[
\begin{align*}
 e_1 &= 1.5 \\
 e_2 &= 0.9 \\
 e_3 &= 0.2 \\
 e_4 &= -0.5
\end{align*}
\]

Attention (softmax’ed)

\[
a^1_i = \frac{\exp(e_i)}{\sum_i^N \exp(e_1)}
\]
seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) and all of the encoder’s hidden layers!

Attention (raw scores)

\[
\begin{align*}
 e_1 &= 1.5 \\
 e_2 &= 0.9 \\
 e_3 &= 0.2 \\
 e_4 &= -0.5
\end{align*}
\]

Attention (softmax’d)

\[
\begin{align*}
 a_1^1 &= 0.51 \\
 a_2^1 &= 0.28 \\
 a_3^1 &= 0.14 \\
 a_3^1 &= 0.07
\end{align*}
\]
seq2seq + Attention

We multiply each encoder’s hidden layer by its \(a_i \) attention weights to create a context vector \(c_i^D \).

\[
\begin{align*}
 a_1 &= 0.51 \\
 a_2 &= 0.28 \\
 a_3 &= 0.14 \\
 a_4 &= 0.07
\end{align*}
\]
seq2seq + Attention

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.
seq2seq + Attention

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.
seq2seq + Attention

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.
seq2seq + Attention

REMEmBER: each attention weight a^D_i is based on the decoder’s current hidden state, too.

The brown dog ran

ENCODER RNN

DECODER RNN

<\text{s}> Le chien brun a

Le chien brun a
seq2seq + Attention

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.
For convenience, here’s the Attention calculation summarized on 1 slide

Attention output: \[c(t) = a_1(t)s_1 + a_2(t)s_2 + \cdots + a_m(t)s_m = \sum_{k=1}^{m} a_k(t)s_k \]

(source context for decoder step \(t \))

Attention weights: \[a_k(t) = \frac{\exp(\text{score}(h_t, s_k))}{\sum_{i=1}^{m} \exp(\text{score}(h_t, s_i))}, k = 1..m \]

(attention weight for source token \(k \) at decoder step \(t \))

Attention scores: \[\text{score}(h_t, s_k), k = 1..m \]

("How relevant is source token \(k \) for target step \(t \)?")

Attention input: \[s_1, s_2, \ldots, s_m, h_t \]

(all encoder states, one decoder state)
For convenience, here’s the Attention calculation summarized on 1 slide

The **Attention mechanism** that produces scores doesn’t have to be a FFNN like I illustrated. It can be any function you wish.
Popular Attention Scoring functions:

- **Dot-product**:

 \[\text{score}(h_t, s_k) = h_t^T s_k \]

- **Bilinear**:

 \[\text{score}(h_t, s_k) = h_t^T W s_k \]

- **Multi-Layer Perceptron**:

 \[\text{score}(h_t, s_k) = w_2^T \cdot \tanh(W_1 [h_t, s_k]) \]
seq2seq + Attention

Attention:

• greatly improves seq2seq results
• allows us to visualize the contribution each encoding word gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015
Takeaway:

Having a separate \textit{encoder} and \textit{decoder} allows for $n \rightarrow m$ length predictions.

\textbf{Attention} is powerful; allows us to conditionally weight our focus.
SUMMARY

• **LSTMs** yielded state-of-the-art results on most NLP tasks (2014-2018)

• **seq2seq+Attention** was an even more revolutionary idea (Google Translate used it)

• **Attention** allows us to place appropriate weight to the encoder’s hidden states

• But, **LSTMs** require us to iteratively scan each word and wait until we’re at the end before we can do anything
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)
Transformer Encoder uses attention on itself (self-attention) to create very rich embeddings which can be used for any task.

BERT is a Bidirectional Transformer Encoder. You can attach a final layer that performs whatever task you’re interested in (e.g., Yelp reviews).

Its results are unbelievably good.
BERT (a Transformer variant)

BERT is trained on a lot of text data:
• BooksCorpus (800M words)
• English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads, 110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads, 340M parameters!

Yay, for transfer learning!
Takeaway:

BERT is incredible for learning context-aware representations of words and using transfer learning for other tasks (e.g., classification).

Can’t generate new sentences though, due to **no decoders**.
What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2
GPT-2 (a Transformer variant)

- GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences.
- As it processes each word/token, it cleverly masks the “future” words and conditions itself on the previous words.
- Can generate text from scratch or from a starting sequence.
- Easy to fine-tune on your own dataset (language).
GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences.

As it processes each word/token, it cleverly masks the "future" words and conditions itself on the previous words.

Can generate text from scratch or from a starting sequence.

Easy to fine-tune on your own dataset (language).

GPT-3 is an even bigger version of GPT-2, but isn’t open-source.

Takeaway:

GPT-2 is astounding for generating realistic-looking new text.

Can fine-tune toward other tasks, too.
GPT-2 (a Transformer variant)

GPT-2 is:

- trained on 40GB of text data (8M webpages)!
- **1.5B parameters**

GPT-3 is an even bigger version (175B parameters) of GPT-2, but isn’t open-source

Yay, for transfer learning!
QUESTIONS?