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Previously, we learned about a specific task

Language Modelling

4

For a fixed 𝜶 and 𝜷: 𝜃 w,w" =
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|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)
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Previously, we learned about a specific task

Language Modelling

5

Useful for many other 

tasks:
Morphology
Word Segmentation
Part-of-Speech Tagging
Parsing

Constituency
Dependency

Syntax
Sentiment Analysis
Topic Modelling
Named Entity Recognition (NER)
Relation Extraction
Word Sense Disambiguation
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
Machine Translation
Entailment
Question Answering
Language Modelling

Semantics

Discourse
Summarization
Coreference Resolution



Previously, we learned about a specific task

Language Modelling
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While that’s true, the count-based n-gram LMs can 

only help us consider/evaluate candidate sequences

“What is the whether too day?”

Anqi was late for ___

El perro marrón à The brown dog



Previously, we learned about a specific task

Language Modelling

7

We need something in NLP that allows us to capture:

• finer-granularity of information

• richer, robust language models (e.g., semantics)



Previously, we learned about a specific task

Language Modelling

8

“Word Representations and better LMs!

To the rescue!”

We need something in NLP that allows us to capture:

• finer-granularity of information

• richer, robust language models (e.g., semantics)
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Language

Language is special and complex

11

• Distinctly human ability

• Paramount to human evolution

• Influenced by many social constructs

• Incredibly nuanced

• Language forms capture multi-dimensions

• Language evolves over time

Slide adapted from or inspired by Chris Manning and Richard Socher



Language

Language is constructed to convey speaker’s/writer’s meaning

12

• More than an environmental, survival signal

• Encodes complex information yet simple enough for babies to quickly 

learn

A discrete, symbolic communication system

• Lexicographic representation (i.e., characters that comprise a word) 
embody real-world constructs

• Nuanced (e.g., ”Sure, whatever”, “Yes”, “Yesss”, “Yes?”, “Yes!”, Niiice)

Slide adapted from or inspired by Chris Manning and Richard Socher



Language

13

Language is special and complex



Language

14

Language symbols are encoded as continuous communication signals,

and are invariant across different encodings (same underlying concept, 
different surface forms)

Slide adapted from or inspired by Chris Manning and Richard Socher
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Multiple levels* to a single word

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

Slide adapted from or inspired by Alan Black and David Mortensen

*



16

Multiple levels* to a single word

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• The mappings between 
levels are extremely 

complex and non-formulaic

• Sound word representations
are situation-dependent

Slide adapted from or inspired by Alan Black and David Mortensen

*
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Multiple levels* to a single word

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Inputs (words) are noisy

• Capture theoretical concepts; 

words are ~latent variables

• Ambiguity abound. Many 
interpretations at each level

Slide adapted from or inspired by Alan Black and David Mortensen

*
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Humans are very good at 
resolving linguistic ambiguity 

(e.g., coreference resolution)

• Computer models aren’t

Slide adapted from or inspired by Alan Black and David Mortensen
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Multiple levels* to a single word

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Slide adapted from or inspired by Alan Black and David Mortensen
Slide adapted from or inspired by Alan Black and David Mortensen

*
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

The study of words’ meaningful sub-
components

(e.g., running, deactivate, Obamacare, Cassandra’s)
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Lexical analysis; normalize and disambiguate 
words

(e.g., bank, mean, hand it to you, make up, take out)
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Transform a sequence of characters into a 
hierarchical/compositional structure

(e.g., students hate annoying professors; Mary saw the 
old man with a telescope)
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Determines meaning

(e.g., NLU / intent recognition; natural language 
inference; summarization; question-answering)
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Understands how context affects meaning

(i.e., not only concerns how meaning depends on 
structural and linguistic knowledge (grammar) of the 

speaker, but on the context of the utterance, too)
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Multiple levels* to a single word

*

speech
text

phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

• Many ways to express the same 
meaning

• Infinite meanings can be

expressed

• Languages widely differ in these 
complex interactions

Understands structures and effects of 
interweaving dialog

(i.e., Jhene tried to put the trophy in the suitcase but it
was too big. She finally got it to close.)
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Language is complex.

Humans operate on language.

Computers do not.

We need computers to understand the meaning of 
language, and that starts with how we represent language.
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Meaning

What does meaning even mean?

29

Def1 The idea that is represented by a word, phrase, etc

Def2 The idea that is expressed

Def3 The idea that a person aims to express

Slide adapted from or inspired by Chris Manning and Richard Socher



Meaning

Our goal:

Create a fixed representation (an embedding, aka vector) 
that somehow approximates “meaning”, insofar as being 
useful for downstream language task(s).

30

(i.e., NLP isn’t too picky in terms of which type of meaning; just want it to help us do stuff)



Meaning

Two distinct forms of representation that NLP is interested in:

31

Type-based:

a single, global
embedding for each 
word, independent of 

its context.

Token-based

(aka contextualized word 
representations):
a distinct embedding for 

every occurrence of every 
word, completely dependent 
on its context.



32

Outline

What

How

Modern Breakthroughs

Recap where we are

Representing Language



33

Outline

Recap where we are

Representing Language

What

How

Modern Breakthroughs



How

Natural idea:

34

Use expressive, external resources that define real-world 

relationships and concepts

(e.g., WordNet, BabelNet, PropBank, VerbNet, FrameNet, ConceptNet)

Slide adapted from or inspired by Richard Socher



How

Natural idea:

35

Use expressive, external resources that define real-world 

relationships and concepts

(e.g., WordNet, BabelNet, PropBank, VerbNet, FrameNet, ConceptNet)

Slide adapted from or inspired by Richard Socher



WordNet

A large lexical database with English nouns, verbs, adjectives, and 
adverbs grouped into over 100,000 sets of cognitive synonyms 
(synsets) – each expressing a different concept.

36

Most frequent relation: super-
subordinate relation (”is-a” relations).

{furniture, piece_of_furniture}

Fine-grained relations:
{bed, bunkbed}

Part-whole relations:
{chair, backrest}

Synonyms:
{adept, expert, good, practiced, 
proficient}



ConceptNet

A multilingual semantic knowledge graph, designed to help 
computers understand the meaning of words that people use.

37

• Started in 1999. Pretty large now.

• Finally becoming useful (e.g, commonsense reasoning)

• Has synonyms, ways-of, related terms, derived terms



ConceptNet

38

Entry for “teach”



How

Problems  with these external resources:

39

• Great resources but ultimately finite

• Can’t perfectly capture nuance (especially context-sensitive)
(e.g., ‘proficient’ is grouped with ‘good’, which isn’t always true)

• Will always have many out-of-vocabulary terms (OOV)
(e.g., COVID19, Brexit, bet, wicked, stankface)

• Subjective

• Laborious to annotate

• Type-based word similarities are doomed to be imprecise

Slide adapted from or inspired by Richard Socher



How

40

Naïve, bad idea:

Represent words as discrete symbols, disjoint from one another

Example: Automobile = [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ]

Car = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ]

• The embeddings are orthogonal to each other, despite being highly similar.

• Semantic similarity is completely absent!

• Embedding size = size of vocabulary (could be over 100,000 in length!)



How

41

Instead, here’s a great idea:

Learn to encode semantic and syntactic similarity 
automatically, based on unstructured text
(i.e., no need for human annotation).



Let’s use vast amounts of unstructured text

42



Intuition: we don’t need supervised labels; treat it as a self-supervised task

43



How
Two distinct approaches:

44

Count-based (Distributional Semantic Models):

older approaches that often count co-occurrences and 
perform matrix operations to learn representations. 
Always of the type-based form.

Predictive Models:

Neural Net approaches that learn representations by 
making co-occurrence-type predictions.
Can be type-based or token-based.



How
Two distinct approaches:

45

Both approaches rely on word co-occurrences as their 
crux, either implicitly or explicitly.

Intuition: a word’s meaning is captured by the words
that frequently appear near it.

“You shall know a word by the company it keeps”
– Firth (1957)



How
Two distinct approaches:

46

Both approaches rely on word co-occurrences as their 
crux, either implicitly or explicitly.

Intuition: a word’s meaning is captured by the words 
that frequently appear near it.

“You shall know a word by the company it keeps”
– Firth (1957)

This single idea/premise/assumption is arguably 

the most important and useful artifact in NLP.

It fuels the creation of rich embeddings, which in 

turn plays a role in every state-of-the-art system.



Context window size of 3

47

We went to the bank to withdraw money again.

The bank teller gave me quarters today.

Rumor has it, someone tried to rob the bank this afternoon.

Later today, let’s go down to the river bank to fish.

The highlighted words will ultimately define the word bank
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Count-based (Distributional Semantic Models):

“I like data science. I like computer science. I love data.”

Issues:

• Counts increase in size w/ vocabulary

• Very high dimensional à storage concerns

• Sparsity issues during classification
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Count-based (Distributional Semantic Models):

“I like data science. I like computer science. I love data.”

Workarounds:

• Reduce to a smaller, more important set of 
features/dimensions (e.g., 50 - 1,000 dimensions)

• Could use matrix factorization like SVD or LSA to yield 
dense vectors



50

Count-based (Distributional 

Semantic Models):

Even these count-based + SVD 
models can yield interesting results

Slide adapted from or inspired by Richard Socher
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Count-based (Distributional 

Semantic Models):

Even these count-based + SVD 
models can yield interesting results

Slide adapted from or inspired by Richard Socher
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Count-based (Distributional 

Semantic Models):

Even these count-based + SVD 
models can yield interesting results

Slide adapted from or inspired by Richard Socher
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Count-based (Distributional Semantic Models):

Slide adapted from or inspired by Richard Socher

Remaining Issues:

• Very computationally expensive. Between O(n^2) and 
O(n^3)

• Clumsy for handling new words added to the vocab
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Count-based (Distributional Semantic Models):

Alternatively: let’s just directly work in the low-
dimension, embedding space! No need for post- matrix 
work or huge, sparse matrices.

Here comes neural nets, and the embeddings they 
produce are referred to as distributed representations.
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Neural models (i.e., predictive, not count-based DSMs):

The neural models presented in this section of the 
lecture are all type-based, as that was the form of nearly 
every neural model before 2015.

The revolutionary work started in 2013 with word2vec
(type-based). However, back in 2003, Bengio lay the 
foundation w/ a very similar neural model.
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Neural models (i.e., predictive, not count-based DSMs):

Disclaimer: As a heads-up, no models create 
embeddings such that the dimensions actually 
correspond to linguistic or real-world phenomenon.

The embeddings are often really great and useful, but 
no single embedding (in the absence of others) is 
interpretable.
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Neural models (i.e., predictive, not count-based DSMs):

• Window of context for input
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Neural models (i.e., predictive, not count-based DSMs):

• Window of context for input

• Embedding Layer: generates
word embeddings by
multiplying an index vector
with a word embedding
matrix
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Neural models (i.e., predictive, not count-based DSMs):

• Window of context for input

• Hidden Layer(s): produce 
intermediate representations 
of the input (this is what we’ll 
ultimately grab as our word 
embeddings)
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Neural models (i.e., predictive, not count-based DSMs):

• Window of context for input

• Softmax Layer: produces 
probability distribution over 
entire vocabulary V
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Neural models (i.e., predictive, not count-based DSMs):

• Main bottleneck: the final 
softmax layer is 
computationally expensive 
(hundreds of thousands of 
classes)

• In 2003, data and compute 
resources weren’t as 
powerful. Thus, we couldn’t 
fully see the benefits of this 
model.



word2vec! (2013)
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Neural models (i.e., predictive, not count-based DSMs):

word2vec, in many ways, can be viewed as a catalyst for all of the 
great NLP progress since 2013.

It was the first neural approach that had undeniable, profound 
results, which bootstrapped immense research into neural 
networks, especially toward the task of language modelling.
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Neural models (i.e., predictive, not count-based DSMs):

It was generally very similar to Bengio’s 2003 feed-forward neural 
net, but it made several crucial improvements:

• Had no expensive hidden layer (quick dot-product 
multiplication instead)

• Could factor in additional context

• Two clever architectures:
• Continuous bag-of-words (CBOW)

• SkipGram (w/ Negative Sampling)
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word2vec (predictive, not count-based DSMs):

Continuous Bag-of-Words 
(CBOW): given the context 
that surrounds a word wi (but 
not the word itself), try to 
predict the hidden word wi.

CBOW is much faster than 

SkipGram (even if SkipGram
has Negative Sampling)
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word2vec (predictive, not count-based DSMs):

SkipGram: given only a word 
wi predict the word’s context!

SkipGram is much slower
than CBOW, even if
SkipGram uses Negative 
Sampling.
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word2vec (predictive, not count-based DSMs):

SkipGram w/ Negative 
Sampling:  “Negative 

Sampling” is one of the 
clever tricks with word2vec; 
instead of only feeding into 
the model positive pairs, they 
intelligently provide the 
model w/ a fixed set of 
negative examples, too. This 
improves the quality of the 
embedding.
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word2vec (predictive, not count-based DSMs):

• SkipGram w/ Negative Sampling tends to 
outperform CBOW

• SkipGram w/ Negative Sampling is slower than
CBOW

• Both SkipGram and CBOW are predictive, neural 
models that take a type-based approach (not
token-based).

• Both SkipGram and CBOW can create rich word 
embeddings that capture both semantic and 
syntactic information.
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word2vec (examples of its embeddings)
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word2vec (examples of its embeddings)

Incredible finding!!!

Photo credit: Jay Alammar @ https://jalammar.github.io/illustrated-word2vec/



GloVe! (2014)
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GloVe (predictive, not count-based DSMs):

• GloVe aims to take the benefits of both word2vec 
(predictive model) and old count-based DSM models.

• Type-based (not token-based)

• Unsupervised

• Aggregates global word co-occurrences and cleverly 
calculates ratios of co-occurring words.

• Fast and scalable to large corpora

• Good performance even on small corpora
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GloVe (predictive, not count-based DSMs):
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GloVe (predictive, not count-based DSMs):
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GloVe (predictive, not count-based DSMs):
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GloVe (predictive, not count-based DSMs):



TAKEAWAYS
• word2vec and GloVe are great

• But, all neural models discussed so far (i.e., pre-2015) were 
type-based. Thus, we had a single word embedding for each 
word-type.

• A feed-forward neural net is a clumsy, inefficient way to 
handle context, as it has a fixed context that is constantly 
being overwritten (no persistent hidden state).



TAKEAWAYS
• These type-based neural models are also very limiting for any 

particular corpora or downstream NLP task

• More useful would be predictive, token-based models
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LSTMs! (token-based, contextualized word embeddings)

Photo credit: Abigail See

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
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LSTMs! (token-based, contextualized word embeddings)

• Can process any length input

• Long-term context/memory

• Model size doesn’t increase w/ the size of the 
vocabulary or input size

• Yields us with corpus-specific representations (aka 
token-based)!
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LSTMs! (token-based, contextualized word embeddings)

When trained on Harry Potter, the LSTM’s LM can generate decent text, too!

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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Contextualized word embeddings

• Models that produce contextualized embeddings can be simultaneously 
used for other tasks such as text classification or sentiment analysis (a 
classification task).

• With N inputs, an LSTM (or Transformer, as we’ll see next lecture) can 
produce any number of outputs! e.g., either 1 output, N outputs, or M
outputs.



85

Contextualized word embeddings

Photo credit: Abigail See

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
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SUMMARY
• Word embeddings are either type-based or token-based

(contextualized embeddings)

• Type-based models include earlier neural approaches (e.g., word2vec, GloVe,

Bengio’s 2003 FFNN) and counting-based DSMs.

• word2vec was revolutionary and sparked immense progress in NLP

• LSTMs demonstrated profound results in 2015 onward.

• Since LSTMs can produce contextualized embeddings (aka token-based) and a 

LM, it can be used for essentially any NLP task.


