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Def:

Supervised models use target 

data, Y,  to provide feedback so 

that your model can learn the 

relationship between X and Y. 

𝒀 = 𝑓 𝑿
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Def:

Regression models are supervised

models, whereby Y are continuous values.

Classification models are supervised

models, whereby Y are categorical values.

regression model



Supervised Models

IMPORTANT
When training any supervised model, 
be mindful of what you select for:

1. Our loss function (aka cost function)

2. Our optimization algorithm?

Measures how bad our current 
parameters 𝜽 are

Determines how we update our parameters 𝜽
so that our model better fits our training data
(e.g., closed-form equations; gradient descent)



Supervised Models

IMPORTANT
When training any supervised model, 
be mindful of what you select for:

1. Our loss function (aka cost function)

2. Our optimization algorithm?

Measures how bad our current 
parameters 𝜽 are

When testing your model’s predictions, 
be mindful of your metric selection:

3. Our evaluation metric
Determines our model’s performance 
(e.g., Mean Squared Error (MSE), 𝑅!, 
𝐹1 score, etc.)

Determines how we update our parameters 𝜽
so that our model better fits our training data
(e.g., closed-form equations; gradient descent)



Linear Regression

Fitted model example

The plane is chosen to minimize the 

sum of the squared vertical distances 

(per our loss function, least squares) 

between each observation (red dots) 

and the plane.

Photo from ”An Introduction to Statistical Learning” (James, et al. 2017)



PROS
• Simple and fast approach to 

model linear relationships

• Interpretable results via 𝜽
(𝜷 coefficients)

CONS
Linear Regression

• Can’t model non-linear
relationships

• Vulnerable to outliers

• Vulnerable to collinearity

• Assumes error terms are 
uncorrelated*

* otherwise, we have false feedback during training



Supervised vs
Unsupervised

Regression vs
Classification

Linear Regression Supervised Regression



• Returning to our data, let’s 
model Play instead of Temp

• Again, we divide our data and 
learn how data X is related to 
data Y

• Again, assert:
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• Returning to our data, let’s 
model Play instead of Temp

• Again, we divide our data and 
learn how data X is related to 
data Y

• Again, assert:

• Want a model that is:

• Supervised

• Predicts categories/classes 
(classification model)

• Q: What model could we use?
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Logistic Regression

Fitted model example

The plane is chosen to minimize 

the error of our class probabilities 

(per our loss function, cross-

entropy) and the true labels 

(mapped to 0 or 1)

Photo from http://strijov.com/sources/demoDataGen.php (Dr. Vadim Strijov)

http://strijov.com/sources/demoDataGen.php


Parametric Models

• So far, we’ve assumed our data X and Y can be represented by an 

underlying model 𝒇 (i.e., 𝒀 = 𝒇 𝑿 + 𝜀) that has a particular form
(e.g., a linear relationship, hence our using a linear model)

• We fit the model 𝒇 by estimating its parameters 𝜽

• Parametric models make the above assumptions. Namely, that there 

exists an underlying model 𝒇 that has a fixed number of parameters.



Supervised vs
Unsupervised

Regression vs
Classification

Linear Regression

Logistic Regression

Supervised Regression

Supervised Classification

Parametric vs
Non-Parametric

Parametric

Parametric



Non-Parametric Models

Alternatively, what if we make no assumptions about the underlying 

model 𝒇 ? Specifically, let’s not assume 𝒇 :

• has any particular distribution/shape
(e.g., Gaussian, linear relationship, etc.)

• can be represented by a finite number of parameters.

This would constitute a non-parametric model.



Non-Parametric Models

• Non-parametric models are allowed to have parameters; in fact, 

oftentimes the # of parameters grows as our amount of training data 

increases

• Since they make no strong assumptions about the form of the 

function/model, they are free to learn any functional form from the 

training data -- infinitely complex.



• Returning to our data, let’s again 
predict if a person will Play

• If we do not want to assume any 
particular form about how X and 
Y relate, we could use a different 
supervised model

• Suppose we do not care to build 
a decision boundary but merely 
want to make predictions based 
on similar data that we saw 
during training
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k-NN

Refresher:

• k-NN doesn’t train a model

• One merely specifies a 𝒌 value

• At test time, a new piece of data 𝒂:

• must be compared to all other training data 𝒃, to determine its 

k-nearest neighbors, per some distance metric 𝒅 𝒂, 𝒃

• is classified as being the majority class (if categorical) or 

average (if quantitative) of its k-neighbors

22
𝑥! 𝑥" 𝑥#

91 Y

Mathematically

𝑦 = 𝜎(𝛽𝑋)

𝑦N



k-NN

Conclusion:

• k-NN makes no assumptions about the data 𝑿 or the form of 𝒇(𝑿)

• k-NN is a non-parametric model



PROS
• Intuitive and simple approach

• Can model any type of data / 
places no assumptions on the data

• Fairly robust to missing data

• Good for highly sparse data
(e.g., user data, where the columns are 
thousands of potential items of interest)

CONS
k-NN

• Can be very computationally 
expensive if the data is large or 
high-dimensional

• Should carefully think about 
features, including scaling them

• Mixing quantitative and categorical 
data can be tricky

• Interpretation isn’t meaningful

• Often, regression models are 
better, especially with little data



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Linear Regression

Logistic Regression

k-NN

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric



• Returning to our data yet again, 
let’s predict if a person will Play

• If we do not want to assume any 
particular form about how X and 
Y relate, believing that no single 
equation can model the 
possibly non-linear relationship

• Suppose we just want our 
model to have robust decision 
boundaries with interpretable 
results
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Decision Tree

Refresher:

• A Decision Tree iteratively determines how to split our data by the 

best feature value so as to minimize the entropy (uncertainty) of our 

resulting sets.

• Must specify the:

• Splitting criterion (e.g., Gini index, Information Gain)

• Stopping criterion (e.g., tree depth, Information Gain Threshold)



Decision Tree

Refresher: Each comparison and branching represents splitting a 

region in the feature space on a single feature. Typically, at each 

iteration, we split once along one dimension (one predictor).



Decision Tree

• A Decision Tree makes no distributional assumptions about the data.

• The number of parameters / shape of the tree depends entirely on the 

data (i.e., imagine data that is perfectly separable into disjoint sections 

by features, vs data that is highly complex with overlapping values)

• Decision Trees make use of the full data (X and Y) and can handle Y

values that are categorical or quantitative



Supervised vs
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Parametric vs
Non-Parametric
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Logistic Regression

k-NN

Decision Tree

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric

Supervised either Non-Parametric



Your Data X

Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

• Returning to our full dataset 𝑿, 

imagine we do not wish to 

leverage any particular 

column 𝒀, but merely wish to 

transform the data into a 

smaller, useful representation 

𝑿′ = 𝒇(𝑿)
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Principal Component Analysis (PCA)

Refresher:

• PCA isn’t a model per se but is a procedure/technique to transform 

data, which may have correlated features, into a new, smaller set of 

uncorrelated features

• These new features, by design, are a linear combination of the original 

features that capture the most variance

• Often useful to perform PCA on data before using models that 

explicitly use data values and distances between them (e.g., clustering)



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric

Supervised either Non-Parametric

Unsupervised Non-Parametricneither
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• Returning to our full dataset 𝑿

yet again, imagine we do not 

wish to leverage any particular 

column 𝒀, but merely wish to 

discern patterns/groups of 

similar observations

• i.e., unsupervised learning
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Clustering

Refresher:

• There are many approaches to clustering
(e.g., k-Means, hierarchical, DBScan)

• Regardless of the approach, we need to specify a distance metric
(e.g., Euclidean, Manhattan)

• Performance: we can measure the intra-cluster and outer-cluster fit (i.e., 

silhouette score), along with an estimate that compares our clustering to 

the situation had our data been randomly generated (gap statistic)



Clustering

k-Means example:

Visual Representation

• Although we are not explicitly using any column 𝒀, 

one could imagine that the 3 resulting cluster labels 

are our 𝒀’s (labels being class 1, 2, and 3)

• Of course, we do not know these class labels ahead 

of time, as clustering is an unsupervised model



Clustering

k-Means example:

Visual Representation

• Although we are not explicitly using any column 𝒀, 

one could imagine that the 3 resulting cluster labels 

are our 𝒀’s (labels being class 1, 2, and 3)

• Of course, we do not know these class labels ahead 

of time, as clustering is an unsupervised model

• Yet, one could imagine a narrative whereby our data 

points were generated by these 3 classes.



Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its 

head; instead of doing our traditional supervised 

modelling approach of trying to estimate P 𝒀 𝑿 :

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . 

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3



Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its 

head; instead of doing our traditional supervised 

modelling approach of trying to estimate P(𝒀|𝑿)

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . 

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Assuming our data was generated from 
Gaussians centered at 3 centroids, we can 
estimate the probability of the current situation –
that the data 𝑿 exists and has the following class 
labels 𝒀. This is a generative model.



Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its 

head; instead of doing our traditional supervised 

modelling approach of trying to estimate P(𝒀|𝑿)

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . 

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Generative models explicitly model the 
actual distribution of each class
(e.g., data and its cluster assignments).
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k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its 

head; instead of doing our traditional supervised 

modelling approach of trying to estimate P 𝒀 𝑿 :

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . 

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)
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2 3



Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its 

head; instead of doing our traditional supervised 

modelling approach of trying to estimate P(𝒀|𝑿):

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . We 

assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3
Supervised models are given some data 𝑿 and want 

to calculate the probability of 𝒀.
They learn to discriminate between different values 

of possible 𝒀’s (learns a decision boundary).
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Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither
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Non-Parametric

Generative vs
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Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA
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Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Particularly, k-Means is 
generative, as it can be seen 
as a special case of 
Gaussian Mixture Models
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Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to 
discriminate between possible 
𝒀 values (quantitative)
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Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to 
discriminate between possible 
𝒀 classes (categorical)
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Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to 
discriminate between possible 𝒀
values (quantitative or categorical)



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns decision 
boundaries so as to discriminate 
between possible 𝒀 values 
(quantitative or categorical)



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither
PCA is a process, not a model, so it 
doesn’t make sense to consider it as a 
Discriminate or Generative model
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Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither



• Returning our data yet again, 

perhaps we’ve plotted our data 

X and see it’s non-linear

• Knowing how unnatural and 

finnicky polynomial regression 

can be, we prefer to let our 

model learn how to make its 

own non-linear functions for 

each feature 𝒙𝒊

X
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Generalized Additive Models (GAMs)

Refresher:
Not our data, but imagine it’s plotting age vs temp:



Generalized Additive Models (GAMs)

Refresher:

• We can make the line smoother by using a cubic spline or “B-spline”

• Imagine having 3 of these models:

• 𝒇𝟏 𝒂𝒈𝒆

• 𝒇𝟐, 𝒑𝒍𝒂𝒚

• 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

Temp = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

• We can model Temp as:

Not our data, but imagine 
it’s plotting age vs Temp:
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High-level

22
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N Y

Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically 
(NN format)

𝛽$

Generalized Additive Models (GAMs)

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

1 1

𝑓! 𝑓#

𝑦

1 1 1
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Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically 
(NN format)

𝛽$

Generalized Additive Models (GAMs)

1 1

𝑓! 𝑓#

𝑦

1 1 1

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

It is called an additive model because we calculate a 
separate 𝒇𝒊 for each 𝒙𝒊 , and then add together all of their 
contributions. 
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𝑓 𝑿

High-level
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𝑥" 𝑥! 𝑥#

N Y

Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically 
(NN format)

𝛽$

Generalized Additive Models (GAMs)

1 1

𝑓! 𝑓#

𝑦

1 1 1

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

It is called an additive model because we calculate a 
separate 𝒇𝒊 for each 𝒙𝒊 , and then add together all of their 
contributions. 

𝒇𝒊 doesn’t have to be a spline; can be any regression model



PROS
• Fits a non-linear function 𝒇𝒊 to 

each feature 𝒙𝒊

• Much easier than guessing 
polynomial terms and multinomial 
interaction terms.

• Model is additive, allowing us to 
exam the effects of each 𝒙𝒊 on 𝒚 by 
holding the other features 
𝒙𝒋4𝒊 constant

• The smoothness is easy to adjust

CONS
• Restricted to being additive; 

important interactions may not be 
captured

• Providing interactions via 
𝒇𝟏 𝒂𝒈𝒆, 𝒓𝒂𝒊𝒏𝒚 can only capture so 
much, a la multinomial interaction 
terms

Generalized Additive Models (GAMs)



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

GAMs

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Supervised either Parametric Discriminative

Unsupervised Non-Parametric Generativeneither

neither



• Returning our data yet again, 
perhaps we’ve plotted our data 
X and see it’s non-linear

• We further suspect that there are 
complex interactions that cannot 
be represented by polynomial 
regression and GAMs

• We just want great results and 
don’t care about interpretability

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y
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𝑓 𝑿
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22
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N Y

Mathematically

𝑦 =
1

1 + 𝑒5(7!87"9"87#9#)
= 𝜎(𝛽;𝐻)

ℎ< =
1

1 + 𝑒5(7!87"="87#=#+ 7$=$)
= 𝜎(𝛽>𝑋)

𝑦
N

Feed-Forward Neural Network



N

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

Feed-Forward Neural Network

𝑦

𝑦 =
1

1 + 𝑒5(7!87"9"87#9#)
= 𝜎(𝛽;𝐻)

ℎ< =
1

1 + 𝑒5(7!87"="87#=#+ 7$=$)
= 𝜎(𝛽>𝑋)

NOTE: a Neural Network can be viewed as a 
function 𝑓 𝑿 , just like all of our past models



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input



ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input

Input layer
𝑥" 𝑥! 𝑥#



𝑥" 𝑥! 𝑥#

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input

?
ℎ" 𝝈(𝚺) 𝝈(𝚺)ℎ!



𝑥" 𝑥! 𝑥#

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input

Hidden layer
ℎ" 𝝈(𝚺) 𝝈(𝚺)ℎ!



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input

Output layer 𝝈(𝚺)𝑦



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its input



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its inputEvery , except for 

the input layer’s, is called an 

activation function.

They take input(s), apply some 

aggregate operation(s) -- often a 

non-linear transformation -- and 

yield a scalar value.



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its inputEvery , except for 

the input layer’s, is called an 

activation function.

The sigmoid function 𝝈 is a 

common choice and is equivalent 

to performing logistic 

regression on its given inputs.



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every 

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is 
multiplied by its inputEvery , except for 

the input layer’s, is called an 

activation function.

Thus, neural nets can be viewed 

as being a fully-connected set of 

logistic regressions, oftentimes 

stacked (multiple hidden layers)



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Q1 How do we train a neural network?



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Q1 How do we train a neural network?

A1 First, specify a cost function and 
an optimization algorithm, just 
like we did for our other 
supervised, parametric models



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

J 𝜽 = −[𝑦 log Q𝑦 + (1 − 𝑦) log(1 − Q𝑦)]
Cost function

Update the 𝜽 via 
gradient descent

“Cross-Entropy” aka “Log loss”



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via 

backpropagation



𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via 

backpropagation



91 1

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via 

backpropagation

22
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ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via 

backpropagation

22
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𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via 

backpropagation

22
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𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
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Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = −[𝑦 log Q𝑦 + (1 − 𝑦) log(1 − Q𝑦)]
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𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
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Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = −[0 + (1 − 0) log(1 − 0.4)]
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ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = −[0 + (1 − 0) log(0.6)]



91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = − log(0.6)
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ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = 0.22
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ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = 0.22

𝛁𝟏𝟐 𝛁𝟐𝟐
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ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically 
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via  backpropagation

5. Update the weights (aka 𝜽) via gradient 

descent
22

J 𝜽 = 0.22

𝛁𝟏𝟐 𝛁𝟐𝟐

𝛁𝟑𝟐

𝛁𝟑𝟏
𝛁𝟏𝟏 𝛁𝟐𝟏

𝛁𝟏𝟐 𝛁𝟐𝟐
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Graphically 
(NN format)
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PROS
• Fits many linear or non-linear

activation functions 𝒇𝒊 to 
combinations of input 𝑿

• Can model highly complex 
behavior

• When designed well, can provide 
state-of-the-art results on most 
tasks

• Incredible resources, libraries, and 
support

CONS
• Sensitive to architecture choices 

and hyperparameters

• Tricky to debug

• Can be computationally expensive

• Poor interpretability

Feed-Forward Neural Network (and all other neural nets)



Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

GAMs

Feed-Forward Net

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Supervised either Parametric Discriminative

Supervised either Parametric Discriminative

Unsupervised Non-Parametric Generativeneither

neither



Supervised Models

IMPORTANT
When training any supervised model, be careful of overfitting your model

A good model should generalize well to unseen (i.e., testing) data

Consider adding regularization term 𝑅 𝜃 to your cost function
Imposes a penalty based on your parameter values 𝜽

L1 regularization:

L2 regularization:

𝑅 𝜃 = ∑<?>@ |𝜃<|

𝑅 𝜃 = ∑<?>@ 𝜃<;

Prefers many small-weight values

Prefers sparse weights (many 0’s)

Additionally, you can add dropout to Neural Networks



Supervised Models

IMPORTANT
When training any supervised model, wisely use your training data

A good model should generalize well to unseen (i.e., testing) data

a. Shuffle your training data and optionally bootstrap samples

b. Perform cross-validation



MLE vs MAP

So far, whenever we’ve discussed training a model, we’ve assumed our 

data was i.i.d. and we framed the problem as maximizing the similarity 

of the predictions and the gold truth by adjusting the parameters 𝜽

Q1 

J 𝜽 =
1
2
Y
<?>

A

Q𝑦 − 𝑦 ;A1 Cost function

When training our model, how do we 
measure its 𝑚 predictions [𝒚 ?

“Least Squares”

e.g.



MLE vs MAP

We were performing the maximum likelihood estimate

maximum likelihood estimate (MLE) asserts that we should 

choose 𝜽 so as to maximize the likelihood of the observed data 

(i.e., our Q𝑦 should become as close to y as possible)

Def:



MLE vs MAP

In other words, we were searching for ]𝜃BCD

]𝜃BCD = argmaxE𝑃(𝐷|𝜃)

Say we have the likelihood function 𝑃(𝐷|𝜃)



MLE vs MAP

MAP stands for maximum a posteriori and is interested 

in calculating 𝑃(𝜃|𝐷)

If we have knowledge about the prior distribution 𝑃(𝜃), 
we can calculate:

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃 𝜃

𝑃 𝑋
= ∝ 𝑃 𝐷 𝜃 𝑃 𝜃
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MLE vs MAP

MAP stands for maximum a posteriori and is interested 

in calculating 𝑃(𝜃|𝐷)

If we have knowledge about the prior distribution 𝑃(𝜃), 
we can calculate:

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃 𝜃

𝑃 𝑋
= ∝ 𝑃 𝐷 𝜃 𝑃 𝜃

]𝜃BFG = argmaxE𝑃 𝐷 𝜃 𝑃 𝜃

NOTE: If the prior 𝑃 𝜃 is uniform (i.e., not Gaussian or any 

other distribution), then ]𝜃BFG = ]𝜃BCD

Thus, MLE is a special case of MAP!



CLOSING NOTE

The model ≠ the data ≠ the data’s representation

Many models can work well with data from different

domains. The model restrictions concern your 

assumptions about the data, and what you’re trying to 

do with the data. The representation of the data can 

permit/limit the model’s ability to fit/learn the data.

Now let’s turn to the world of language data and useful models for it


