
Harvard IACS
CS109B
Pavlos Protopapas, Mark Glickman, and Chris Tanner

What have we learned, and where are we now?

CS109B Recap

Your Data X

Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column

22
29
31
23
37
41
29
21
30

Age

91
89
56
71
72
83
97
64
68

Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

22
29
31
23
37
41
29
21
30

Age

91
89
56
71
72
83
97
64
68

Your Data X
• Given some data such that each

row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Your Data X
• Given some data such that each

row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Your Data X
• Given some data such that each

row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Your Data X
• Given some data such that each

row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

𝒀 = 𝑓 𝑿 + 𝜀

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model 𝑓 that is:

• Supervised

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

𝒀 = 𝑓 𝑿 + 𝜀

𝒀 = 𝑓 𝑿 + 𝜀

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model 𝑓 that is:

• Supervised

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

• Supervised

𝒀 = 𝑓 𝑿 + 𝜀

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model that is:

• Supervised

X

22
29
31
23
37
41
29
21
30

Age Play Rainy

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

Y

• Supervised

Temp

91
89
56
71
72
83
97
64
68

Def:

Supervised models use target

data, Y, to provide feedback so

that your model can learn the

relationship between X and Y.

𝒀 = 𝑓 𝑿

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model 𝑓 that is:

• Supervised

• Predicts real numbers
(regression model)

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

𝒀 = 𝑓 𝑿 + 𝜀

𝒀 = 𝑓 𝑿 + 𝜀

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model that is:

• Supervised

• Predicts real numbers
(regression model)

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

regression model

Def:

Regression models are supervised

models, whereby Y are continuous values.

𝒀 = 𝑓 𝑿 + 𝜀

• Given some data such that each
row corresponds to a distinct
i.i.d. observation

• You may be interested in a
particular column (e.g. Temp)

• Let’s divide our data and learn
how data X is related to data Y

• Assert that:

• Want a model that is:

• Supervised

• Predicts real numbers
(regression model)

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

Def:

Regression models are supervised

models, whereby Y are continuous values.

Classification models are supervised

models, whereby Y are categorical values.

regression model

Supervised Models

IMPORTANT
When training any supervised model,
be mindful of what you select for:

1. Our loss function (aka cost function)

2. Our optimization algorithm?

Measures how bad our current
parameters 𝜽 are

Determines how we update our parameters 𝜽
so that our model better fits our training data
(e.g., closed-form equations; gradient descent)

Supervised Models

IMPORTANT
When training any supervised model,
be mindful of what you select for:

1. Our loss function (aka cost function)

2. Our optimization algorithm?

Measures how bad our current
parameters 𝜽 are

When testing your model’s predictions,
be mindful of your metric selection:

3. Our evaluation metric
Determines our model’s performance
(e.g., Mean Squared Error (MSE), 𝑅!,
𝐹1 score, etc.)

Determines how we update our parameters 𝜽
so that our model better fits our training data
(e.g., closed-form equations; gradient descent)

Linear Regression

Fitted model example

The plane is chosen to minimize the

sum of the squared vertical distances

(per our loss function, least squares)

between each observation (red dots)

and the plane.

Photo from ”An Introduction to Statistical Learning” (James, et al. 2017)

PROS
• Simple and fast approach to

model linear relationships

• Interpretable results via 𝜽
(𝜷 coefficients)

CONS
Linear Regression

• Can’t model non-linear
relationships

• Vulnerable to outliers

• Vulnerable to collinearity

• Assumes error terms are
uncorrelated*

* otherwise, we have false feedback during training

Supervised vs
Unsupervised

Regression vs
Classification

Linear Regression Supervised Regression

• Returning to our data, let’s
model Play instead of Temp

• Again, we divide our data and
learn how data X is related to
data Y

• Again, assert:

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

𝒀 = 𝑓 𝑿 + 𝜀

• Returning to our data, let’s
model Play instead of Temp

• Again, we divide our data and
learn how data X is related to
data Y

• Again, assert:

• Want a model that is:

• Supervised

• Predicts categories/classes
(classification model)

• Q: What model could we use?

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

𝒀 = 𝑓 𝑿 + 𝜀

Logistic Regression

Fitted model example

The plane is chosen to minimize

the error of our class probabilities

(per our loss function, cross-

entropy) and the true labels

(mapped to 0 or 1)

Photo from http://strijov.com/sources/demoDataGen.php (Dr. Vadim Strijov)

http://strijov.com/sources/demoDataGen.php

Parametric Models

• So far, we’ve assumed our data X and Y can be represented by an

underlying model 𝒇 (i.e., 𝒀 = 𝒇 𝑿 + 𝜀) that has a particular form
(e.g., a linear relationship, hence our using a linear model)

• We fit the model 𝒇 by estimating its parameters 𝜽

• Parametric models make the above assumptions. Namely, that there

exists an underlying model 𝒇 that has a fixed number of parameters.

Supervised vs
Unsupervised

Regression vs
Classification

Linear Regression

Logistic Regression

Supervised Regression

Supervised Classification

Parametric vs
Non-Parametric

Parametric

Parametric

Non-Parametric Models

Alternatively, what if we make no assumptions about the underlying

model 𝒇 ? Specifically, let’s not assume 𝒇 :

• has any particular distribution/shape
(e.g., Gaussian, linear relationship, etc.)

• can be represented by a finite number of parameters.

This would constitute a non-parametric model.

Non-Parametric Models

• Non-parametric models are allowed to have parameters; in fact,

oftentimes the # of parameters grows as our amount of training data

increases

• Since they make no strong assumptions about the form of the

function/model, they are free to learn any functional form from the

training data -- infinitely complex.

• Returning to our data, let’s again
predict if a person will Play

• If we do not want to assume any
particular form about how X and
Y relate, we could use a different
supervised model

• Suppose we do not care to build
a decision boundary but merely
want to make predictions based
on similar data that we saw
during training

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

k-NN

Refresher:

• k-NN doesn’t train a model

• One merely specifies a 𝒌 value

• At test time, a new piece of data 𝒂:

• must be compared to all other training data 𝒃, to determine its

k-nearest neighbors, per some distance metric 𝒅 𝒂, 𝒃

• is classified as being the majority class (if categorical) or

average (if quantitative) of its k-neighbors

22
𝑥! 𝑥" 𝑥#

91 Y

Mathematically

𝑦 = 𝜎(𝛽𝑋)

𝑦N

k-NN

Conclusion:

• k-NN makes no assumptions about the data 𝑿 or the form of 𝒇(𝑿)

• k-NN is a non-parametric model

PROS
• Intuitive and simple approach

• Can model any type of data /
places no assumptions on the data

• Fairly robust to missing data

• Good for highly sparse data
(e.g., user data, where the columns are
thousands of potential items of interest)

CONS
k-NN

• Can be very computationally
expensive if the data is large or
high-dimensional

• Should carefully think about
features, including scaling them

• Mixing quantitative and categorical
data can be tricky

• Interpretation isn’t meaningful

• Often, regression models are
better, especially with little data

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Linear Regression

Logistic Regression

k-NN

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric

• Returning to our data yet again,
let’s predict if a person will Play

• If we do not want to assume any
particular form about how X and
Y relate, believing that no single
equation can model the
possibly non-linear relationship

• Suppose we just want our
model to have robust decision
boundaries with interpretable
results

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

Decision Tree

Refresher:

• A Decision Tree iteratively determines how to split our data by the

best feature value so as to minimize the entropy (uncertainty) of our

resulting sets.

• Must specify the:

• Splitting criterion (e.g., Gini index, Information Gain)

• Stopping criterion (e.g., tree depth, Information Gain Threshold)

Decision Tree

Refresher: Each comparison and branching represents splitting a

region in the feature space on a single feature. Typically, at each

iteration, we split once along one dimension (one predictor).

Decision Tree

• A Decision Tree makes no distributional assumptions about the data.

• The number of parameters / shape of the tree depends entirely on the

data (i.e., imagine data that is perfectly separable into disjoint sections

by features, vs data that is highly complex with overlapping values)

• Decision Trees make use of the full data (X and Y) and can handle Y

values that are categorical or quantitative

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Linear Regression

Logistic Regression

k-NN

Decision Tree

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric

Supervised either Non-Parametric

Your Data X

Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

• Returning to our full dataset 𝑿,

imagine we do not wish to

leverage any particular

column 𝒀, but merely wish to

transform the data into a

smaller, useful representation

𝑿′ = 𝒇(𝑿)

22
29
31
23
37
41
29
21
30

Age

91
89
56
71
72
83
97
64
68

Principal Component Analysis (PCA)

Refresher:

• PCA isn’t a model per se but is a procedure/technique to transform

data, which may have correlated features, into a new, smaller set of

uncorrelated features

• These new features, by design, are a linear combination of the original

features that capture the most variance

• Often useful to perform PCA on data before using models that

explicitly use data values and distances between them (e.g., clustering)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Supervised Regression Parametric

Supervised Classification Parametric

Supervised either Non-Parametric

Supervised either Non-Parametric

Unsupervised Non-Parametricneither

Your Data X

Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

• Returning to our full dataset 𝑿

yet again, imagine we do not

wish to leverage any particular

column 𝒀, but merely wish to

discern patterns/groups of

similar observations

• i.e., unsupervised learning

22
29
31
23
37
41
29
21
30

Age

91
89
56
71
72
83
97
64
68

Clustering

Refresher:

• There are many approaches to clustering
(e.g., k-Means, hierarchical, DBScan)

• Regardless of the approach, we need to specify a distance metric
(e.g., Euclidean, Manhattan)

• Performance: we can measure the intra-cluster and outer-cluster fit (i.e.,

silhouette score), along with an estimate that compares our clustering to

the situation had our data been randomly generated (gap statistic)

Clustering

k-Means example:

Visual Representation

• Although we are not explicitly using any column 𝒀,

one could imagine that the 3 resulting cluster labels

are our 𝒀’s (labels being class 1, 2, and 3)

• Of course, we do not know these class labels ahead

of time, as clustering is an unsupervised model

Clustering

k-Means example:

Visual Representation

• Although we are not explicitly using any column 𝒀,

one could imagine that the 3 resulting cluster labels

are our 𝒀’s (labels being class 1, 2, and 3)

• Of course, we do not know these class labels ahead

of time, as clustering is an unsupervised model

• Yet, one could imagine a narrative whereby our data

points were generated by these 3 classes.

Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its

head; instead of doing our traditional supervised

modelling approach of trying to estimate P 𝒀 𝑿 :

• Imagine centroids for each of the 3 clusters 𝒀𝒊 .

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its

head; instead of doing our traditional supervised

modelling approach of trying to estimate P(𝒀|𝑿)

• Imagine centroids for each of the 3 clusters 𝒀𝒊 .

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Assuming our data was generated from
Gaussians centered at 3 centroids, we can
estimate the probability of the current situation –
that the data 𝑿 exists and has the following class
labels 𝒀. This is a generative model.

Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its

head; instead of doing our traditional supervised

modelling approach of trying to estimate P(𝒀|𝑿)

• Imagine centroids for each of the 3 clusters 𝒀𝒊 .

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Generative models explicitly model the
actual distribution of each class
(e.g., data and its cluster assignments).

Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its

head; instead of doing our traditional supervised

modelling approach of trying to estimate P 𝒀 𝑿 :

• Imagine centroids for each of the 3 clusters 𝒀𝒊 .

We assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3

Clustering

k-Means example:

Visual Representation

• That is, we are flipping the modelling process on its

head; instead of doing our traditional supervised

modelling approach of trying to estimate P(𝒀|𝑿):

• Imagine centroids for each of the 3 clusters 𝒀𝒊 . We

assert that the data 𝑿were generated from 𝒀.

• We can estimate the joint probability of P(𝒀, 𝑿)

1

2 3
Supervised models are given some data 𝑿 and want

to calculate the probability of 𝒀.
They learn to discriminate between different values

of possible 𝒀’s (learns a decision boundary).

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Particularly, k-Means is
generative, as it can be seen
as a special case of
Gaussian Mixture Models

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to
discriminate between possible
𝒀 values (quantitative)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to
discriminate between possible
𝒀 classes (categorical)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns to
discriminate between possible 𝒀
values (quantitative or categorical)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

Given training 𝑿, learns decision
boundaries so as to discriminate
between possible 𝒀 values
(quantitative or categorical)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither
PCA is a process, not a model, so it
doesn’t make sense to consider it as a
Discriminate or Generative model

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Unsupervised Non-Parametric Generativeneither

neither

• Returning our data yet again,

perhaps we’ve plotted our data

X and see it’s non-linear

• Knowing how unnatural and

finnicky polynomial regression

can be, we prefer to let our

model learn how to make its

own non-linear functions for

each feature 𝒙𝒊

X

22
29
31
23
37
41
29
21
30

Age Play Rainy Temp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

Generalized Additive Models (GAMs)

Refresher:
Not our data, but imagine it’s plotting age vs temp:

Generalized Additive Models (GAMs)

Refresher:

• We can make the line smoother by using a cubic spline or “B-spline”

• Imagine having 3 of these models:

• 𝒇𝟏 𝒂𝒈𝒆

• 𝒇𝟐, 𝒑𝒍𝒂𝒚

• 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

Temp = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

• We can model Temp as:

Not our data, but imagine
it’s plotting age vs Temp:

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically
(NN format)

𝛽$

Generalized Additive Models (GAMs)

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

1 1

𝑓! 𝑓#

𝑦

1 1 1

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically
(NN format)

𝛽$

Generalized Additive Models (GAMs)

1 1

𝑓! 𝑓#

𝑦

1 1 1

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

It is called an additive model because we calculate a
separate 𝒇𝒊 for each 𝒙𝒊 , and then add together all of their
contributions.

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

𝑦
91

𝑥" 𝑥! 𝑥#

𝑓"

𝚺

1

Graphically
(NN format)

𝛽$

Generalized Additive Models (GAMs)

1 1

𝑓! 𝑓#

𝑦

1 1 1

𝑦 = 𝜷𝟎 + 𝒇𝟏 𝒂𝒈𝒆 + 𝒇𝟐 𝒑𝒍𝒂𝒚 + 𝒇𝟑 𝒓𝒂𝒊𝒏𝒚

It is called an additive model because we calculate a
separate 𝒇𝒊 for each 𝒙𝒊 , and then add together all of their
contributions.

𝒇𝒊 doesn’t have to be a spline; can be any regression model

PROS
• Fits a non-linear function 𝒇𝒊 to

each feature 𝒙𝒊

• Much easier than guessing
polynomial terms and multinomial
interaction terms.

• Model is additive, allowing us to
exam the effects of each 𝒙𝒊 on 𝒚 by
holding the other features
𝒙𝒋4𝒊 constant

• The smoothness is easy to adjust

CONS
• Restricted to being additive;

important interactions may not be
captured

• Providing interactions via
𝒇𝟏 𝒂𝒈𝒆, 𝒓𝒂𝒊𝒏𝒚 can only capture so
much, a la multinomial interaction
terms

Generalized Additive Models (GAMs)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

GAMs

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Supervised either Parametric Discriminative

Unsupervised Non-Parametric Generativeneither

neither

• Returning our data yet again,
perhaps we’ve plotted our data
X and see it’s non-linear

• We further suspect that there are
complex interactions that cannot
be represented by polynomial
regression and GAMs

• We just want great results and
don’t care about interpretability

X

22
29
31
23
37
41
29
21
30

Age PlayRainyTemp

N
Y
N
Y
N
Y
Y
N
Y

Y
N
N
N
Y
N
Y
N
N

91
89
56
71
72
83
97
64
68

Y

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

𝑦 =
1

1 + 𝑒5(7!87"9"87#9#)
= 𝜎(𝛽;𝐻)

ℎ< =
1

1 + 𝑒5(7!87"="87#=#+ 7$=$)
= 𝜎(𝛽>𝑋)

𝑦
N

Feed-Forward Neural Network

N

X

Y

𝑓 𝑿

High-level

22
𝑥" 𝑥! 𝑥#

N Y

Mathematically

Feed-Forward Neural Network

𝑦

𝑦 =
1

1 + 𝑒5(7!87"9"87#9#)
= 𝜎(𝛽;𝐻)

ℎ< =
1

1 + 𝑒5(7!87"="87#=#+ 7$=$)
= 𝜎(𝛽>𝑋)

NOTE: a Neural Network can be viewed as a
function 𝑓 𝑿 , just like all of our past models

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

Input layer
𝑥" 𝑥! 𝑥#

𝑥" 𝑥! 𝑥#

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

?
ℎ" 𝝈(𝚺) 𝝈(𝚺)ℎ!

𝑥" 𝑥! 𝑥#

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

Hidden layer
ℎ" 𝝈(𝚺) 𝝈(𝚺)ℎ!

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

Output layer 𝝈(𝚺)𝑦

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its input

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its inputEvery , except for

the input layer’s, is called an

activation function.

They take input(s), apply some

aggregate operation(s) -- often a

non-linear transformation -- and

yield a scalar value.

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its inputEvery , except for

the input layer’s, is called an

activation function.

The sigmoid function 𝝈 is a

common choice and is equivalent

to performing logistic

regression on its given inputs.

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

General Notes:

• It’s a fully connected network

• Every

• Every

• Parameters 𝜃 = {𝛽, 𝑂} (weights)

is a scalar value

is a weight, which is
multiplied by its inputEvery , except for

the input layer’s, is called an

activation function.

Thus, neural nets can be viewed

as being a fully-connected set of

logistic regressions, oftentimes

stacked (multiple hidden layers)

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Q1 How do we train a neural network?

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Q1 How do we train a neural network?

A1 First, specify a cost function and
an optimization algorithm, just
like we did for our other
supervised, parametric models

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

J 𝜽 = −[𝑦 log Q𝑦 + (1 − 𝑦) log(1 − Q𝑦)]
Cost function

Update the 𝜽 via
gradient descent

“Cross-Entropy” aka “Log loss”

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝑏""

𝑏"!

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝑏!" 𝑏#"
𝑏!! 𝑏#!

𝑦 𝝈(𝚺)

𝑜"" 𝑜!"

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via

backpropagation

𝑥" 𝑥! 𝑥#

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via

backpropagation

91 1

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via

backpropagation

22

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via

backpropagation

22

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss via gradient descent

4. Update the weights (aka 𝜽) via

backpropagation

22

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = −[𝑦 log Q𝑦 + (1 − 𝑦) log(1 − Q𝑦)]

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = −[0 + (1 − 0) log(1 − 0.4)]

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = −[0 + (1 − 0) log(0.6)]

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = − log(0.6)

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = 0.22

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

𝒐𝟏𝟏 𝒐𝟐𝟏

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = 0.22

𝛁𝟏𝟐 𝛁𝟐𝟐

91 1

ℎ" .6

𝒃𝟏𝟏

𝒃𝟏𝟐

Graphically
(NN format)

Feed-Forward Neural Network

.2ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 0.4

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = 0.22

𝛁𝟏𝟐 𝛁𝟐𝟐

𝛁𝟑𝟐

𝛁𝟑𝟏
𝛁𝟏𝟏 𝛁𝟐𝟏

𝛁𝟏𝟐 𝛁𝟐𝟐

91 1

Graphically
(NN format)

Feed-Forward Neural Network

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = 0.22

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

91 1

Graphically
(NN format)

Feed-Forward Neural Network

Training:

Initialize 𝜽with random values

Repeat until convergence:
1. Provide input 𝒙𝒊 to the network

2. Propagate the values through the network

3. Calculate the cost/loss

4. Calculate gradients via backpropagation

5. Update the weights (aka 𝜽) via gradient

descent
22

J 𝜽 = 0.22

ℎ" 𝝈(𝚺)

𝒃𝟏𝟏

𝒃𝟏𝟐

𝝈(𝚺)ℎ!

𝒃𝟐𝟏 𝒃𝟑𝟏
𝒃𝟐𝟐 𝒃𝟑𝟐

𝑦 𝝈(𝚺)

𝒐𝟏𝟏 𝒐𝟐𝟏

PROS
• Fits many linear or non-linear

activation functions 𝒇𝒊 to
combinations of input 𝑿

• Can model highly complex
behavior

• When designed well, can provide
state-of-the-art results on most
tasks

• Incredible resources, libraries, and
support

CONS
• Sensitive to architecture choices

and hyperparameters

• Tricky to debug

• Can be computationally expensive

• Poor interpretability

Feed-Forward Neural Network (and all other neural nets)

Supervised vs
Unsupervised

Regression vs
Classification

Parametric vs
Non-Parametric

Generative vs
Discriminative

Linear Regression

Logistic Regression

k-NN

Decision Tree

PCA

Clustering

GAMs

Feed-Forward Net

Supervised Regression Parametric Discriminative

Supervised Classification Parametric Discriminative

Supervised either Non-Parametric Discriminative

Supervised either Non-Parametric Discriminative

Unsupervised Non-Parametricneither

Supervised either Parametric Discriminative

Supervised either Parametric Discriminative

Unsupervised Non-Parametric Generativeneither

neither

Supervised Models

IMPORTANT
When training any supervised model, be careful of overfitting your model

A good model should generalize well to unseen (i.e., testing) data

Consider adding regularization term 𝑅 𝜃 to your cost function
Imposes a penalty based on your parameter values 𝜽

L1 regularization:

L2 regularization:

𝑅 𝜃 = ∑<?>@ |𝜃<|

𝑅 𝜃 = ∑<?>@ 𝜃<;

Prefers many small-weight values

Prefers sparse weights (many 0’s)

Additionally, you can add dropout to Neural Networks

Supervised Models

IMPORTANT
When training any supervised model, wisely use your training data

A good model should generalize well to unseen (i.e., testing) data

a. Shuffle your training data and optionally bootstrap samples

b. Perform cross-validation

MLE vs MAP

So far, whenever we’ve discussed training a model, we’ve assumed our

data was i.i.d. and we framed the problem as maximizing the similarity

of the predictions and the gold truth by adjusting the parameters 𝜽

Q1

J 𝜽 =
1
2
Y
<?>

A

Q𝑦 − 𝑦 ;A1 Cost function

When training our model, how do we
measure its 𝑚 predictions [𝒚 ?

“Least Squares”

e.g.

MLE vs MAP

We were performing the maximum likelihood estimate

maximum likelihood estimate (MLE) asserts that we should

choose 𝜽 so as to maximize the likelihood of the observed data

(i.e., our Q𝑦 should become as close to y as possible)

Def:

MLE vs MAP

In other words, we were searching for]𝜃BCD

]𝜃BCD = argmaxE𝑃(𝐷|𝜃)

Say we have the likelihood function 𝑃(𝐷|𝜃)

MLE vs MAP

MAP stands for maximum a posteriori and is interested

in calculating 𝑃(𝜃|𝐷)

If we have knowledge about the prior distribution 𝑃(𝜃),
we can calculate:

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃 𝜃

𝑃 𝑋
= ∝ 𝑃 𝐷 𝜃 𝑃 𝜃

MLE vs MAP

MAP stands for maximum a posteriori and is interested

in calculating 𝑃(𝜃|𝐷)

If we have knowledge about the prior distribution 𝑃(𝜃),
we can calculate:

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃 𝜃

𝑃 𝑋
= ∝ 𝑃 𝐷 𝜃 𝑃 𝜃

]𝜃BFG = argmaxE𝑃 𝐷 𝜃 𝑃 𝜃

MLE vs MAP

MAP stands for maximum a posteriori and is interested

in calculating 𝑃(𝜃|𝐷)

If we have knowledge about the prior distribution 𝑃(𝜃),
we can calculate:

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃 𝜃

𝑃 𝑋
= ∝ 𝑃 𝐷 𝜃 𝑃 𝜃

]𝜃BFG = argmaxE𝑃 𝐷 𝜃 𝑃 𝜃

NOTE: If the prior 𝑃 𝜃 is uniform (i.e., not Gaussian or any

other distribution), then]𝜃BFG =]𝜃BCD

Thus, MLE is a special case of MAP!

CLOSING NOTE

The model ≠ the data ≠ the data’s representation

Many models can work well with data from different

domains. The model restrictions concern your

assumptions about the data, and what you’re trying to

do with the data. The representation of the data can

permit/limit the model’s ability to fit/learn the data.

Now let’s turn to the world of language data and useful models for it

