Lecture 22: Language Models

NLP Lectures: Part 1 of 4

Harvard IACS
 CS109B

Pavlos Protopapas, Mark Glickman, and Chris Tanner

The goals of the next four NLP lectures are to:

- convey the ubiquity and importance of text data/NLP
- build a foundation of the most important concepts
- illustrate how some state-of-the-art models (SOTA) work
- provide experience with these SOTA models (e.g., BERT, GPT-2)
- instill when to use which models, based on your data
- provide an overview and platform from which to dive deeper

Outline

Recap where we are
NLP Introduction

Language Models

- Unigrams
- Bigrams
= Perplexity

Outline

Recap where we are
NLP Introduction

Language Models

- Unigrams
- Bigrams
= Perplexity

Our digital world is inundated with text.
How can we leverage it for useful tasks?

62B pages

500M tweets/day

:

360M user pages

The alcullork Times

13M articles

Common NLP Tasks (aka problems)

Syntax

Morphology
Word Segmentation
Part-of-Speech Tagging
Parsing
Constituency
Dependency

Discourse

Summarization
Coreference Resolution

Semantics

Sentiment Analysis
Topic Modelling
Named Entity Recognition (NER)
Relation Extraction
Word Sense Disambiguation
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
Machine Translation
Entailment
Question Answering
Language Modelling

Common NLP Tasks (aka problems)

Syntax
Morphology
Mord Segmentation
Part-of-Speech Tagging
Parsing
Constituency
Dependency

Discourse
Summarization

Semantics
Sentiment Analysis
Topic Modelling

Common NLP Tasks (aka problems)

Common NLP Tasks (aka problems)

Common NLP Tasks (aka problems)

Syntax
Morphology
Mord Segmentation
Part-of-Speech Tagging
Parsing
Constituency
Dependency

Discourse
Summarization
Coreference Resolution

Semantics
Sentiment Analysis
Topic Modelling
Named Entity Recognition (NER)

El perro marrón \rightarrow The brown dog

Machine Translation
Entailment
Question Answering
Language Modelling

Common NLP Tasks (aka problems)

Syntax

Morphology
Word Segmentation
Part-of-Speech Tagging
Parsing
Constituency
Dependency

Discourse

Summarization

Coreference Resolution
Can help with every other task!

Semantics

Sentiment Analysis
Topic Modelling
Named Entity Recognition (NER)
Relation Extraction
Word Sense Disambiguation
Natural Language Understanding (NLU)
Natural Language Generation (NLG)
Machine Translation
Entailment
Question Answering
Language Modelling

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Language Modelling

A Language Model represents the language used by a given entity (e.g., a particular person, genre, or other well-defined class of text)

Language Modelling

A Language Model represents the language used by a given entity (e.g., a particular person, genre, or other well-defined class of text)

Spam

Not Spam

Language Modelling

A Language Model represents the language used by a given entity (e.g., a particular person, genre, or other well-defined class of text)

English

French

Spanish

Language Modelling

FORMAL DEFINITION

A Language Model estimates the probability of any sequence of words

$$
\left.\begin{array}{c}
\text { Let } \boldsymbol{X}=\text { "Anqi was late for class" } \\
w_{1} \\
w_{2}
\end{array} w_{3} \begin{array}{llll}
w_{4} & w_{5}
\end{array}\right] \begin{array}{lllll}
\\
\mathrm{P}(\boldsymbol{X})=P(\text { "Anqi was late for class") }
\end{array}
$$

Language Modelling

Generate Text

Google

How old is|

how old is clint eastwood how old is nancy pelosi how old is donald trump how old is cher
how old is tom brady
how old is olivia newton john
how old is jojo siwa how old is michael douglas how old is betty white how old is spongebob

Language Modelling

Generate Text

(O) I I went to the |

gym				store						office			
q	w	e		r	t		y		u	i		0	p
a		s	d		f	g		h	j		k		
仓		z	x		c	V		b	n		m		区
\#		23				spa					eturn	γ	@

Generate Text							
\equiv Google Translate \#\# ○ @							
$\overline{\text { x }}_{\text {A }}$ Text Doc	uments						
detect language	SPANISH		$\stackrel{ }{+}$	ENGLISH	SPANISH	ARABIC	\checkmark
El perro marrón		\times		The brown dog			Δ
4 4 4	15/5000	핀		$41)$		\square	!

Language Modelling

"Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi, Schiff \& Killary. The Feds then closed the courtroom doors."

Fake News

Real News

Language Modelling

A Language Model is useful for:

Generating Text

- Auto-complete
- Speech-to-text

Classifying Text

- Authorship attribution
- Detecting spam vs not spam
- Question-answering / chatbots
- Machine translation

And much more!

Scenario: assume we have a finite vocabulary V
V^{*} represents the infinite set of strings/sentences that we could construct
e.g., $V^{*}=\{a$, a dog, a frog, dog a, dog dog, frog dog, frog a dog, ... $\}$

Data: we have a training set of sentences $\mathrm{x} \in V^{*}$
Problem: estimate a probability distribution:

$$
\sum_{x \in V} p(x)=1 \quad \begin{aligned}
& p(\text { the })=10^{-2} \\
& p(\text { the,sun, okay })=2 \times 10^{-13} \\
& p(\text { waterfall, the, icecream })=2 \times 10^{-{ }^{1}} 18
\end{aligned}
$$

Motivation

"Wreck a nice beach" vs "Recognize speech" "I ate a cherry" vs "Eye eight uh Jerry!"
"What is the weather today?"
"What is the whether two day?"
"What is the whether too day?"

How can we build a language model?

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Outline

Recap where we are
NLP Introduction
Language Models
- Unigrams

- Bigrams
- Perplexity
a word token is a specific occurrence of a word in a text
a word type refers to the general form of the word, defined by its lexical representation

If our corpus were just "I ran and ran and ran", you'd say we have:

- 6 word tokens [I, ran, and , ran , and, ran]
- 3 word types: $\{I$, ran, and $\}$

Language Modelling

Naive Approach: unigram model

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t}\right)
$$

Assumes each word is independent of all others.

Language Modelling

Naive Approach: unigram model

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t}\right)
$$

Assumes each word is independent of all others.

$$
\mathrm{P}\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)=\mathrm{P}\left(w_{1}\right), P\left(w_{2}\right), P\left(w_{3}\right) P\left(w_{4}\right) P\left(w_{5}\right)
$$

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class"

$$
w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}
$$

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	$\#$ occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350

$$
|W|=100,000
$$

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{n_{w_{i}}(\boldsymbol{d})}{n_{w_{*}}(\boldsymbol{d})}
$$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	\# occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350

$$
|W|=n_{w_{*}}(\boldsymbol{d})=100,000
$$

$n_{w_{i}}(\boldsymbol{d})=\#$ of times word w_{i} appears in \boldsymbol{d}
$n_{w_{*}}(\boldsymbol{d})=\#$ of times any word \boldsymbol{w} appears in \boldsymbol{d}

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{n_{w_{i}}(\boldsymbol{d})}{n_{w_{*}}(\boldsymbol{d})}
$$

$$
P(\text { Anqi })=\frac{15}{100,000}=0.00015
$$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	\# occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350

$$
|W|=n_{w_{*}}(\boldsymbol{d})=100,000
$$

$n_{w_{i}}(\boldsymbol{d})=\#$ of times word w_{i} appears in \boldsymbol{d}
$n_{w_{*}}(\boldsymbol{d})=\#$ of times any word \boldsymbol{w} appears in \boldsymbol{d}

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{n_{w_{i}}(\boldsymbol{d})}{n_{w_{*}}(\boldsymbol{d})}
$$

$$
\begin{aligned}
& P(\text { Anqi })=\frac{15}{100,000}=0.00015 \\
& P(\text { was })=\frac{1,000}{100,000}=0.01
\end{aligned}
$$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	$\#$ occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350

$$
|W|=n_{w_{*}}(\boldsymbol{d})=100,000
$$

$n_{w_{i}}(\boldsymbol{d})=\#$ of times word w_{i} appears in \boldsymbol{d}
$n_{w_{*}}(\boldsymbol{d})=\#$ of times any word w appears in \boldsymbol{d}

Unigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{n_{w_{i}}(\boldsymbol{d})}{n_{w_{*}}(\boldsymbol{d})}
$$

$$
\begin{aligned}
& P(\text { Anqi })=\frac{15}{100,000}=0.00015 \\
& P(\text { was })=\frac{1,000}{100,000}=0.01
\end{aligned}
$$

$\stackrel{\bullet}{\bullet}$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	$\#$ occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350

$$
|W|=n_{w_{*}}(\boldsymbol{d})=100,000
$$

$n_{w_{i}}(\boldsymbol{d})=\#$ of times word w_{i} appears in \boldsymbol{d}
$n_{w_{*}}(\boldsymbol{d})=\#$ of times any word w appears in \boldsymbol{d}

Unigram Model

$$
\begin{aligned}
& \text { Let } \boldsymbol{X}=\text { "Anqi was late for class" } \\
& \qquad \begin{array}{cccccc}
w_{1} & w_{2} & w_{3} & w_{4} & w_{5}
\end{array}
\end{aligned}
$$

$$
\mathrm{P}(\text { Anqi, was, late, for, class })=\mathrm{P}(\text { Anqi }) \mathrm{P}(\text { was }) \mathrm{P}(\text { late }) \mathrm{P}(\text { for }) \mathrm{P}(\text { class })
$$

Unigram Model

$$
\begin{aligned}
& \text { Let } \boldsymbol{X}=\text { "Anqi was late for class" } \\
& \qquad \begin{array}{cccccc}
w_{1} & w_{2} & w_{3} & w_{4} & w_{5}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\text { Anqi, was, late, for, class }) & =\mathrm{P}(\text { Anqi }) \mathrm{P}(\text { was }) \mathrm{P} \text { (late) } \mathrm{P}(\text { for }) \mathrm{P} \text { (class) } \\
& =0.00015 * 0.01 * 0.004 * 0.03 * 0.0035 \\
& =6.3 * 10^{13}
\end{aligned}
$$

Unigram Model

$$
\begin{aligned}
& \text { Let } \boldsymbol{X}=\text { "Anqi was late for class" } \\
& \qquad \begin{array}{cccccc}
w_{1} & w_{2} & w_{3} & w_{4} & w_{5}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\text { Anqi, was, late, for, class }) & =\mathrm{P}(\text { Anqi }) \mathrm{P}(\text { was }) \mathrm{P}(\text { late }) \mathrm{P}(\text { for }) \mathrm{P} \text { (class) } \\
& =0.00015 * 0.01 * 0.004 * 0.03 * 0.0035 \\
& =6.3 * 10^{13}
\end{aligned}
$$

This iterative approach is much more efficient than dividing by all possible sequences of length 5

Unigram Model

P(Anqi, was, late, for, class) > P(Anqi, was, late, for, asdfjkl;)

$\mathrm{P}($ Anqi, was, late, for, the $)=$?

UNIGRAM ISSUES?

1. Probabilities become too small
2. Out-of-vocabulary words <UNK>
3. Context doesn't play a role at all

$$
P(\text { "Anqi was late for class") }=P(\text { "class for was late Anqi" })
$$

4. Sequence generation: What's the most likely next word?

Anqi was late for class \qquad
Anqi was late for class the
Anqi was late for class the the

UNIGRAM ISSUES?

Problem 1: Probabilities become too small

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t}\right)
$$

UNIGRAM ISSUES?

Problem 1: Probabilities become too small

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t}\right)
$$

Solution:

$$
\log \prod_{t=1}^{T} p\left(w_{t}\right)=\sum_{t=1}^{T} \log \left(p\left(w_{i}\right)\right)
$$

even $\log \left(10^{-100}\right)=-230.26$ is manageable

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

$$
p(\text { COVID19 })=0
$$

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

$$
p(\text { COVID19 })=0
$$

Solution:

Smoothing
(give every word's count some inflation)

$$
\mathrm{P}(\mathrm{w})=\frac{n_{w}(\boldsymbol{d})}{n_{w_{*}}}
$$

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

$$
p(\text { COVID19 })=0
$$

Solution:

Smoothing
(give every word's count some inflation)

$$
\mathrm{P}(\mathrm{w})=\frac{n_{w}(\boldsymbol{d})+\alpha}{n_{w_{*}}+\alpha|V|} \quad \mathrm{P}(\text { Anqi })=\frac{15+\alpha}{100,000+\alpha|V|}
$$

$|V|=$ the \# of unique words types in vocabulary (including an extra 1 for <UNK>)

$$
P(\text { COVID19 })=\frac{0+\alpha}{100,000+\alpha|V|}
$$

Two important notes:

1. Generally, α values are small (e.g., $0.5-2$)
2. When a word w isn't found within the training corpus d you should replace it with <UNK> (or *U*)

UNIGRAM ISSUES?

Problems 3 and 4: Context doesn't play a role at all

$$
P(\text { "Anqi was late for class") }=P(\text { "class for was late Anqi") }
$$

Question: How can we factor in context?

UNIGRAM ISSUES?

Easiest Approach:

Instead of words being completely independent,
condition each word on its immediate predecessor

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Bigram LM

Look at pairs of consecutive words

Let $\boldsymbol{X}=$ "Anqi was late for class"
$w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

Bigram LM

Look at pairs of consecutive words

$$
\begin{aligned}
& \text { Let } \boldsymbol{X}=\begin{array}{|l|l|l|}
\hline \text { Probability } \\
\hline \text { Anqi was } & & \\
\hline w_{1} & w_{2} & w_{3}
\end{array} w_{4} \begin{array}{l}
\text { late }
\end{array} \\
& \mathrm{P}(\boldsymbol{X})=P(\text { was } \mid \text { Anqi })
\end{aligned}
$$

Bigram LM

Look at pairs of consecutive words

$$
\begin{aligned}
& \text { Let } \boldsymbol{X}=\text { "Anqi } \begin{array}{c}
\text { probability } \\
\hline w_{1} \\
\hline \text { was late for class" } \\
w_{2}
\end{array} w_{3} \quad w_{4} \quad w_{5} \\
& P(\boldsymbol{X})=P(\text { was } \mid \text { Anqi }) P(\text { late|was })
\end{aligned}
$$

Bigram LM

Look at pairs of consecutive words

$$
\begin{gathered}
\text { Let } \boldsymbol{X}=\text { "Anqi was late for } \\
\begin{array}{ccccc}
\hline & \text { probability } \\
w_{1} & w_{2} & w_{3} & w_{4} & w_{5}
\end{array} \\
\mathrm{P}(\boldsymbol{X})=P(\text { was } \mid \text { Anqi }) P(\text { late } \mid \text { was }) P(\text { for } \mid \text { late })
\end{gathered}
$$

Bigram LM

Look at pairs of consecutive words

$$
\begin{aligned}
& P(\boldsymbol{X})=P(\text { was } \mid \text { Anqi) } P(\text { late } \mid \text { was }) P(\text { for } \mid \text { late }) P(\text { class } \mid \text { for })
\end{aligned}
$$

You calculate each of these probabilities by simply counting the occurrences

$$
\text { Let } \boldsymbol{X}=\begin{array}{ccccc|}
\hline \text { "Anqi was late } & & \begin{array}{c}
\text { probability } \\
\text { for class } \\
\hline
\end{array} \\
w_{1} & w_{2} & w_{3} & w_{4} & w_{5}
\end{array}
$$

$P(\boldsymbol{X})=P($ was \mid Anqi) $P($ late \mid was $) P($ for \mid late $) P($ class \mid for $)$

Bigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$

$$
\mathrm{P}\left(\mathrm{w}^{\prime} \mid w\right)=\mathrm{P}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)=\frac{n_{w, w^{\prime}}(\boldsymbol{d})}{n_{w, w^{*}}(\boldsymbol{d})}
$$

$n_{w, w^{\prime}}(\boldsymbol{d})=\#$ of times words \boldsymbol{w} and \boldsymbol{w}^{\prime} appear together as a bigram in \boldsymbol{d}
$n_{w, w *}(\boldsymbol{d})=\#$ of times word w is the first token of a bigram in \boldsymbol{d}

Bigram Model

Let $\boldsymbol{X}=$ "Anqi was late for class" $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad w_{5}$
$\mathrm{P}\left(\mathrm{w}^{\prime} \mid w\right)=\mathrm{P}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)=\frac{n_{w, w^{\prime}}(\boldsymbol{d})}{n_{w, w^{*}}(\boldsymbol{d})}$

$$
\mathrm{P}(\text { class } \mid \text { for })=\mathrm{P}(\text { for }, \text { class })=\frac{12}{3,000}
$$

Let's say our corpus \boldsymbol{d} has 100,000 words

word	\# occurrences
Anqi	15
was	1,000
late	400
for	3,000
class	350
$\|W\|=n_{W_{*}}(\boldsymbol{d})=100,000$	

$n_{w, w^{\prime}}(\boldsymbol{d})=\#$ of times words \boldsymbol{w} and \boldsymbol{w}^{\prime} appear together as a bigram in \boldsymbol{d}
$n_{w, w *}(\boldsymbol{d})=\#$ of times word w is the first token of a bigram in \boldsymbol{d}

BIGRAM ISSUES?

1. Out-of-vocabulary bigrams are $0 \rightarrow$ kills the overall probability
2. Could always benefit from more context but sparsity is an issue (e.g., rarely seen 5-grams)
3. Storage becomes a problem as we increase the window size
4. No semantic information conveyed by counts (e.g., vehicle vs car)

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Our current bigram probabilities:

$$
P\left(\mathrm{w}, \mathrm{w}^{\prime}\right)=\frac{n_{w, w^{\prime}}(\boldsymbol{d})}{n_{w, w^{*}}(\boldsymbol{d})}
$$

Q: What should we do?

How we smoothed unigrams:

$$
P(\mathrm{w})=\frac{n_{w}(\boldsymbol{d})+\alpha}{n_{w_{*}}+\alpha|V|}
$$

$|V|=$ the \# of unique words types in vocabulary (including an extra 1 for <UNK>)

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Imagine our current string x includes "COVID19 harms ribofliptonik ..."

In our training corpus d, we've never seen:
"COVID19 harms" or "harms ribofliptonik"

But we've seen the unigram "harms", which provides useful information:

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Solution: unigram-backoff for smoothing

$$
\begin{aligned}
P\left(\mathrm{w}, \mathrm{w}^{\prime}\right) & =\frac{n_{w, w^{\prime}}(\boldsymbol{d})+\beta * P\left(\mathrm{w}^{\prime}\right)}{n_{w, w^{*}}(\boldsymbol{d})+\beta} \\
P\left(\mathrm{w}^{\prime}\right) & =\frac{n_{w^{\prime}}(\boldsymbol{d})+\alpha}{n_{w_{*}}+\alpha|V|}
\end{aligned}
$$

$|V|=$ the \# of unique words types in vocabulary (including an extra 1 for <UNK>)

Our model is properly parameterized with α and β.
So, instead of calculating the probability of text, we are actually interested in fixing the parameters at particular values and determining the likelihood of the data.

BIGRAM ISSUES?

For a fixed α and β :

$$
\begin{aligned}
\theta\left(\mathrm{w}, \mathrm{w}^{\prime}\right) & =\frac{n_{w, w^{\prime}}(\boldsymbol{d})+\beta * \theta\left(\mathrm{w}^{\prime}\right)}{n_{w, w^{*}}(\boldsymbol{d})+\beta} \\
\theta\left(\mathrm{w}^{\prime}\right) & =\frac{n_{w^{\prime}}(\boldsymbol{d})+\alpha}{n_{w_{*}}+\alpha|V|}
\end{aligned}
$$

$|V|=$ the \# of unique words types in vocabulary (including an extra 1 for <UNK>)

IMPORTANT:

It is common to pad sentences with $<\mathrm{S}>$ tokens on each side, which serve as boundary markers. This helps LMs learn the transitions between sentences.

$$
\begin{aligned}
\text { Let } \boldsymbol{X}= & \text { "I ate. Did you?" } \\
& w_{1} w_{2} \\
w_{3} & w_{4}
\end{aligned} \quad \boldsymbol{X}="<\mathrm{S}>\mid \text { ate }<\mathrm{S}>\text { Did you? }<\mathrm{S}>"
$$

Generation

- We can also use these LMs to generate text
- Generate the very first token manually by making it be <S>
- Then, generate the next token by sampling from the probability distribution of possible next tokens (the set of possible next tokens sums to 1)
- When you generate be $<\mathrm{S}>$ again, that represents the end of the current sentence

Example of Bigram generation

- Force $a<S>$ as the first token
- Of the bigrams that start with $<S>$, probabilistically pick one based on their likelihoods
- Let's say the chosen bigram was <S>_The
- Repeat the process, but now condition on "The". So, perhaps the next select Bigram is "The_dog"
- The sentence is complete when you generate a bigram whose second half is $\langle S\rangle$

Imagine more context

Language Modelling

Better Approach: n-gram model

$$
\begin{aligned}
& \qquad P\left(x_{1}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}, \ldots, x_{1}\right) \\
& \text { Let's factor in context (in practice, a window of size } \mathrm{n} \text {) }
\end{aligned}
$$

Language Modelling

Better Approach: n-gram model

$$
P\left(x_{1}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}, \ldots, x_{1}\right)
$$

The likelihood of any event occurring hinges upon all prior events occurring

Language Modelling

Better Approach: n-gram model

The likelihood of any event occurring hinges upon all prior events occurring

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Outline

Recap where we are
NLP Introduction
Language Models

- Unigrams
- Bigrams
= Perplexity

Perplexity

N -gram models seem useful, but how can we measure how good they are?

Can we just use the likelihood values?

Perplexity

Almost!

The likelihood values aren't adjusted for the length of sequences, so we would need to normalize by the sequence lengths.

The best language model is one that best predicts an unseen test set

Perplexity, denoted as $P P$, is the inverse probability of the test set, normalized by the number of words.

$$
P P\left(w_{1}, \ldots, w_{T}\right)=p\left(w_{1}, w_{2}, \ldots, w_{N}\right)^{-1 / N}
$$

$$
=\sqrt[N]{\frac{1}{p\left(w_{1}, w_{2}, \ldots, w_{N}\right)}}
$$

Perplexity

Perplexity is also equivalent to the exponentiated negative loglikelihood normalized:

$$
\begin{aligned}
P P\left(w_{1}, \ldots, w_{T}\right) & =p\left(w_{1}, w_{2}, \ldots, w_{N}\right)^{-1 / N} \\
& =\sqrt[N]{\frac{1}{p\left(w_{1}, w_{2}, \ldots, w_{N}\right)}} \\
& =2^{-l}, \text { where } \mathrm{l}=\frac{1}{N} \sum_{i=1}^{n} \log \left(p\left(w_{i}\right)\right)
\end{aligned}
$$

Perplexity

Very related to entropy, perplexity measures the uncertainty of the model for a particular dataset. So, very high perplexity scores correspond to having tons of uncertainty (which is bad).

Perplexity also represents the average number of bits needed to represent each word. You can view this as the branching factor at each step. That is, the more branches (aka bits) at each step, the more uncertainty there is.

Perplexity

Good models tend to have perplexity scores around 40-100 on large, popular corpora.

If our model assumed a uniform distribution of words, then our perplexity score would be:

$$
|V|=\text { the \# of unique word types }
$$

Perplexity

Example: let our corpus X have only 3 unique words $\{$ the, dog,

 ran\} but have a length of N.$$
P P(X)=\sqrt[N]{\frac{1}{\left(\frac{1}{3}\right)^{N}}}=\sqrt[N]{3^{N}}=3
$$

Perplexity

More generally, if we have M unique words for a sequence of length N.

$$
P P(X)=\sqrt[N]{\frac{1}{\left(\frac{1}{M}\right)^{N}}}=\sqrt[N]{M^{N}}=M
$$

Perplexity

Example perplexity scores: when trained on a corpus of 38 million words and tested on 1.5 million words:

model	perplexity
unigram	962
bigram	170
trigram	109

SUMMARY

- Language models estimate the probability of sequences and can predict the most likely next word
- We can probabilistically generate sequences of words
- We can measure performance of any language model
- Unigrams provide no context and are not good
- Bi-grams and Tri-grams are better but still have serious weaknesses

