
Harvard IACS
CS109B
Pavlos Protopapas, Mark Glickman, and Chris Tanner

NLP Lectures: Part 1 of 4

Lecture 22: Language Models

The goals of the next four NLP lectures are to:

• convey the ubiquity and importance of text data/NLP

• build a foundation of the most important concepts

• illustrate how some state-of-the-art models (SOTA) work

• provide experience with these SOTA models (e.g., BERT, GPT-2)

• instill when to use which models, based on your data

• provide an overview and platform from which to dive deeper

I’ll teach an NLP course next year!FOREWORD

3

Outline

Unigrams

Bigrams

Perplexity

Recap where we are

NLP Introduction

Language Models

4

Outline

Unigrams

Bigrams

Perplexity

Recap where we are

NLP Introduction

Language Models

Our digital world is inundated with text.

How can we leverage it for useful tasks?

62B pages 500M tweets/day 360M user pages

5

13M articles

6

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

7

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

“Overall, Pfizer’s COVID-19

vaccine is very safe and one

of the most effective

vaccines ever produced”

8

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

sports news politics fashion

9

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

INTENT ARTISTSONG

“Alexa, play Drivers License by Olivia Rodrigo”

“Alexa, play Drivers License by Olivia Rodrigo”

10

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

SPANISH ENGLISH

The brown dogEl perro marrón

11

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

Can help with every other task!

12

Outline

Unigrams

Bigrams

Perplexity

Recap where we are

NLP Introduction

Language Models

13

Outline

Recap where we are

NLP Introduction

Language Models

Unigrams

Bigrams

Perplexity

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

14

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

15

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

16

Language Modelling

A Language Model estimates the probability of any sequence of words

17

FORMAL DEFINITION

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(“Anqi was late for class”)

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Language Modelling

Generate Text

18

Language Modelling

Generate Text

19

Language Modelling

Generate Text

20

Language Modelling

“Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi,
Schiff & Killary. The Feds then closed the courtroom doors.”

21

Language Modelling

22

A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Authorship attribution

• Detecting spam vs not spam

And much more!

Language Modelling

23

Scenario: assume we have a finite vocabulary 𝑉

𝑉 ∗ represents the infinite set of strings/sentences that we could
construct

e.g., 𝑉 ∗= {a, a dog, a frog, dog a, dog dog, frog dog, frog a dog, …}

Data: we have a training set of sentences x ∈ 𝑉 ∗

Problem: estimate a probability distribution:

*
&∈(

∗
𝑝 𝑥 = 1

𝑝 𝑡ℎ𝑒 = 10 − 2

𝑝 𝑤𝑎𝑡𝑒𝑟𝑓𝑎𝑙𝑙, 𝑡ℎ𝑒, 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚 = 2𝑥10 − 18

𝑝 𝑡ℎ𝑒, 𝑠𝑢𝑛, 𝑜𝑘𝑎𝑦 = 2𝑥10 − 13

Slide adapted from Luke Zettlemoyer @ UW 2018

Motivation

24

“Wreck a nice beach” vs “Recognize speech”

“I ate a cherry” vs “Eye eight uh Jerry!”

“What is the weather today?”

“What is the whether two day?”

“What is the whether too day?”

“What is the Wrether today?”

Language Modelling

25

How can we build a language model?

26

Outline

Recap where we are

NLP Introduction

Language Models

Unigrams

Bigrams

Perplexity

27

Outline

Unigrams

Bigrams

Perplexity

Recap where we are

NLP Introduction

Language Models

28

Important Terminology

a word token is a specific occurrence of a word in a text

a word type refers to the general form of the word, defined by its
lexical representation

If our corpus were just “I ran and ran and ran”, you’d say we have:

- 6 word tokens [I, ran , and , ran , and , ran]

- 3 word types: {I, ran, and}

Language Modelling

29

Naive Approach: unigram model

𝑃 𝑤!, … , 𝑤" =&
#$!

"

𝑝(𝑤𝑡)

Assumes each word is independent of all others.

Language Modelling

30

Naive Approach: unigram model

Assumes each word is independent of all others.

𝑃 𝑤!, … , 𝑤" =&
#$!

"

𝑝(𝑤𝑡)

P(𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓) = P(𝒘𝟏), 𝑷(𝒘𝟐), 𝑷 𝒘𝟑 𝑷 𝒘𝟒 𝑷(𝒘𝟓)

Unigram Model

31

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Unigram Model

32

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

𝑊 = 100,000

Unigram Model

33

P(w.) =
/!"(𝒅)
/!∗(𝒅)

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛3"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

𝑊 = 𝑛3∗(𝒅) = 100,000

𝑛3∗(𝒅) = # of times any word 𝒘 appears in 𝒅

Unigram Model

34

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!55,555 = 0.00015

P(w.) =
/!"(𝒅)
/!∗(𝒅)

𝑛3"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑊 = 𝑛3∗(𝒅) = 100,000

𝑛3∗(𝒅) = # of times any word 𝒘 appears in 𝒅

Unigram Model

35

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!55,555 = 0.00015

P(was) = !,555
!55,555 = 0.01

P(w.) =
/!"(𝒅)
/!∗(𝒅)

𝑛3"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑊 = 𝑛3∗(𝒅) = 100,000

𝑛3∗(𝒅) = # of times any word 𝒘 appears in 𝒅

Unigram Model

36

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!55,555 = 0.00015

P(was) = !,555
!55,555 = 0.01

P(w.) =
/!"(𝒅)
/!∗(𝒅)

𝑛3"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑊 = 𝑛3∗(𝒅) = 100,000

𝑛3∗(𝒅) = # of times any word 𝒘 appears in 𝒅

Unigram Model

37

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

Unigram Model

38

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 1013

Unigram Model

39

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 1013

This iterative approach is much more efficient than
dividing by all possible sequences of length 5

Unigram Model

40

P Anqi, was, late, for, class > P Anqi, was, late, for, asd\jkl;

P Anqi, was, late, for, the = ?

41

UNIGRAM ISSUES?

?

42

1. Probabilities become too small

2. Out-of-vocabulary words <UNK>

UNIGRAM ISSUES?

3. Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Anqi was late for class the

Anqi was late for class the the

Anqi was late for class _____

4. Sequence generation: What’s the most likely next word?

43

UNIGRAM ISSUES?

Problem 1: Probabilities become too small

𝑃 𝑤!, … , 𝑤" =&
#$!

"

𝑝(𝑤𝑡)

44

Solution:

UNIGRAM ISSUES?

𝑃 𝑤!, … , 𝑤" =&
#$!

"

𝑝(𝑤𝑡)

log&
#$!

"

𝑝 𝑤𝑡 = -
#$!

"

log(𝑝 𝑤%)

log 10 − 100 = −230.26even is manageable

Problem 1: Probabilities become too small

45

UNIGRAM ISSUES?

𝑝(𝐶𝑂𝑉𝐼𝐷19) = 0

Problem 2: Out-of-vocabulary words <UNK>

46

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = &! 𝒅
&!∗

𝑝(𝐶𝑂𝑉𝐼𝐷19) = 0

47

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = &! 𝒅 ()
&!∗()|+|

P(Anqi) = !,()
!--,--- ()|+|

P(COVID19) = -()
!--,--- ()|+|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(𝐶𝑂𝑉𝐼𝐷19) = 0

48

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = &! 𝒅 ()
&!∗()|+|

P(Anqi) = !,()
!--,--- ()|+|

P(COVID19) = -()
!--,--- ()|+|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(𝐶𝑂𝑉𝐼𝐷19) = 0

Two important notes:

1. Generally, 𝛼 values are small (e.g., 0.5 – 2)

2. When a word w isn’t found within the

training corpus 𝒅 you should replace it with

<UNK> (or *U*)

49

UNIGRAM ISSUES?

Problems 3 and 4: Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Question: How can we factor in context?

50

UNIGRAM ISSUES?

Easiest Approach:

Instead of words being completely independent,
condition each word on its immediate predecessor

51

Outline

Unigrams

Bigrams

Perplexity

Recap where we are

NLP Introduction

Language Models

52

Outline

Recap where we are

NLP Introduction

Language Models

Unigrams

Bigrams

Perplexity

Bigram LM

53

Look at pairs of consecutive words

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

54

probability

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(was|Anqi)

Look at pairs of consecutive words

Bigram LM

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

55

probability

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)

Look at pairs of consecutive words

Bigram LM

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

56

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)

Look at pairs of consecutive words

Bigram LM

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

57

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

Look at pairs of consecutive words

Bigram LM

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

58

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

P(class | fo r) = co u n t(for class)
co u n t(for)

Bigram LM

You calculate each of these probabilities
by simply counting the occurrences

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Bigram Model

59

P w7|𝑤 = P w,w7 = /!,!% (𝒅)
/!,!∗ (𝒅)

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛3,37 (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

𝑛3,3∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

Bigram Model

60

P w7|𝑤 = P w,w7 = /!,!% (𝒅)
/!,!∗ (𝒅)

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛3,37 (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350
P(class|for) = P(for, class) = !"

#,555

𝑛3,3∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

𝑊 = 𝑛3∗(𝒅) = 100,000

61

BIGRAM ISSUES?

?

62

1. Out-of-vocabulary bigrams are 0 à kills the overall probability

2. Could always benefit from more context but sparsity is an issue
(e.g., rarely seen 5-grams)

BIGRAM ISSUES?

3. Storage becomes a problem as we increase the window size

4. No semantic information conveyed by counts (e.g., vehicle vs car)

63

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

𝑃 w,w/ = &!,!$ (𝒅)
&!,!∗ (𝒅)

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

Our current bigram probabilities: How we smoothed unigrams:

Q: What should we do?

𝑃(w) = &! 𝒅 ()
&!∗()|+|

64

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Imagine our current string 𝑥 includes “COVID19 harms ribofliptonik …”

In our training corpus 𝑑, we’ve never seen:

“COVID19 harms” or “harms ribofliptonik”

But we’ve seen the unigram “harms”, which provides useful information:

65

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Solution: unigram-backoff for smoothing

𝑃 w,w/ =
&!,!$ 𝒅 (3∗5(6$)

&!,!∗ 𝒅 (3

𝑃(w′) = &!$ 𝒅 ()
&!∗()|+|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

66

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Solution: unigram-backoff for smoothing

𝑃 w,w/ =
&!,!$ 𝒅 (3∗5(6$)

&!,!∗ 𝒅 (3

𝑃(w′) = &!$ 𝒅 ()
&!∗()|+|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

Our model is properly parameterized with 𝜶 and 𝜷.

So, instead of calculating the probability of text, we are

actually interested in fixing the parameters at particular

values and determining the likelihood of the data.

67

BIGRAM ISSUES?

For a fixed 𝜶 and 𝜷:

𝜃 w,w/ =
&!,!$ 𝒅 (3∗7(6$)

&!,!∗ 𝒅 (3

𝜃(w′) = &!$ 𝒅 ()
&!∗()|+|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

68

IMPORTANT:

It is common to pad sentences with <S> tokens on each side, which
serve as boundary markers. This helps LMs learn the transitions
between sentences.

Let 𝑿 = “I ate. Did you?”
𝑤! 𝑤" 𝑤# 𝑤$

𝑿 = “<S> I ate <S> Did you? <S>”
𝑤! 𝑤"𝑤# 𝑤$ 𝑤%

à
𝑤9 𝑤:

Generation

69

• We can also use these LMs to generate text

• Generate the very first token manually by making it be <S>

• Then, generate the next token by sampling from the probability

distribution of possible next tokens (the set of possible next

tokens sums to 1)

• When you generate be <S> again, that represents the end of

the current sentence

Example of Bigram generation

70

• Force a <S> as the first token

• Of the bigrams that start with <S>, probabilistically pick one

based on their likelihoods

• Let’s say the chosen bigram was <S>_The

• Repeat the process, but now condition on “The”. So, perhaps

the next select Bigram is “The_dog”

• The sentence is complete when you generate a bigram whose

second half is <S>

Imagine more context

Language Modelling

72

Better Approach: n-gram model

Let’s factor in context (in practice, a window of size n)

𝑃 𝑥!, … , 𝑥" =&
#$!

"

𝑝 𝑥# 𝑥#8!, … , 𝑥!)

Language Modelling

73

Better Approach: n-gram model

The likelihood of any event
occurring hinges upon all
prior events occurring

𝑃 𝑥!, … , 𝑥" =&
#$!

"

𝑝 𝑥# 𝑥#8!, … , 𝑥!)

Language Modelling

74

Better Approach: n-gram model

The likelihood of any event
occurring hinges upon all
prior events occurring

𝑃 𝑥!, … , 𝑥" =&
#$!

"

𝑝 𝑥# 𝑥#8!, … , 𝑥!)

This compounds for all
subsequent events, too

75

Outline

Recap where we are

NLP Introduction

Language Models

Unigrams

Bigrams

Perplexity

76

Outline

Recap where we are

NLP Introduction

Language Models

Unigrams

Bigrams

Perplexity

Perplexity

77

N-gram models seem useful, but how can we measure
how good they are?

Can we just use the likelihood values?

Perplexity

78

Almost!

The likelihood values aren’t adjusted for the length of sequences,
so we would need to normalize by the sequence lengths.

Perplexity

79

The best language model is one that
best predicts an unseen test set

Perplexity, denoted as 𝑃𝑃, is the inverse probability of the test set,
normalized by the number of words.

𝑃𝑃 𝑤!, … , 𝑤" = 𝑝 𝑤!, 𝑤9, … , 𝑤: 8!/:

=
% 1
𝑝 𝑤!, 𝑤9, … , 𝑤:

Perplexity

80

Perplexity is also equivalent to the exponentiated negative log-
likelihood normalized:

𝑃𝑃 𝑤!, … , 𝑤" = 𝑝 𝑤!, 𝑤9, … , 𝑤: 8!/:

=
% 1
𝑝 𝑤!, 𝑤9, … , 𝑤:

= 28<, where l = !
:
∑%$!& log(𝑝 𝑤%)

Perplexity

81

Very related to entropy, perplexity measures the uncertainty of the
model for a particular dataset. So, very high perplexity scores
correspond to having tons of uncertainty (which is bad).

Perplexity also represents the average number of bits needed to
represent each word. You can view this as the branching factor at
each step. That is, the more branches (aka bits) at each step, the
more uncertainty there is.

Perplexity

82

Good models tend to have perplexity scores around 40-100 on

large, popular corpora.

If our model assumed a uniform distribution of words, then our

perplexity score would be:

𝑉 = the # of unique word types

Perplexity

83

Example: let our corpus 𝑋 have only 3 unique words {the, dog,

ran} but have a length of 𝑁.

𝑃𝑃 𝑋 = % 1
1
3

: =
% 3: = 3

Perplexity

84

More generally, if we have 𝑀 unique words for a sequence of

length 𝑁.

𝑃𝑃 𝑋 = % 1
1
𝑀

: =
% 𝑀: = 𝑀

Perplexity

85

Example perplexity scores: when trained on a corpus of 38 million

words and tested on 1.5 million words:

model perplexity

unigram 962

bigram 170

trigram 109

SUMMARY
• Language models estimate the probability of sequences and can

predict the most likely next word

• We can probabilistically generate sequences of words

• We can measure performance of any language model

• Unigrams provide no context and are not good

• Bi-grams and Tri-grams are better but still have serious weaknesses

