
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Convolutional Neural Networks 3

CS109B, PROTOPAPAS, GLICKMAN, TANNER 2

Outline

1. Questions/Review

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER 3

Outline

1. Questions/Review

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER 4

From last lecture

+ ReLU + ReLU

CS109B, PROTOPAPAS, GLICKMAN, TANNER 5

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER 6

Training CNNs

Backprop works the
same way.

Remember you can
think of a kernel as a
single neuron.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 7

Regularization for CNN

• L2 and L1 work the same way as in FFNN

• Data Augmentation is the same

• Early Stopping same as in FFNN

• Dropout is slightly different – not the same effect as dropout with FFNN.

• Dropout in CNN still allows the weights in a kernel to be trained.

• The name is misleading

• The effect of dropout on convolutional layers amounts to multiplying
Bernoulli noise with the network's feature maps.

So, if you try adding dropout after a convolutional layer and get bad results,
don’t be disappointed! There doesn’t appear that there is a good reason
it should provide good results.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 8

Outline

1. Questions/Review

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER 9

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

Forward mode, 2x2 stride 2x2

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

MASK

Max Pooling

CS109B, PROTOPAPAS, GLICKMAN, TANNER 10

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

MASK

Forward mode, 2x2 stride 2x2

Max Pooling

CS109B, PROTOPAPAS, GLICKMAN, TANNER 11

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

MASK

Forward mode, 2x2 stride 2x2

Max Pooling

CS109B, PROTOPAPAS, GLICKMAN, TANNER 12

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x

MASK

Forward mode, 2x2 stride 2x2

Max Pooling

CS109B, PROTOPAPAS, GLICKMAN, TANNER 13

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

Forward mode, 2x2 stride 2x2

Max Pooling

CS109B, PROTOPAPAS, GLICKMAN, TANNER 14

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 15

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

0 0

1 0

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 16

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

0 0 2 0

1 0 0 0

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 17

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

0 0 2 0

1 0 0 0

2 0

0 0

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 18

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

0 0 2 0

1 0 0 0

2 0 5 0

0 0 0 0

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 19

Backward propagation of Maximum Pooling Layer

2 4 8 3

9 3 4 2

5 4 6 3

2 3 1 3

9 8

5 6

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

x

x

x x

MASK

1 2

2 5

DERIVATIVES

0 0 2 0

1 0 0 0

2 0 5 0

0 0 0 0

Reverse mode

Max Pooling

DERIVATIVES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 20

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field, dilated CNNs

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER

CS109B, PROTOPAPAS, GLICKMAN, TANNER 22

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e., be affected by).

The receptive field size is a crucial issue in many visual tasks, as the
output must respond to large enough areas in the image to capture
information about large objects.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 23

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

𝑊!
! 𝑊"

! 𝑊#
!

Input

𝑎𝟏!

=

×𝑔 ∑ ××

Layer 1

activation

1D Kernel

Activation
map

element

CS109B, PROTOPAPAS, GLICKMAN, TANNER 24

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

𝑊!
! 𝑊"

! 𝑊#
!

𝑎𝟏!

=
𝑎"!

×𝑔 ∑ ××
Input

Layer 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 25

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

𝑊!
! 𝑊"

! 𝑊#
!

𝑎𝟏!

=

𝑎"! 𝑎𝟑!

×𝑔 ∑ ××
Input

Layer 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 26

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

Input

Layer 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 27

Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

Input

Layer 1

Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 28

Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below.

Input

Layer 1

Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 29

Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below.

Input

Layer 1

Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 30

Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below.

Input

Layer 1

Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 31

Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below.

Input

Layer 1

Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 32

Layers Receptive Field

The receptive field for layer 𝐿, 𝑟#, can be
calculated using the recursive formula:

In 2D, it works the same way.

• 𝑘$kernel size (positive integer)
• 𝑠$ stride (positive integer)

<latexit sha1_base64="8xIhJxc+KjWvO63xXmywjSJJrTo=">AAACOHicbVDLSgMxFM34tr6qLt0Ei6BIy0RE3QhFNy4EK1gtdOqQSTNtaOZBckcow3yWGz/DnbhxoYhbv8C0nYW2Xkg4Oedcbu7xYik02PaLNTU9Mzs3v7BYWFpeWV0rrm/c6ihRjNdZJCPV8KjmUoS8DgIkb8SK08CT/M7rnQ/0uweutIjCG+jHvBXQTih8wSgYyi1eKTe1s1NHJ4GbylOS3aeXmSO5D7uju2forEwcJTpd2MNOrKK2m4qhU5ZJhrV5Zbm8T9xiya7Yw8KTgOSghPKqucVnpx2xJOAhMEm1bhI7hlZKFQgmeVZwEs1jynq0w5sGhjTgupUOF8/wjmHa2I+UOSHgIfu7I6WB1v3AM86AQlePawPyP62ZgH/SSkUYJ8BDNhrkJxJDhAcp4rZQnIHsG0CZEuavmHWpogxM1gUTAhlfeRLcHlTIUcW+PixVz/I4FtAW2ka7iKBjVEUXqIbqiKFH9Ire0Yf1ZL1Zn9bXyDpl5T2b6E9Z3z+oGKze</latexit>

r0 =
LX

l=1

(kl � 1)

l�1Y

i=1

si

!
+ 1

Note: For every max-pooling layer, we multiply the receptive field by the window
size (assuming stride is the same as the window size)

CS109B, PROTOPAPAS, GLICKMAN, TANNER 33

Deep vs shallow network

• We want a large receptive field before
the dense layer.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 34

Deep vs shallow network

• We want a large receptive field before
the dense layer.

• Going deeper resolves this issue, and
we have seen that it does not increase
the number of parameters, especially if
we use max-pooling or stride>1.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 35

Deep vs shallow network

• We want a large receptive field before
the dense layer.

• Going deeper resolves this issue, and
we have seen that it does not increase
the number of parameters, especially if
we use max-pooling or stride>1.

• However, going deeper can lead to slow
learning due to the vanishing gradient
problem.

layers

tr
ai
ni
ng
 e
rr
or

Plain

layers

tr
ai
ni
ng
 e
rr
or

ResNet

“practice”

“theory”

The idea is to allow the network
to become deeper without
increasing the training time

CS109B, PROTOPAPAS, GLICKMAN, TANNER 36

Deep vs shallow network

• We want a large receptive field before
the dense layer.

• Going deeper resolves this issue, and
we have seen that it does not increase
the number of parameters, especially if
we use max-pooling or stride>1.

• However, going deeper can lead to slow
learning due to the vanishing gradient
problem.

Alternatively …
layers

tr
ai
ni
ng
 e
rr
or

Plain

layers

tr
ai
ni
ng
 e
rr
or

ResNet

“practice”

“theory”

The idea is to allow the network
to become deeper without
increasing the training time

CS109B, PROTOPAPAS, GLICKMAN, TANNER 37

Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened.

Original Idea: Algorithme a trous, an algorithm for wavelet decomposition (Holschneider et al., 1987; Shensa, 1992)

Dilate rate=1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 38

Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened.

Dilate rate=1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 39

Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened.

Dilate rate=1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 40

Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened.

Dilate rate=1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 41

Dilated CNNs

2D Example: 2x2 kernel, stride=1, dilate rate=1

PROTOPAPAS

CS109B, PROTOPAPAS, GLICKMAN, TANNER 43

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Weights and feature maps visualization

CS109B, PROTOPAPAS, GLICKMAN, TANNER 44

What to Visualize for Neural Network Models?
For logistic regression, we can
interrogate the model by printing out the weights of the model.

For a neural network classifier, would it
be helpful to print out all the weights?

<latexit sha1_base64="zFQz1VM3OPQzCHOxiDzjsT3Fu+s=">AAACS3icbVDPa9swGJXTH+vStcu24y5ioZBCCfYY2y6BsF527GBpC7EXZPlzIipbQvq8LRj/f7v00lv/iV566Bg7TE7Nmqb9QOLx3vfQ04u1FBZ9/9Jrra1vbD7Zetrefraz+7zz4uWxVYXhMOJKKnMaMwtS5DBCgRJOtQGWxRJO4rPDWj/5DsYKlX/FuYYoY9NcpIIzdNSkE+vefBDQMBOJuxjO4rT8UR38xz+r/UGoNBiGyuQsg9KKaaZEUoUSUuzdeb6VISpdLTlDI6Yz3J90un7fXwx9CIIGdEkzR5PORZgoXmSQI5fM2nHga4xKZlBwCVU7LCxoxs/YFMYO1qlsVC66qOieYxKaKuNOjnTBLjtKllk7z2K3WQe1q1pNPqaNC0w/RqXIdYGQ89uH0kJSVLQulibCAEc5d4BxI1xWymfMMI6u/rYrIVj98kNw/LYfvO/7X951h5+aOrbIa/KG9EhAPpAh+UyOyIhw8otckRvy2zv3rr0/3t/b1ZbXeF6Re9Pa+AfXzrXG</latexit>

p(y = 1 | w,x) = sigmoid
�
w>x

�

<latexit sha1_base64="sUbaaUzGT577o8aKUD093LNN4dI=">AAACT3icbZFNa9tAEIZXTtI4bto47TGXJaZgQzFSCG0vAdNeekyg/gDLmNVqJC9ZacXuKI0R+oe9NLf+jV56aClduUpw7Azs8vDODDP7bpBJYdB1fziNnd29Z/vNg9bzwxcvj9rHr0ZG5ZrDkCup9CRgBqRIYYgCJUwyDSwJJIyD609VfnwD2giVfsFlBrOExamIBGdopXk7yrrLC4/6iQjtxXARRMXX8u0D35a9C19loBkqnbIECiPiRImw9CVE2PUXDIu4nBf3DeOy7K41+1rEC+zN2x23766CboNXQ4fUcTlv3/mh4nkCKXLJjJl6boazgmkUXELZ8nMDGePXLIapxWozMytWfpT0jVVCGiltT4p0pa53FCwxZpkEtrLa1GzmKvGp3DTH6MOsEGmWI6T8/6AolxQVrcylodDAUS4tMK6F3ZXyBdOMo/2CljXB23zyNozO+t67vnt13hl8rO1okhNySrrEI+/JgHwml2RIOPlGfpLf5I/z3fnl/G3UpQ2nhtfkUTQO/gH17bZK</latexit>

p(y = 1 | w,x) = sigmoid (ĝW(x))

INPUT

HIDDEN LAYERS OUTPUT LAYER

CS109B, PROTOPAPAS, GLICKMAN, TANNER 45

Weight Space Versus Function Space

While it's convenient to build up a complex function by composing simple
ones -as in neural networks- understanding the impact of each weight on
the outcome is difficult.

In fact, the relationship between weights of a neural network and the
function the network represents is extremely complicated:

1. the same function may be represented by two very different set of
weights for the same architecture

2. the architecture may be overly expressive - it can express the function
!𝑔 using a subset of the weights and hidden nodes (i.e. the trained model
can have weights that are zero or nodes that contribute little to the
computation).

CS109B, PROTOPAPAS, GLICKMAN, TANNER 46

Lessons for Visualization

Choosing/designing machine learning visualization requires that we
think about:

Why and for whom to visualize: for example

– are we visualizing to diagnose problems with our models?

– are we visualizing to interpret our models’ meaningfulness?

– are we visualizing to teach deep learning concepts?

What and how to visualize: for example

– do we visualize decision boundaries, weights of our model,
activations, gradients, performance metrics?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 49

Activations and Weights

By visualizing the network weights and activations as we train, we can
diagnose issues that ultimately impact model performance.

The following visualizes the distribution of activations in two hidden layers
over the course of training. What problems do we see?

From: Tensorboard

https://www.tensorflow.org/tensorboard

CS109B, PROTOPAPAS, GLICKMAN, TANNER 51

What to Visualize for CNNs?

The first things to try are:
1. visualize the result of applying a learned filter to an image

2. visualize the filters themselves:

CS109B, PROTOPAPAS, GLICKMAN, TANNER 53

Occlusion methods

Occlusion methods attributes importance for the classification
of the image. Occlusion involves running a patch over the entire
image to see which pixels affect the classification the most.

PROTOPAPAS

Exercise: Investigating CNNs

The goal of the exercise is to investigate the
building blocks of a CNN, such as kernels,
filters, and feature maps using a CNN model
trained on the CIFAR-10 dataset.

• Use a pre-trained model trained on the
CIFAR-10 dataset

• Investigate the kernels & filters

• Investigate the feature maps & activation
maps

https://www.cs.toronto.edu/~kriz/cifar.html

PROTOPAPAS

Exercise: Image Occlusion

The aim of this exercise is to understand occlusion.
Occlusion involves running a patch over the entire
image to see which pixels affect the classification
the most.

