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From last lecture

+ ReLU + ReLU
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Training CNNs

Backprop works the 
same way. 

Remember you can 
think of a kernel as a 
single neuron.
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Regularization for CNN

• L2 and L1 work the same way as in FFNN 

• Data Augmentation is the same

• Early Stopping same as in FFNN

• Dropout is slightly different – not the same effect as dropout with FFNN. 

• Dropout in CNN still allows the weights in a kernel to be trained.

• The name is misleading

• The effect of dropout on convolutional layers amounts to multiplying 
Bernoulli noise with the network's feature maps.

So, if you try adding dropout after a convolutional layer and get bad results, 
don’t be disappointed! There doesn’t appear that there is a good reason 
it should provide good results.
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Outline

1. Review from last lecture

2. Training CNNs 

3. BackProp of MaxPooling layer 
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5. Weights and feature maps visualization
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature is looking at (i.e., be affected by).

The receptive field size is a crucial issue in many visual tasks, as the 
output must respond to large enough areas in the image to capture 
information about large objects.
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1
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Layers Receptive Field
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Layers Receptive Field 

The receptive field is defined as the region in the input space that a 
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1 
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Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below. 
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Layer 2
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Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below. 
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Layers Receptive Field

The receptive field for layer 𝐿, 𝑟#, can be 
calculated using the recursive formula:

In 2D, it works the same way.  

• 𝑘$kernel size (positive integer)
• 𝑠$ stride (positive integer)

<latexit sha1_base64="8xIhJxc+KjWvO63xXmywjSJJrTo="></latexit>

r0 =
LX

l=1

 
(kl � 1)

l�1Y

i=1

si

!
+ 1

Note: For every max-pooling layer, we multiply the receptive field by the window 
size (assuming stride is the same as the window size) 
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Deep vs shallow network

• We want a large receptive field before 
the dense layer. 
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Deep vs shallow network

• We want a large receptive field before 
the dense layer. 

• Going deeper resolves this issue, and 
we have seen that it does not increase 
the number of parameters, especially if 
we use max-pooling or stride>1.
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Deep vs shallow network

• We want a large receptive field before 
the dense layer. 

• Going deeper resolves this issue, and 
we have seen that it does not increase 
the number of parameters, especially if 
we use max-pooling or stride>1.

• However, going deeper can lead to slow 
learning due to the vanishing gradient 
problem. 
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The idea is to allow the network 
to become deeper without 
increasing the training time
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Deep vs shallow network

• We want a large receptive field before 
the dense layer. 

• Going deeper resolves this issue, and 
we have seen that it does not increase 
the number of parameters, especially if 
we use max-pooling or stride>1.

• However, going deeper can lead to slow 
learning due to the vanishing gradient 
problem. 
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Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the 
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened. 

Original Idea: Algorithme a trous, an algorithm for wavelet decomposition (Holschneider et al., 1987; Shensa, 1992)

Dilate rate=1
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Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the 
kernel elements.

• These are called Dilated Convolutions.

• Dilation rate indicates how much the kernel is widened. 

Dilate rate=1
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Dilated CNNs

2D Example: 2x2 kernel, stride=1, dilate rate=1



PROTOPAPAS
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What to Visualize for Neural Network Models?
For logistic regression,                                                             we can 
interrogate the model by printing out the weights of the model.

For a neural network classifier,                                                               would it 
be helpful to print out all the weights?

<latexit sha1_base64="zFQz1VM3OPQzCHOxiDzjsT3Fu+s="></latexit>

p(y = 1 | w,x) = sigmoid
�
w>x

�

<latexit sha1_base64="sUbaaUzGT577o8aKUD093LNN4dI="></latexit>

p(y = 1 | w,x) = sigmoid (ĝW(x))

INPUT

HIDDEN LAYERS OUTPUT LAYER
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Weight Space Versus Function Space

While it's convenient to build up a complex function by composing simple 
ones  -as in neural networks- understanding the impact of each weight on 
the outcome is difficult.

In fact, the relationship between weights of a neural network and the 
function the network represents is extremely complicated:

1. the same function may be represented by two very different set of 
weights for the same architecture

2. the architecture may be overly expressive - it can express the function 
!𝑔 using a subset of the weights and hidden nodes (i.e. the trained model 
can have weights that are zero or nodes that contribute little to the 
computation).
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Lessons for Visualization

Choosing/designing machine learning visualization requires that we 
think about:

Why and for whom to visualize: for example

– are we visualizing to diagnose problems with our models?

– are we visualizing to interpret our models’ meaningfulness?

– are we visualizing to teach deep learning concepts?

What and how to visualize: for example

– do we visualize decision boundaries, weights of our model, 
activations, gradients, performance metrics?
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Activations and Weights

By visualizing the network weights and activations as we train, we can 
diagnose issues that ultimately impact model performance.

The following visualizes the distribution of activations in two hidden layers 
over the course of training. What problems do we see?

From: Tensorboard

https://www.tensorflow.org/tensorboard
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What to Visualize for CNNs?

The first things to try are:
1. visualize the result of applying a learned filter to an image

2. visualize the filters themselves:
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Occlusion methods

Occlusion methods attributes importance for the classification 
of the image. Occlusion involves running a patch over the entire 
image to see which pixels affect the classification the most. 



PROTOPAPAS

Exercise: Investigating CNNs

The goal of the exercise is to investigate the 
building blocks of a CNN, such as kernels, 
filters, and feature maps using a CNN model 
trained on the CIFAR-10 dataset.

• Use a pre-trained model trained on the 
CIFAR-10 dataset

• Investigate the kernels & filters

• Investigate the feature maps & activation 
maps

https://www.cs.toronto.edu/~kriz/cifar.html


PROTOPAPAS

Exercise: Image Occlusion

The aim of this exercise is to understand occlusion. 
Occlusion involves running a patch over the entire 
image to see which pixels affect the classification 
the most.


