
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Convolutional Neural Networks 2

1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 2

Outline

• Review/Questions

• What are filters?

• What are the dimensions of filters and how we apply from
one layer to the next?

• What is Pooling?

• What Activation Functions do we use?

• Why do we have a Dense Layer?

2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 3

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps
and why are there
multiple feature maps?

Why is there more than one layer?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 4BLURRING

∗

Edge

0.0625				0.125				0.0625
0.125							0.25						0.125
0.0625				0.125				0.0625

0					-1							0
-1					20				-1
0					-1							0

-3						0							3
-6						0							6
-3						0							3

-3						-6							-3
0									0								0
3									6								3

= = = =

Grayscale

SHARPENING VERTICAL LINES HORIZONTAL LINES

CS109B, PROTOPAPAS, GLICKMAN, TANNER 5

Basics of CNNs

5

MLP CNN

• CNNs are composed of layers, but those layers are not fully connected: they have
filters, sets of cube-shaped weights, that are applied throughout the image.

• Each 2D slice of the filters are called kernels.

• These filters introduce translation invariance and parameter sharing.

• How are they applied? Convolution!

hidden layer 1 hidden layer 2

output layerinput

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input
size=32X32

channels=3

Output
size=32X32

1 Filter
size=3x3X3

stride = 1

padding = same

Example: A convolutional layer with one 3x3 filter that takes an 32x32 RGB image as input.

How many parameters does the layer have?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input
size=32X32

channels=3

Output
size=32X32

How many parameters does the layer have?

n_filters x filter_volume + biases = total number of params

1 x (3 x 3 x 3) + 1 = 28

1 Filter
size=3x3X3

stride = 1

padding = same

Example: A convolutional layer with one 3x3 filter that takes an 32x32 RGB image as input.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 8

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

8

CS109B, PROTOPAPAS, GLICKMAN, TANNER 9

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

16

9

Number of
filters

CS109B, PROTOPAPAS, GLICKMAN, TANNER 10

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

16 x 3 x 3

10

Number of
filters

Size of
Filters

CS109B, PROTOPAPAS, GLICKMAN, TANNER 11

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

16 x 3 x 3 x 3

11

Number of
filters

Size of
Kernel

Number of
channels of
prev layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER 12

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

16 x 3 x 3 x 3 + 16

12

Number of
filters

Size of
Kernel

Number of
channels of
prev layer

Biases (one
per filter)

CS109B, PROTOPAPAS, GLICKMAN, TANNER 13

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
input.

• How many parameters does the layer have?

16 x 3 x 3 x 3 + 16 = 448

13

Number of
filters

Size of
Kernel

Number of
channels of
prev layer

Biases (one
per filter)

CS109B, PROTOPAPAS, GLICKMAN, TANNER 14

Convolutional layers (cont)

• To be clear: each filter is convolved with the
entirety of the 3D input cube but generates a
2D feature map.

• Because we have multiple filters, we end up
with a 3D output: one 2D feature map per
filter.

• The feature map dimension can change
drastically from one conv layer to the next: we
can enter a layer with a 32x32x16 input and
exit with a 32x32x128 output if that layer has
128 filters.

14

Feature Maps

Convolution Filters

CS109B, PROTOPAPAS, GLICKMAN, TANNER 15

Traning CNN

In a convolutional layer, we are basically applying multiple
filters over the image to extract different features.

But most importantly, we are learning those filters!

15

CS109B, PROTOPAPAS, GLICKMAN, TANNER 16

Traning CNN

In a convolutional layer, we are basically applying multiple
filters over the image to extract different features.

But most importantly, we are learning those filters!

16

HOW? We use
BackProp and
SGD as we did

with FCNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER 17

Traning CNN

In a convolutional layer, we are basically applying multiple
filters over the image to extract different features.

But most importantly, we are learning those filters!

One thing we’re missing: non-linearity.

17

HOW? We use
BackProp and
SGD as we did

with FCNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER 18

ReLU

We apply non-linear activation after convolution as we did for FCNN.

The most successful non-linear activation function for CNNs is the Rectified
Non-Linear unit (ReLU):

This combats the vanishing gradient problem occurring in sigmoid, it is
easier to compute, and generates sparsity.

18

𝑦 = max(0, 𝑥)

ReLU

Feature Map Activation Map

CS109B, PROTOPAPAS, GLICKMAN, TANNER 19

+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 21

Convolutional layers so far

Multiple parameters to define:

• number of filters

• size of kernels

• stride

• padding

• activation function to use

21

CS109B, PROTOPAPAS, GLICKMAN, TANNER 22

Convolutional layers so far

Multiple parameters to define:

• number of filters

• size of filters

• stride

• padding

• activation function to use

22

set the activation.
Default activation
is ‘linear’

CS109B, PROTOPAPAS, GLICKMAN, TANNER 23

CS109B, PROTOPAPAS, GLICKMAN, TANNER 24

+ ReLU + ReLU

A Convolutional Network

What is Pooling? What is going on here?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 25

Pooling

A pooling layer is a new layer added after the convolutional layer.
Specifically, it is added after a nonlinearity (e.g. ReLU) has been
applied to the feature maps*.

The pooling layer operates upon each activation map separately to
create a new set of the same number of pooled feature maps.

25

* Maxpooling could be applied before ReLU.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 26

Pooling

A pooling layer is a new layer added after the convolutional layer.
Specifically, it is added after a nonlinearity (e.g. ReLU) has been
applied to the feature maps.

The pooling layer operates upon each activation map separately to
create a new set of the same number of pooled feature maps.

Example:

26

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7

max pool with 2x2 window
and stride 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 27

Pooling

A pooling layer is a new layer added after the convolutional layer.
Specifically, it is added after a nonlinearity (e.g. ReLU) has been
applied to the feature maps.

The pooling layer operates upon each activation map separately to
create a new set of the same number of pooled feature maps.

Example:

27

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 7

max pool with 2x2 window
and stride 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 28

Pooling

A pooling layer is a new layer added after the convolutional layer.
Specifically, it is added after a nonlinearity (e.g. ReLU) has been
applied to the feature maps.

The pooling layer operates upon each activation map separately to
create a new set of the same number of pooled feature maps.

Example:

28

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 7 8

max pool with 2x2 window
and stride 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER 29

Pooling

A pooling layer is a new layer added after the convolutional layer.
Specifically, it is added after a nonlinearity (e.g. ReLU) has been
applied to the feature maps.

The pooling layer operates upon each feature map separately to create
a new set of the same number of pooled feature maps.

29

Pooling involves selecting:

• A pooling operation, much like a filter, to be applied to feature maps: e.g.
max,	mean,	median.

• The size of the pooling operation.

• The stride.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 30

Pooling

Pooling involves selecting:

• A pooling operation, much like a filter, to be applied to feature maps:
max,	mean,	median.

• The size of the pooling operation.

• The stride.

30

The size of the pooling operator must be smaller than the size of the feature
map; specifically, it is almost always 2×2 applied with a stride of 2 using
max pooling.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 31

Pooling

Pooling involves selecting:

• A pooling operation, much like a filter to be applied to feature maps: max,	
mean,	median.

• The size of the pooling operation.

• The stride.

31

Invariant to small, “local transitions”
Face detection: enough to check the presence of eyes, not their precise location

Reduces input size of the final fully connected layers (more later)

No learnable parameters

The size of the pooling operator must be smaller than the size of the feature
map; specifically, it is almost always 2×2 applied with a stride of 2 using
max pooling.

CS109B, PROTOPAPAS, GLICKMAN, TANNER 32

Pooling: example with stride 2x2

32

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 8

3 4

max pool with 2x2 window
and stride 2x2

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

3.5 5.5

1.75 2

mean pool with 2x2 window
and stride 2x2

PROTOPAPAS 33

Exercise: Pooling mechanics

The aim of this exercise is to understand the tf.keras
implementation of average and max pooling:

• implement Max Pooling by building a model with a single
MaxPooling2D layer

• Next, implement Average Pooling by building a model with a
single AvgPooling2D layer

• Use the helper code to visualize the output
• Use the hint we provide

CS109B, PROTOPAPAS, GLICKMAN, TANNER 34

+ ReLU + ReLU

A Convolutional Network

What is going on here?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 35

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

35

Pooling Layers Fully connected
Layers

Convolutional
Layers

CS109B, PROTOPAPAS, GLICKMAN, TANNER 36

Building a CNN

36

Pooling Layers Fully connected
Layers

Convolutional Layers

I/O

• Input: 3D cube,
previous set of
feature maps

• Output: 3D cube, one
2D map per filter

Action

• Apply filters to
extract features

• Filters are composed
of small kernels,
learned

• One bias per filter
• Apply activation

function on every
value of feature map

Parameters

• Number of filters
• Size of kernels (W

and H only, D is
defined by input
cube)

• Activation function
• Stride
• Padding

CS109B, PROTOPAPAS, GLICKMAN, TANNER 37

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

37

Fully connected
Layers

Convolutional
Layers Pooling Layers

CS109B, PROTOPAPAS, GLICKMAN, TANNER 38

Building a CNN

38

Pooling Layers

I/O

• Input: 3D cube,
previous set of
feature maps

• Output: 3D cube, one
2D map per filter,
reduced spatial
dimensions

Action

• Reduce
dimensionality

• Extract maximum or
average of a region

• Sliding window
approach

Parameters

• Stride
• Size of window

CS109B, PROTOPAPAS, GLICKMAN, TANNER 39

Convolutional
Layers

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

39

Pooling Layers Fully connected
Layers

CS109B, PROTOPAPAS, GLICKMAN, TANNER 40

+ ReLU + ReLU

A Convolutional Network

What is going on here?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 41

Building a CNN

41

Pooling Layers

Fully connected Layers

I/O

• Input: FLATTENED 3D
cube, previous set of
feature maps

• Output: Probabilities
for each class or
simply prediction for
regression *𝑦

Action

• Aggregate
information from
final feature maps

• Generate final
classification (or
regression)

Parameters

• Number of nodes
• Activation function:

usually changes
depending on role of
the layer. If
aggregating info, use
ReLU. If producing
final classification,
use Softmax. If
regression use linear

CS109B, PROTOPAPAS, GLICKMAN, TANNER 42

+ ReLU + ReLU

A Convolutional Network

What is going on here?

CS109B, PROTOPAPAS, GLICKMAN, TANNER 43

+ ReLU + ReLU

A Convolutional Network

CS109B, PROTOPAPAS, GLICKMAN, TANNER 44

Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images

• Conv1: 8 3x3 filters, stride 1, padding=same

• Conv2: 16 5x5 filters, stride 2, padding=same

• Flatten layer (explained in the next few slides)

• Dense1: 512 nodes

• Dense2: 4 nodes

• How many parameters does this network have?

44

CS109B, PROTOPAPAS, GLICKMAN, TANNER

How many parameters does the layer have if I want to use 8 filters?

n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 = 224

Input
size=32X32

channels=3

Output
(size=32X32,

channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,

padding = same)

filter x 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER

How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 = 3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Fully Connected
(n_nodes=4)

How many parameters?

input x FC1_nodes + FC2_nodes = total number of params

(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 4096)

CS109B, PROTOPAPAS, GLICKMAN, TANNER 48

Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images

• Conv1: 8 3x3 filters, stride 1, padding=same

• Conv2: 16 5x5 filters, stride 2, padding=same

• Flatten layer

• Dense1: 512 nodes

• Dense2: 4 nodes

• How many parameters does this network have?

48

(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 + 4)
Conv1 Conv2 Dense1 Dense2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 49

What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

49

CS109B, PROTOPAPAS, GLICKMAN, TANNER 50

What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges,
corners, etc.

50

CS109B, PROTOPAPAS, GLICKMAN, TANNER 51

What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges,
corners, etc.

• The middle layers learn filters that detect parts of objects.
For faces, they might learn to respond to eyes, noses, etc.

51

CS109B, PROTOPAPAS, GLICKMAN, TANNER 52

What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges,
corners, etc.

• The middle layers learn filters that detect parts of objects.
For faces, they might learn to respond to eyes, noses, etc.

• The last layers have higher representations: they learn to
recognize full objects, in different shapes and positions.

52

CS109B, PROTOPAPAS, GLICKMAN, TANNER 53

CS109B, PROTOPAPAS, GLICKMAN, TANNER 54

CATS

CHAIRS

Layer 1 Layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER 55

CS109B, PROTOPAPAS, GLICKMAN, TANNER 56

More on this in Lecture 18

57

Exercise: Performance measure

• The aim of this exercise is to compare average and max pooling by
measuring accuracy and number of parameters for the classification
of MNIST digits

• Build three MNIST classification models, one with no pooling, one with
average pooling, and one with max pooling, and train them with
similar hyper-parameters

• Compute the number of parameters and the accuracy on the test set
for each model

