
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Convolutional Neural Networks 2

1



CS109B, PROTOPAPAS, GLICKMAN, TANNER 2

Outline

• Review/Questions

• What are filters?

• What are the dimensions of filters and how we apply from 
one layer to the next?

• What is Pooling?

• What Activation Functions do we use?  

• Why do we have a Dense Layer? 

2
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+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 
and why are there 
multiple feature maps?

Why is there more than one layer?
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Basics of CNNs

5

MLP CNN

• CNNs are composed of layers, but those layers are not fully connected: they have
filters, sets of cube-shaped weights, that are applied throughout the image. 

• Each 2D slice of the filters are called kernels.

• These filters introduce translation invariance and parameter sharing.

• How are they applied? Convolution!

hidden layer 1 hidden layer 2

output layerinput
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Input
size=32X32

channels=3

Output
size=32X32

1 Filter
size=3x3X3

stride = 1

padding = same

Example:  A convolutional layer with one 3x3 filter that takes an 32x32 RGB image as input. 

How many parameters does the layer have?
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Input
size=32X32

channels=3

Output
size=32X32

How many parameters does the layer have?

n_filters x filter_volume + biases = total number of params

1 x (3 x 3 x 3) + 1 =  28

1 Filter
size=3x3X3

stride = 1

padding = same

Example:  A convolutional layer with one 3x3 filter that takes an 32x32 RGB image as input. 
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Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

8



CS109B, PROTOPAPAS, GLICKMAN, TANNER 9

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

16

9

Number of 
filters
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Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

16 x 3 x 3

10

Number of 
filters

Size of 
Filters
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Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

16 x 3 x 3 x 3

11

Number of 
filters

Size of 
Kernel

Number of 
channels of 
prev layer
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Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

16 x 3 x 3 x 3  + 16 

12

Number of 
filters

Size of 
Kernel

Number of 
channels of 
prev layer

Biases (one 
per filter)



CS109B, PROTOPAPAS, GLICKMAN, TANNER 13

Examples

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as 
input. 

• How many parameters does the layer have?

16 x 3 x 3 x 3  + 16   =  448

13

Number of 
filters

Size of 
Kernel

Number of 
channels of 
prev layer

Biases (one 
per filter)
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Convolutional layers (cont)

• To be clear: each filter is convolved with the 
entirety of the 3D input cube but generates a 
2D feature map.

• Because we have multiple filters, we end up 
with a 3D output: one 2D feature map per 
filter.

• The feature map dimension can change 
drastically from one conv layer to the next: we 
can enter a layer with a 32x32x16 input and 
exit with a 32x32x128 output if that layer has 
128 filters.

14

Feature Maps

Convolution Filters
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Traning CNN

In a convolutional layer, we are basically applying multiple 
filters over the image to extract different features. 

But most importantly, we are learning those filters!

15
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Traning CNN

In a convolutional layer, we are basically applying multiple 
filters over the image to extract different features. 

But most importantly, we are learning those filters!

16

HOW? We use 
BackProp and 
SGD as we did 

with FCNN
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Traning CNN

In a convolutional layer, we are basically applying multiple 
filters over the image to extract different features. 

But most importantly, we are learning those filters!

One thing we’re missing: non-linearity.

17

HOW? We use 
BackProp and 
SGD as we did 

with FCNN
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ReLU

We apply non-linear activation after convolution as we did for FCNN. 

The most successful non-linear activation function for CNNs is the Rectified 
Non-Linear unit (ReLU):

This combats the vanishing gradient problem occurring in sigmoid, it is 
easier to compute, and generates sparsity.

18

𝑦 = max(0, 𝑥)

ReLU

Feature Map Activation Map
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+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?
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Convolutional layers so far

Multiple parameters to define: 

• number of filters 

• size of kernels 

• stride 

• padding 

• activation function to use 

21
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Convolutional layers so far

Multiple parameters to define: 

• number of filters 

• size of filters 

• stride 

• padding 

• activation function to use 

22

set the activation. 
Default activation 
is ‘linear’
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+ ReLU + ReLU

A Convolutional Network

What is Pooling? What is going on here?
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Pooling

A pooling layer is a new layer added after the convolutional layer. 
Specifically, it is added after a nonlinearity (e.g. ReLU) has been 
applied to the feature maps*.

The pooling layer operates upon each activation map separately to 
create a new set of the same number of pooled feature maps.

25

* Maxpooling could be applied before ReLU.
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Pooling

A pooling layer is a new layer added after the convolutional layer. 
Specifically, it is added after a nonlinearity (e.g. ReLU) has been 
applied to the feature maps.

The pooling layer operates upon each activation map separately to 
create a new set of the same number of pooled feature maps.

Example: 

26

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7

max pool with 2x2 window
and stride 1
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Pooling

A pooling layer is a new layer added after the convolutional layer. 
Specifically, it is added after a nonlinearity (e.g. ReLU) has been 
applied to the feature maps.

The pooling layer operates upon each activation map separately to 
create a new set of the same number of pooled feature maps.

Example: 

27

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 7

max pool with 2x2 window
and stride 1
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Pooling

A pooling layer is a new layer added after the convolutional layer. 
Specifically, it is added after a nonlinearity (e.g. ReLU) has been 
applied to the feature maps.

The pooling layer operates upon each activation map separately to 
create a new set of the same number of pooled feature maps.

Example: 

28

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 7 8

max pool with 2x2 window
and stride 1
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Pooling

A pooling layer is a new layer added after the convolutional layer. 
Specifically, it is added after a nonlinearity (e.g. ReLU) has been 
applied to the feature maps.

The pooling layer operates upon each feature map separately to create 
a new set of the same number of pooled feature maps.

29

Pooling involves selecting:

• A pooling operation, much like a filter, to be applied to feature maps: e.g.
max,	mean,	median. 

• The size of the pooling operation. 

• The stride.
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Pooling

Pooling involves selecting:

• A pooling operation, much like a filter, to be applied to feature maps: 
max,	mean,	median. 

• The size of the pooling operation. 

• The stride.

30

The size of the pooling operator must be smaller than the size of the feature 
map; specifically, it is almost always 2×2 applied with a stride of 2 using 
max pooling.



CS109B, PROTOPAPAS, GLICKMAN, TANNER 31

Pooling

Pooling involves selecting:

• A pooling operation, much like a filter to be applied to feature maps: max,	
mean,	median. 

• The size of the pooling operation. 

• The stride.

31

Invariant to small, “local transitions”
Face detection: enough to check the presence of eyes, not their precise location

Reduces input size of the final fully connected layers (more later) 

No learnable parameters

The size of the pooling operator must be smaller than the size of the feature 
map; specifically, it is almost always 2×2 applied with a stride of 2 using 
max pooling.
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Pooling: example with stride 2x2

32

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

7 8

3 4

max pool with 2x2 window
and stride 2x2

1 1 2 5

5 7 7 8

3 1 1 0

1 2 3 4

3.5 5.5

1.75 2

mean pool with 2x2 window
and stride 2x2
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Exercise: Pooling mechanics

The aim of this exercise is to understand the tf.keras
implementation of average and max pooling:

• implement Max Pooling by building a model with a single   
MaxPooling2D layer

• Next, implement Average Pooling by building a model with a 
single AvgPooling2D layer

• Use the helper code to visualize the output
• Use the hint we provide
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+ ReLU + ReLU

A Convolutional Network

What is going on here?
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

35

Pooling Layers Fully connected 
Layers

Convolutional 
Layers
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Building a CNN

36

Pooling Layers Fully connected 
Layers

Convolutional Layers

I/O

• Input: 3D cube, 
previous set of 
feature maps

• Output: 3D cube, one 
2D map per filter

Action

• Apply filters to 
extract features

• Filters are composed 
of small kernels, 
learned

• One bias per filter
• Apply activation 

function on every 
value of feature map

Parameters

• Number of filters
• Size of kernels (W 

and H only, D is 
defined by input 
cube)

• Activation function
• Stride
• Padding
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

37

Fully connected 
Layers

Convolutional 
Layers Pooling Layers
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Building a CNN

38

Pooling Layers

I/O

• Input: 3D cube, 
previous set of 
feature maps

• Output: 3D cube, one 
2D map per filter, 
reduced spatial 
dimensions

Action

• Reduce 
dimensionality

• Extract maximum or 
average of a region 

• Sliding window 
approach

Parameters

• Stride
• Size of window
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Convolutional 
Layers

Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:

39

Pooling Layers Fully connected 
Layers
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+ ReLU + ReLU

A Convolutional Network

What is going on here?
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Building a CNN

41

Pooling Layers

Fully connected Layers

I/O

• Input: FLATTENED 3D 
cube, previous set of 
feature maps

• Output: Probabilities 
for each class or 
simply prediction for 
regression *𝑦

Action

• Aggregate 
information from 
final feature maps

• Generate final 
classification (or 
regression) 

Parameters

• Number of nodes
• Activation function: 

usually changes 
depending on role of 
the layer. If 
aggregating info, use 
ReLU. If producing 
final classification, 
use Softmax. If 
regression use linear
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+ ReLU + ReLU

A Convolutional Network

What is going on here?
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+ ReLU + ReLU

A Convolutional Network
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Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images

• Conv1: 8 3x3 filters, stride 1, padding=same

• Conv2: 16 5x5 filters, stride 2, padding=same

• Flatten layer (explained in the next few slides)

• Dense1: 512 nodes

• Dense2: 4 nodes

• How many parameters does this network have?

44
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How many parameters does the layer have if I want to use 8 filters?

n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 =  224

Input
size=32X32

channels=3

Output
(size=32X32,

channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,

padding = same)

filter x 1
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How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 =  3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters
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Fully Connected
(n_nodes=4)

How many parameters?

input x FC1_nodes + FC2_nodes = total number of params

(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 4096)
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Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images

• Conv1: 8 3x3 filters, stride 1, padding=same

• Conv2: 16 5x5 filters, stride 2, padding=same

• Flatten layer

• Dense1: 512 nodes

• Dense2: 4 nodes

• How many parameters does this network have?

48

(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 + 4)
Conv1 Conv2 Dense1 Dense2



CS109B, PROTOPAPAS, GLICKMAN, TANNER 49

What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

49
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What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges, 
corners, etc.

50
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What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges, 
corners, etc.

• The middle layers learn filters that detect parts of objects. 
For faces, they might learn to respond to eyes, noses, etc.

51
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What do CNN layers learn?

• Each CNN layer learns features of increasing complexity.

• The first layers learn basic feature detection filters: edges, 
corners, etc.

• The middle layers learn filters that detect parts of objects. 
For faces, they might learn to respond to eyes, noses, etc.

• The last layers have higher representations: they learn to 
recognize full objects, in different shapes and positions.

52
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CATS

CHAIRS

Layer 1 Layer 2
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More on this in Lecture 18
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Exercise: Performance measure

• The aim of this exercise is to compare average and max pooling by 
measuring accuracy and number of parameters for the classification 
of MNIST digits

• Build three MNIST classification models, one with no pooling, one with 
average pooling, and one with max pooling, and train them with 
similar hyper-parameters

• Compute the number of parameters and the accuracy on the test set 
for each model


