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The code
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mnist_cnn_model = Sequential() # Create sequential model

# Add network layers

mnist cnn model.add(Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)))
mnist_cnn_model.add(MaxPooling2D( (2, 2)))

mnist cnn model.add(Conv2D(64, (3, 3), activation='relu'))
mnist_cnn_model.add(MaxPooling2D( (2, 2)))

mnist cnn_model.add(Conv2D(64, (3, 3), activation='relu'))

mnist cnn _model.add(Flatten())
mnist_ cnn model.add(Dense(64, activation='relu'))

mnist cnn model.add(Dense(10, activation='softmax'))

mnist cnn model.compile(optimizer=optimizer,
loss=loss,
metrics=metrics)

history = mnist _cnn model.fit(train images, train_labels,
hpochs=epochs,
batch_size=batch_size,
verbose=verbose,
validation_split=0.2,
# validation data=(X val, y val) # IF you have val data
shuffle=True)
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DONE
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Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN
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Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element x of a set X to a
single element y of asetY

X — f -y

%ﬁ.’* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element x of a set X to a
single element y of asetY

X — f -y

Neural networks can approximate a wide variety of functions

<
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Graphical representation of simple functions

We build these complex functions by composing simple functions of the
form:

hy(x) = f(XW + b)
where f is the activation function.

We represent our simple function as a graph

Each edge in this graph
represents multiplication
by a different weight, w;.

) |
Read leHt o right
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Quick review of MLPs

Loss function

output layer

hidden layer 1 hidden layer 2
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Quick review of MLPs

| do not like
callingita

Loss function

output layer

hidden layer 1 hidden layer 2
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Quick review of MLPs

Activation
depends
on task

| do not like
calling it a

Loss function

output layer

Loss
function
depends
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MLP as an additive model

input

hidden layer 1

Y = Z W F(wOX +pD) + b®@
j

output layer
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MLP as an additive model

input

hidden layer 1

Y = Z w,® f(W(l)X + M) + @
J

J
i

“ Basis functions.

output layer
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MLP as an additive model

Y = Z W F(wOX +pD) + b®@
J | J
i

a . ‘ Basis functions.

B

rY is a linear combination of these basis

input :
output layer |functions.

We learn the coefficients of the basis

hidden layer 1 functions I/IG.(Z) as well as the parameters of

the basis functions (m(l),ﬁ_j)

L
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MLP as an additive model (cont)

From lecture 1:
E(Y[X)= ag + arx + B1(x — &) +B2(x — &) 4 + -+ + Bre(x — &)+

Minor modification:
E(Y|x)= ay + ,Bo(x - °°)+ + B1(x — 51)+"‘.32(x - s;z)+ + et ﬁk(x - S;k)+

\_Y_I

ReLU(Wx + &) where W =1

Location of Knots can be learned
as well as the ’s and «

input layer

hidden
layer 1

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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MLP as an additive model (cont)

3 knots

2 - _— MLP
— = Linear Additive Model
]=| =—— Truth
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. = 1.98248
, = 5.03615
& = 7.91110
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Main drawbacks of MLPs

* MLPs use one node for each input (e.g. pixel in an image, or 3
pixel values in RGB case). The number of weights rapidly
becomes unmanageable for large images.

* Training difficulties arise, overfitting can appear.

* MLPs react differently to an input (images) and its shifted
version - they are not translation invariant.

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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MLP: number of weights

input

hidden layer 1

+> W, X + b,

How many weights?
— W,oX + b,

 IfX€ R then |W| =1
> WX + bs .« IfX € R™then |W| =m
> WX + b,
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MLP: number of weights for images

If we consider each pixel as an
independent predictor, then X € R*** or
16 predictors, there are 16 weights for
each node in the fist hidden layer.

X11 oo

A strong motivation for performing model selection is to avoid overfitting, which can W
happen when:

e there are too many predictors

* the feature space is high dimensional
* the polynomial degree is too high

* too many cross-terms are considered

CS109B, PROTOPAPAS, GLICKMAN, TANNER 30




Common Dataset: MNIST

MNIST database is a
large set of handwritten
digits.

It contains 60,000 training
Images and 10,000 testing
Images.

Every image 28x28 pixel
and anti-aliased, which
Introduced grayscale levels
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MLP: number of weights for images

Example: CIFAR10 is a dataset of images that are commonly used to train
machine learning models. It contains 60,000 32x32 color images in 10
different classes.

Each pixel is a feature: an MLP would have 32x32x3 +1 = 3073 weights per
neuron!

airplane automobile bird cat deer
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MLP: number of weights for images

Example: ImageNet is a large visual
database designed for use in visual object
recognition software research. More than 14
million images have been hand-annotated by
the project to indicate what objects are
pictured. In at least one million of the
Images, bounding boxes are also provided.

Images are usually 224x224x3: an MLP would
have 150129 weights per neuron. If the first
layer of the MLP is around 128 nodes, which is
small, this already becomes very heavy to
train.

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Will my neural network
stop overfitting someday?

AS SURE AS THE
SUN WILL RISE

MRLOVENSTEIN.COM
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:
* PCA
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

* PCA
« Stepwise Variable Selection
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

* PCA

« Stepwise Variable Selection
* Regularization, in particular L1 will produce sparsity
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

* PCA

« Stepwise Variable Selection
* Regularization, in particular L1 will produce sparsity
* Drop predictors that are highly correlated
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

* PCA

« Stepwise Variable Selection

* Regularization, in particular L1 will produce sparsity
* Drop predictors that are highly correlated

* Summarize input (image) with high level features => feature
extraction or representation learning

CS109B, PROTOPAPAS, GLICKMAN, TANNER 40




Feature extraction

Features:

1. Bald

2. Grey hair

3. Oval shape head
4. Glasses

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Feature extraction

Features:

1. Bald

2. Grey hair

3. Oval shape head
4. Glasses

WAIT FOR IT
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Feature extraction

Features:

Bald

Grey hair

Oval shape head
Glasses
Awesome

A
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Feature extraction

Features:

Bald

Grey hair

Oval shape head
Glasses
Awesome

A

Features:

Bald

Grey hair

Oval shape head
No Glasses
Awesome

A
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Feature extraction

Features: T
Bald A
Grey hair y
Oval shape head
Glasses
Awesome

A

= X —

Features:

Bald

Grey hair

Oval shape head
No Glasses
Awesome _

A
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Image analysis

Imagine that we want to recognize swans in an image:

Ir [ rom Camilo FOSCO CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Image analysis

Imagine that we want to recognize swans in an image:

Oval-shaped white
blob (body)

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Image analysis

Imagine that we want to recognize swans in an image:

Round, elongated
oval with orange
protuberance

Oval-shaped white
blob (body)
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Image analysis

Imagine that we want to recognize swans in an image:

Round, elongated
oval with orange

protuberance
Oval-shaped white
blob (body)
Long white
rectangular shape
(neck)

S rom Camilo Fosco CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Cases can be a bit more complex...

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Cases can be a bit more complex...

Round, elongated
head with orange
or black beak

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Cases can be a bit more complex...

Round, elongated
head with orange
or black beak

Long white neck,
square shape
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52



Cases can be a bit more complex...

Round, elongated
head with orange

or black beak Oval-shaped white

body with or
without large white
symmetric blobs
(wings)

Long white neck,
square shape

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Now what?

Round, elongated head with
orange or black beak, can
be turned backwards

Long white neck, can bend
around, not necessarily
straight

White tail, gerferally far

from the head, looks Black feet, under

feathery White, oval shaped T I -
body, with or without different shapes

wings visible

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Now what?

Small black circles,

Round, elongated head with Long white neck, can bend can be facing the Black triangular
orange or black beak, can around, not necessarily camera, sometimes shaped form, on the
be turned backwards straight can see both head, can have

different sizes

White tail, gerferally far

from the head, looks Black feet. under White elongated piece, can Luckily, the
feathery White, oval shaped body, can’have be squared or more coloris
e body, with or without . triangular, can be obstructed .
wings visible SlEEE shapes CS109B, PROTOPAPAS, GLICKMAN, Hatrétimes COﬂSlSte nt
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We need to be able to deal with these cases
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And these
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And these

CS109B, PROTOPAPAS, GLICKMAN, TANNER

58



And these
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And these
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Image features

* We’ve been basically talking about detecting features in images in a very
naive way.

* Researchers built multiple computer vision techniques to deal with these
issues: SIFT, FAST, SURF, BRIEF, etc.

* However, similar problems arose: the detectors where either too general or
too over-engineered. Humans were designing these feature detectors, and
that made them either too simple or hard to generalize.

S = i PR

A +| LT 7 \
SIFT feature INCELLUEE FAST corner

. el e | “T e | T ow| W .

descriptor 2 g = e o g ) detection

» 2 A ul* e iz |l = ;é >< algorithm

n\ \»«: “— o //;

“‘ 3 « I~ .

Image gradients Keypoint descriptor
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Image features (cont)

e What if we learned the features?

* We need a system that can do Representation Learning or Feature
Learning.

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Image features (cont)

e What if we learned the features?

* We need a system that can do Representation Learning or Feature
Learning.

Representation Learning: technique that allows a system to
automatically find relevant features for a given task. Replaces
manual feature engineering.

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Image features (cont)

e What if we learned the features?

* We need a system that can do Representation Learning or Feature
Learning.

Representation Learning: technique that allows a system to
automatically find relevant features for a given task. Replaces
manual feature engineering.

Multiple techniques for this:
* Unsupervised (K-means, PCA, ...).

 Supervised Dictionary learning
* Neural Networks!

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Some things to consider

* Nearby Pixels are more strongly
related that distant ones

* Objects are built up out of
smaller parts

* Images are Local and
Hierarchical

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Images are Invariant

*

=

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Each neuron from the first layer has one weight per pixel. Recall that the importance of
the predictors (here pixels) is given by the value of the coefficient (there the weight W)

W§:
)
}

k

)@
R

b

In this case, the will be
larger to better recognize "cat”.

NS
v
N

\
\

In this case, the blue weights will be
larger.

\
\

N

I
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Each neuron from the first layer has one weight per pixel. Recall that the importance of
the predictors (here pixels) is given by the value of the coefficient (there the weight W)

X -
A O We are learning redundant features.
O Approach is not robust, as cats could
- - appear in yet another position.
—
|
\
\
*
X |
|
| |
| |
i - CS109B, PROTOPAPAS, GLICKMAN, TANNER 69




Solution: Cut the image into smaller pieces.

\ A

——5
=l o
0
®

64 weights per neuron

ggg‘g@ CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Solution: Cut the image to smaller pieces.

X: R¥*4

| t

———=)
O
O
O

64 weights per neuron
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Solution: Cut the image to smaller pieces.

A

| = ) *
— )
W O

O

64 weights per neuron
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Solution: Cut the image to smaller pieces.

“

mx="e ~
®
O

64 weights per neuron

ggg‘g CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Solution: Cut the image to smaller pieces.

X: R¥*4
_\:«7} _ O
X . R8XS \%?/ﬁ@ O
Py = Al
Y A * O
G O

A

7- O
S O
* e O

O

64 weights per neuron 16 weights per neuron but

4 times more training
examples.
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X: RS

Do the same for all images

7

—_—

\\

//‘O

@,
O
O

64 weights per neuron

CS109B, PROTOPAPAS, C

X: R¥*4

01000

16 weights per neuron but
4 times more training
examples.
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What if the cat is not entirely in one of the 4 boxes?

uﬁfﬂw CS109B, PROTOPAPAS, GLICKMAN, TANNER




What if the cat is not entirely in one of the 4 boxes?

X ]R4X4
(\?QW
P
X: RS
L %7@:
Lo~
\ \7&\ %” = = )
w§ —
\sf\\/ T O
O
» C
‘7 .
64 weights per neuron
CS109B, PROTOPAPAS, GLICKMAN, TANNER
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What if the cat is not entirely in one of the 4 boxes?

»
gl

64 weights per neuron

gﬁ,‘* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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What if the cat is not entirely in one of the 4 boxes?

X: R¥*4

o A

A

16 weights per neuron but
25 times more training
examples.

—( )
‘ 0)
O
O

64 weights per neuron

r
[ ] [ ] [ ]
Sliding Window ]
\_
g;%‘f;* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Convolution

vI

s
8
B

|

X11 =

X12 /'O

NN
X44 t

Input

O
O

l

O —>hyy = f(Wy1x11 + Wipxqp + -+ WygXxgq + D)

16 weights

Index here represents the cutout

Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Convolution

l

|

X11 LE : »hi = f(Wigxyq + Wigxqp + -+ WyyXas + b)
X12_— 7 O
>
O 16 weights
1 -
== 0
Input Hidden Layer
Wll W12 W13 W14 xl]_ x12 X13 x14
hy, =2 *
Was X44

Element wise multiplication and addition of all products
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Convolution

IR

O 16 weights
O
Input Hidden Layer
Wll W12 W13 W14 xl]_ x12 X13 x14
— Z %
Was X44

| l

X11 Q/—' —>hi, = f(Wiixyq + Wigxgp + -+ WyyXas + b)

X192 kj/

Element wise multiplication and addition of all products
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Convolution

Lj

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Convolution

Lj

KERNEL, K

X is the cutout of image center at {i, j}

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Convolution

=
I
g

ij —

Index here represents the output
from this operation

Element wise multiplication and addition of all products

Wip| Wiz |Wiz| Wiy X11 | X¥12 | X13 | X14

*

Was X44

r'y 4
KERNEL, K X is the cutout of image center at {i, j}
]

|

= | CONVOLUTION
H=KxX

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Convolution and cross-correlation

 Aconvolutionof f and g, (f * g), is defined as the integral of the
product, having one of the functions inverted and shifted:

(F+9)® = [ f@gEr a)da
a \/ Function is
e Discrete convolution:

inverted and
shifted left by t

(Fr®= ) flagt-a

e Discrete cross-correlation:

FrD®O= ) f@g(t+a)

a=—00

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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“Convolution” Operation

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)=-3

Source Pixel

87



“Convolution” Operation in action

What does convolving an image with a Kernel do?

CS109B, PROTOPAPAS, GLICKMAN, TANNER WI k| ped ia .org
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“Convolution” Operation in action

What does convolving an image with a Kernel do?
Kernel

Edge detection

1 -1 -1
« | -1 8 -1
1 -1 -1
Sharpen
0 -1 0 |
x | -1 5 -1 =
0 -1 0

%ﬁg“* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply[x)
@
O
O
Outputs
LIRCE Convolutipnal Pooling 1 Convolutional  pooling2
layer layer 2
+ Rel :
Why is there more than one layer?

What are feature maps

What is this square? What is Pooling? What is going on here?

and why are there
mu|tip|e feature maps? OTOPAPAS, GLICKMAN, TANNER 92




A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply[x)
@
O
O
Outputs
LIRCE Convolutipnal Pooling 1 Convolutional  pooling2
layer layer 2
+ Rel :
Why is there more than one layer?

Whattsthis-sguare? What are feature maps What is Pooling? What is going on here?

and why are there
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“Convolution” Operation

b
RGB Image ==== —
(7x7x3) ’ﬂ” Convolution Filter
”jg (3x3x3)
.
2

Feature Map
(7x7x1)




A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply|x)
@
O
O
Outputs
LIRCE Convolutipnal Pooling 1 Convolutional  pooling2
layer layer 2
+ Rel

Why is there more than one layer?

| What is going on here?

What is Pooling?
and why are there g
muItipIe feature maps? OTOPAPAS, GLICKMAN, TANNER o=




Why more than one feature map?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

LAYER 1:
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Why more than one feature map?

@w CS109B, PROTOPAPAS, GLICKMAN, TANNER

LAYER 1:

Filter 1: Horizontal Lines
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Why more than one feature map?

@W CS109B, PROTOPAPAS, GLICKMAN, TANNER

LAYER 1:

Filter 1: Horizontal Lines

Filter 2: Vertical Lines
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Why more than one feature map?

@w CS109B, PROTOPAPAS, GLICKMAN, TANNER

LAYER 1:
Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb
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Why more than one feature map?

LAYER 1:
Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb

Different filters identify different features.
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“Convolution” Operation

3 Feature Maps
(7x7x3)
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply[x)
O
O
O
Outputs
LIRCE Convolutipnal Pooling 1 Convolutional  pooling2
layer layer 2
+ Rel :
Why is there more than one layer?
What is Pooling? What is going on here?
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Why more than one layer?
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Why more than one layer?

Layer 2, Filter 1: Combines
horizontal and vertical lines from
Layer 1 produce diagonal lines.
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Why more than one layer?

Layer 2, Filter 1: Combines
horizontal and vertical lines from
Layer 1 produce diagonal lines.

Layer 3, Filter 1: Combines
diagonal lines to identify shapes
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply[x)
@
O
O
Outputs
Input Convolutional Pooling 1 Convolutichal Pooling 2 A
layer 1 layer 2
+ RelU
Why-s-there-meoere-than-onelayer?
What is Pooling? What is going on here?
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So far:

We know that MLPs:

* Do not scale well for images

* Ignore the information brought by pixel position and correlation with
neighbors

e Cannot handle translations

CS109B, PROTOPAPAS, GLICKMAN, TANNER
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So far:

We know that MLPs:

* Do not scale well for images

* Ignore the information brought by pixel position and correlation with
neighbors

e Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties
of images:

* Pixel position and neighborhood have semantic meanings.

* Elements of interest can appear anywhere in the image.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

108



Convolutions - what happens at the edges?

If we apply convolutions on a normal image, the result will be
down-sampled by an amount depending on the size of the
filter.

We can avoid this by padding the edges in different ways.
.‘Eﬂ.:.'.”!:'%‘f.
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Padding

Full padding. Introduces zeros such that all Same padding. Ensures that the
pixels are visited the same number of times by output has the same size as the
the filter. Increases size of output. input.
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Stride

Stride controls how the filter Stride =1
convolves around the input 7x7 Input Volume 5 x5 Output Volume
volume.

The formula for calculating the
output size is:

W —K+ 2P Stl‘lde - 2
= +1

S 7 x 7 Input Volume 3 x 3 Output Volume

Where O is output dim, W is the
Input dim, K is the filter size, P r:
IS padding and S the stride
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Exercise: Pavlos vs Not Pavlos

The aim of this exercise is to train a
dense neural network and a CNN to
compare the parameters between
them

 Augment the dataset since we only
have one image of Pavlos and the eagle

* Build a simple feed-forward network
and train it

e Use the convolution layer to build a
simple CNN and train it like the
network before

 Compare performance and parameters

PAVLOS NOT PAVLOS

ko

height and width of
the 2D convolution

number of output :
window

filters in the
convolution

"valid" means no padding.
"same" results in padding
with zeros evenly
tf.ker ayers.C (

filters, kernel_size, strides=(1, 1), padding='valid',

data_format=None, dilation e=(1, 1), groups=1, activation=None,
use_bias=True, kernel_initifizer='glorot_uniform',
bias_initializer='zeros', kqMihel_regularizer=None,

bias_regularizer=None, actijky_regularizer=None, kernel_constraint=None,
bias_constraint=None, **kwa

strides of the
convolution along the
height and width
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  faature maps
feature maps

ply[x)
@
O
O
Outputs
Input Convolutional Pooling 1 Convolutional  pogling2 1
layer 1 layer 2
+ RelU
+ RelU

What is Pooling? What is going on here?
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