Convolutional Neural Networks 1

CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

A Convolutional Network

The code

In []

```
mnist_cnn_model = Sequential() # Create sequential model
# Add network layers
mnist_cnn_model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
mnist_cnn_model.add(MaxPooling2D((2, 2)))
mnist cnn model.add(Conv2D(64, (3, 3), activation='relu'))
mnist_cnn_model.add(MaxPooling2D((2, 2)))
mnist_cnn_model.add(Conv2D(64, (3, 3), activation='relu'))
mnist_cnn_model.add(Flatten())
mnist_cnn_model.add(Dense(64, activation='relu'))
mnist_cnn_model.add(Dense(10, activation='softmax'))
mnist_cnn_model.compile(optimizer=optimizer,
    loss=loss,
    metrics=metrics)
history = mnist_cnn_model.fit(train_images, train_labels,
epochs=epochs,
batch_size=batch_size,
verbose=verbose,
validation_split=0.2,
# validation_data=(X_val, y_val) # IF you have val data
shuffle=True)
```


DONE

A Convolutional Network

Sigmoid

$$
y=\frac{1}{1+e^{-x}}
$$

ReLU

$0, \times \times 0$
$y=x, x \geqslant 0$

Swish

(4)
$y=\frac{x}{1+e^{-x}}$

Step Function
Softplus

Tanh

$y=\tanh (x)$

Sinc

$0, \times \times n$
$y=1, x \geqslant n$
source: sefiks
Softsign

Leaky ReLU

$y=\max (0.1 x, x)$

$$
y=\ln \left(1+e^{x}\right)
$$

Log of Sigmoid

Mish

Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN

Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN

Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element x of a set X to a single element y of a set Y

Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element x of a set X to a single element y of a set Y

Neural networks can approximate a wide variety of functions

Graphical representation of simple functions

We build these complex functions by composing simple functions of the form:

$$
h_{w}(x)=f(X W+b)
$$

where f is the activation function.
We represent our simple function as a graph

Each edge in this graph represents multiplication by a different weight, w_{i}.

Quick review of MLPs

Learn weights and biases using backpro and gradient descent

MLP as an additive model

activation

$$
Y=\sum_{j} W_{j}^{(2)} f\left(W^{(1)} X+b^{(1)}\right)+b^{(2)}
$$

hidden layer 1

MLP as an additive model

activation

$$
Y=\sum_{j} W_{j}^{(2)} \underbrace{f\left(W^{(1)} X+b^{(1)}\right)}_{\text {Basis functions. }}+b^{(2)}
$$

hidden layer 1

MLP as an additive model

hidden layer 1
activation

$$
Y=\sum_{j} W_{j}^{(2)} \underbrace{f\left(W^{(1)} X+b^{(1)}\right)}_{\text {Basis functions. }}+b^{(2)}
$$

Y is a linear combination of these basis functions.

We learn the coefficients of the basis functions $W_{j}^{(2)}$ as well as the parameters of the basis functions $\left(W_{j}^{(1)}, \beta_{-} j\right)$

MLP as an additive model (cont)

From lecture 1:
$\mathrm{E}(\mathrm{Y} \mid \mathrm{x})=\alpha_{0}+\alpha_{1} x+\beta_{1}\left(x-\xi_{1}\right)_{+}+\beta_{2}\left(x-\xi_{2}\right)_{+}+\cdots+\beta_{k}\left(x-\xi_{k}\right)_{+}$
Minor modification:

$$
\mathrm{E}(\mathrm{Y} \mid \mathrm{x})=\alpha_{0}+\beta_{0}(x-\infty)_{+}+\beta_{1}\left(x-\xi_{1}\right)_{+}+\beta_{2}\left(x-\xi_{2}\right)_{+}+\cdots+\beta_{k}\left(x-\xi_{k}\right)_{+}
$$

$$
\operatorname{ReLU}\left(W x+\xi_{1}\right) \text { where } W=1
$$

Location of Knots can be learned as well as the β 's and α_{0}

MLP as an additive model (cont)

MLP:

$$
\begin{aligned}
& \xi_{1}=1.98248 \\
& \xi_{2}=5.03615 \\
& \xi_{3}=7.91110
\end{aligned}
$$

Main drawbacks of MLPs

- MLPs use one node for each input (e.g. pixel in an image, or 3 pixel values in RGB case). The number of weights rapidly becomes unmanageable for large images.
- Training difficulties arise, overfitting can appear.
- MLPs react differently to an input (images) and its shifted version - they are not translation invariant.

MLP: number of weights

How many weights?

- If $X \in \mathbb{R}$ then $|\mathrm{W}|=1$
- If $X \in \mathbb{R}^{m}$ then $|\mathrm{W}|=\mathrm{m}$
hidden layer 1

MLP: number of weights for images

If we consider each pixel as an independent predictor, then $X \in \mathbb{R}^{4 x 4}$ or
16 predictors, there are 16 weights for each node in the fist hidden layer.

A strong motivation for performing model selection is to avoid overfitting, which can happen when:

- there are too many predictors
- the feature space is high dimensional
- the polynomial degree is too high
- too many cross-terms are considered

Common Dataset: MNIST

MNIST database is a large set of handwritten digits.

It contains 60,000 training images and 10,000 testing images.

Every image 28×28 pixel and anti-aliased, which introduced grayscale levels

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

MLP: number of weights for images

Example: CIFAR10 is a dataset of images that are commonly used to train machine learning models. It contains 60,000 32x32 color images in 10 different classes.

Each pixel is a feature: an MLP would have $32 x 32 x 3+1=3073$ weights per neuron!

MLP: number of weights for images

Example: ImageNet is a large visual database designed for use in visual object recognition software research. More than 14 million images have been hand-annotated by the project to indicate what objects are pictured. In at least one million of the images, bounding boxes are also provided.

Images are usually 224x224x3: an MLP would have 150129 weights per neuron. If the first layer of the MLP is around 128 nodes, which is
 small, this already becomes very heavy to train.

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

- PCA

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

- PCA
- Stepwise Variable Selection

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

- PCA
- Stepwise Variable Selection
- Regularization, in particular L1 will produce sparsity

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

- PCA
- Stepwise Variable Selection
- Regularization, in particular L1 will produce sparsity
- Drop predictors that are highly correlated

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

- PCA
- Stepwise Variable Selection
- Regularization, in particular L1 will produce sparsity
- Drop predictors that are highly correlated
- Summarize input (image) with high level features => feature extraction or representation learning

Feature extraction

Features:

1. Bald
2. Grey hair
3. Oval shape head
4. Glasses

Feature extraction

Features:

1. Bald
2. Grey hair
3. Oval shape head
4. Glasses

WAIT FOR IT

Feature extraction

Features:

1. Bald
2. Grey hair
3. Oval shape head
4. Glasses
5. Awesome

Feature extraction

Feature extraction

Image analysis

Imagine that we want to recognize swans in an image:

Image analysis

Imagine that we want to recognize swans in an image:

Image analysis

Imagine that we want to recognize swans in an image:

Round, elongated oval with orange protuberance

Image analysis

Imagine that we want to recognize swans in an image:

Cases can be a bit more complex...

Cases can be a bit more complex...

Round, elongated
head with orange or black beak

Cases can be a bit more complex...

Cases can be a bit more complex...

Round, elongated
head with orange or black beak

Oval-shaped white body with or without large white symmetric blobs (wings)

Now what?

Round, elongated head with orange or black beak, can be turned backwards

Long white neck, can bend around, not necessarily

body, can have
different shapes

Now what?

We need to be able to deal with these cases

And these

And these

And these

And these

Image features

- We've been basically talking about detecting features in images in a very naïve way.
- Researchers built multiple computer vision techniques to deal with these issues: SIFT, FAST, SURF, BRIEF, etc.
- However, similar problems arose: the detectors where either too general or too over-engineered. Humans were designing these feature detectors, and that made them either too simple or hard to generalize.

SIFT feature descriptor

Keypoint descriptor

FAST corner detection algorithm

Image features (cont)

- What if we learned the features?
- We need a system that can do Representation Learning or Feature Learning.

Image features (cont)

- What if we learned the features?
- We need a system that can do Representation Learning or Feature Learning.

Representation Learning:technique that allows a system to automatically find relevant features for a given task. Replaces manual feature engineering.

Image features (cont)

- What if we learned the features?
- We need a system that can do Representation Learning or Feature Learning.

Representation Learning:technique that allows a system to automatically find relevant features for a given task. Replaces manual feature engineering.

Multiple techniques for this:

- Unsupervised (K-means, PCA, ...).
- Supervised Dictionary learning
- Neural Networks!

Some things to consider

- Nearby Pixels are more strongly related that distant ones
- Objects are built up out of smaller parts
- Images are Local and Hierarchical

Images are Invariant

Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN

Each neuron from the first layer has one weight per pixel. Recall that the importance of the predictors (here pixels) is given by the value of the coefficient (there the weight W)

In this case, the red weights will be larger to better recognize "cat".

In this case, the blue weights will be larger.

Each neuron from the first layer has one weight per pixel. Recall that the importance of the predictors (here pixels) is given by the value of the coefficient (there the weight W)

We are learning redundant features. Approach is not robust, as cats could appear in yet another position.

Solution: Cut the image into smaller pieces.

$X: \mathbb{R}^{8 \times 8}$

Solution: Cut the image to smaller pieces.

Solution: Cut the image to smaller pieces.
$X: \mathbb{R}^{8 \times 8}$

Solution: Cut the image to smaller pieces.
$X: \mathbb{R}^{8 \times 8}$

Solution: Cut the image to smaller pieces.
$X: \mathbb{R}^{8 \times 8}$

Do the same for all images

$X: \mathbb{R}^{8 \times 8}$

What if the cat is not entirely in one of the 4 boxes?

What if the cat is not entirely in one of the 4 boxes?

$X: \mathbb{R}^{4 \times 4}$

What if the cat is not entirely in one of the 4 boxes?

What if the cat is not entirely in one of the 4 boxes?

Sliding Window

Convolution

Convolution

Convolution

Convolution

Convolution

Convolution

Convolution and cross-correlation

- A convolution of f and $g,(f * g)$, is defined as the integral of the product, having one of the functions inverted and shifted:

$$
\left.(f * g)(t)=\int_{a} f(a) g(\bar{t})-a\right) d a
$$

- Discrete convolution:

$$
(f * g)(t)=\sum_{a=-\infty}^{\infty} f(a) g(t-a)
$$

- Discrete cross-correlation:

$$
(f \star g)(t)=\sum_{a=-\infty}^{\infty} f(a) g(t+a)
$$

"Convolution" Operation

"Convolution" Operation in action

What does convolving an image with a Kernel do?

"Convolution" Operation in action

What does convolving an image with a Kernel do?
Edge detection

$$
*\left[\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

A Convolutional Network

A Convolutional Network

A Convolutional Network

Why more than one feature map?

LAYER 1:

Why more than one feature map?

LAYER 1:

Filter 1: Horizontal Lines

Why more than one feature map?

LAYER 1:

Filter 1: Horizontal Lines
Filter 2: Vertical Lines

Why more than one feature map?

LAYER 1:

Filter 1: Horizontal Lines
Filter 2: Vertical Lines
Filter 3: Orange bulb

Why more than one feature map?

LAYER 1:

Filter 1: Horizontal Lines
Filter 2: Vertical Lines
Filter 3: Orange bulb

Different filters identify different features.

A Convolutional Network

Why more than one layer?

Why more than one layer?

Layer 2, Filter 1: Combines horizontal and vertical lines from Layer 1 produce diagonal lines.

Why more than one layer?

Layer 2, Filter 1: Combines horizontal and vertical lines from Layer 1 produce diagonal lines.

Layer 3, Filter 1: Combines diagonal lines to identify shapes

A Convolutional Network

So far:

We know that MLPs:

- Do not scale well for images
- Ignore the information brought by pixel position and correlation with neighbors
- Cannot handle translations

We know that MLPs:

- Do not scale well for images
- Ignore the information brought by pixel position and correlation with neighbors
- Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties of images:

- Pixel position and neighborhood have semantic meanings.
- Elements of interest can appear anywhere in the image.

Convolutions - what happens at the edges?

If we apply convolutions on a normal image, the result will be down-sampled by an amount depending on the size of the filter.

We can avoid this by padding the edges in different ways.

Padding

Full padding. Introduces zeros such that all pixels are visited the same number of times by the filter. Increases size of output.

Same padding. Ensures that the output has the same size as the input.

Stride

Stride controls how the filter convolves around the input volume.

The formula for calculating the output size is:

$$
o=\frac{W-K+2 P}{S}+1
$$

Where O is output dim, W is the input dim, K is the filter size, P is padding and S the stride

Stride $=1$
7×7 Input Volume

Stride $=2$
7×7 Input Volume

5×5 Output Volume

3×3 Output Volume

Exercise: Pavlos vs Not Pavlos

The aim of this exercise is to train a dense neural network and a CNN to
 compare the parameters between them

- Augment the dataset since we only have one image of Pavlos and the eagle
- Build a simple feed-forward network and train it
- Use the convolution layer to build a simple CNN and train it like the network before
- Compare performance and parameters

A Convolutional Network

