
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Convolutional Neural Networks 1

1



CS109B, PROTOPAPAS, GLICKMAN, TANNER 2

+ ReLU + ReLU

A Convolutional Network



CS109B, PROTOPAPAS, GLICKMAN, TANNER
3

The code 



CS109B, PROTOPAPAS, GLICKMAN, TANNER 4

DONE

4



CS109B, PROTOPAPAS, GLICKMAN, TANNER 5

+ ReLU
+ ReLU

A Convolutional Network

What is this square?



CS109B, PROTOPAPAS, GLICKMAN, TANNER 6

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What are feature maps 

and why are there 

multiple feature maps?



CS109B, PROTOPAPAS, GLICKMAN, TANNER 7

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling?
What are feature maps 

and why are there 

multiple feature maps?



CS109B, PROTOPAPAS, GLICKMAN, TANNER 8

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling?
What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER 9

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
10



CS109B, PROTOPAPAS, GLICKMAN, TANNER
11

Outline

1. Motivation

2. CNN basic ideas

3. Building a CNN

11



CS109B, PROTOPAPAS, GLICKMAN, TANNER
12

Outline

1. Motivation

2. CNN basic ideas

3. Building a CNN

12



CS109B, PROTOPAPAS, GLICKMAN, TANNER
14

Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element 𝑥 of a set 𝑋 to a 
single element 𝑦 of a set 𝑌

14

𝑥 𝑦𝑓



CS109B, PROTOPAPAS, GLICKMAN, TANNER
15

Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element 𝑥 of a set 𝑋 to a 
single element 𝑦 of a set 𝑌

15

𝑥 𝑦𝑓

Neural networks can approximate a wide variety of functions

𝑥 $𝑦%𝑓 =



CS109B, PROTOPAPAS, GLICKMAN, TANNER
16

Graphical representation of simple functions

We build these complex functions by composing simple functions of the 
form: 

ℎ! 𝑥 = 𝑓(𝑋𝑊 + 𝑏)
where 𝑓 is the activation function. 

We represent our simple function as a graph

Each edge in this graph 
represents multiplication 
by a different weight, 𝑤".



CS109B, PROTOPAPAS, GLICKMAN, TANNER
17

Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

Loss function



CS109B, PROTOPAPAS, GLICKMAN, TANNER
18

Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Loss function



CS109B, PROTOPAPAS, GLICKMAN, TANNER
19

Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Activation 

depends 

on task

Loss function



CS109B, PROTOPAPAS, GLICKMAN, TANNER
20

Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Activation 

depends 

on task

Loss function

Loss 

function 

depends 

on task



CS109B, PROTOPAPAS, GLICKMAN, TANNER
21

Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Activation 

depends 

on task

Loss function

Loss 

function 

depends 

on task

Learn weights and biases using backpro and gradient descent



CS109B, PROTOPAPAS, GLICKMAN, TANNER
22

MLP as an additive model

22

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation



CS109B, PROTOPAPAS, GLICKMAN, TANNER
23

MLP as an additive model

23

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation

Basis functions. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
24

MLP as an additive model

24

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation

Basis functions. 

Y		is a linear combination of these basis 

functions.

We learn the coefficients of the basis 

functions 𝑊% $ as well as the parameters of 

the basis functions (𝑊% " , 𝛽_𝑗) 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
25

MLP as an additive model (cont)

25

E(Y|x)= 𝛼& + 𝛼"𝑥 + 𝛽" 𝑥 − 𝜉" '+𝛽$ 𝑥 − 𝜉$ ' +⋯+ 𝛽( 𝑥 − 𝜉( '

E(Y|x)= 𝛼& + 𝛽& 𝑥 − ∞ ' + 𝛽" 𝑥 − 𝜉" '+𝛽$ 𝑥 − 𝜉$ ' +⋯+ 𝛽( 𝑥 − 𝜉( '

ReLU 𝑊𝑥 + 𝜉" where 𝑊 = 1

From lecture 1:

Minor modification:

X Y

hidden 

layer 1

input layer

𝑊(") 𝑊($)

Location of Knots can be learned 
as well as the 𝛽’s and 𝛼@



CS109B, PROTOPAPAS, GLICKMAN, TANNER
26

MLP as an additive model (cont)

26

MLP: 
𝜉" = 1.98248

𝜉$ = 5.03615

𝜉) = 7.91110



CS109B, PROTOPAPAS, GLICKMAN, TANNER
28

Main drawbacks of MLPs

• MLPs use one node for each input (e.g. pixel in an image, or 3 
pixel values in RGB case). The number of weights rapidly 
becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an input (images) and its shifted 
version – they are not translation invariant.

28



CS109B, PROTOPAPAS, GLICKMAN, TANNER
29

MLP: number of weights

29

hidden layer 1

input

X

𝑊"

𝑊$

𝑊)

𝑊*

How many weights? 

• If 𝑋 ∈ ℝ then |W| = 1

• If 𝑋 ∈ ℝ! then W = m

𝑊"𝑋 + 𝑏"

𝑊$𝑋 + 𝑏$

𝑊)𝑋 + 𝑏)

𝑊*𝑋 + 𝑏*



CS109B, PROTOPAPAS, GLICKMAN, TANNER
30

MLP: number of weights for images

30

𝒙𝟏𝟏 … … …

𝒙𝟏𝟏

𝒙𝟏𝟏

A strong motivation for performing model selection is to avoid overfitting, which can 

happen when: 

• there are too many predictors

• the feature space is high dimensional

• the polynomial degree is too high

• too many cross-terms are considered

If we consider each pixel as an 
independent  predictor, then 𝑋 ∈ ℝBCB or 
16 predictors, there are 16 weights for 
each node in the fist hidden layer.  



CS109B, PROTOPAPAS, GLICKMAN, TANNER
31

Common Dataset: MNIST 

MNIST database is a 
large set of handwritten 
digits. 

It contains 60,000 training 
images and 10,000 testing 
images.

Every image 28x28 pixel 
and anti-aliased, which 
introduced grayscale levels

31



CS109B, PROTOPAPAS, GLICKMAN, TANNER
32

MLP: number of weights for images

Example: CIFAR10 is a dataset of images that are commonly used to train 

machine learning models. It contains 60,000 32x32 color images in 10 

different classes.

Each pixel is a feature: an MLP would have 32𝑥32𝑥3 + 1 = 3073 weights per 

neuron!

32



CS109B, PROTOPAPAS, GLICKMAN, TANNER
33

MLP: number of weights for images

Example:  ImageNet is a large visual 
database designed for use in visual object 
recognition software research. More than 14 
million images have been hand-annotated by 
the project to indicate what objects are 
pictured. In at least one million of the 
images, bounding boxes are also provided.

Images are usually 224x224x3: an MLP would 
have  150129 weights per neuron. If the first 
layer of the MLP is around 128 nodes, which is 
small, this already becomes very heavy to 
train.

33



CS109B, PROTOPAPAS, GLICKMAN, TANNER
34



CS109B, PROTOPAPAS, GLICKMAN, TANNER
35

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

35



CS109B, PROTOPAPAS, GLICKMAN, TANNER
36

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

36



CS109B, PROTOPAPAS, GLICKMAN, TANNER
37

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

37



CS109B, PROTOPAPAS, GLICKMAN, TANNER
38

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

38



CS109B, PROTOPAPAS, GLICKMAN, TANNER
39

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

• Drop predictors that are highly correlated

39



CS109B, PROTOPAPAS, GLICKMAN, TANNER
40

Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

• Drop predictors that are highly correlated

• Summarize input (image) with high level features => feature 

extraction or representation learning

40



CS109B, PROTOPAPAS, GLICKMAN, TANNER
41

Feature extraction 

41

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

𝑥



CS109B, PROTOPAPAS, GLICKMAN, TANNER
42

Feature extraction 

42

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

𝑥

WAIT FOR IT 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
43

Feature extraction 

43

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

𝑥



CS109B, PROTOPAPAS, GLICKMAN, TANNER
44

Feature extraction 

44

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. No Glasses

5. Awesome

𝑥



CS109B, PROTOPAPAS, GLICKMAN, TANNER
45

Feature extraction 

45

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. No Glasses

5. Awesome

%𝑓 = $𝑦𝑥′𝑥

"𝑦 : PAVLOS or NOT PAVLOS



CS109B, PROTOPAPAS, GLICKMAN, TANNER
46

Image analysis

Imagine that we want to recognize swans in an image:

46Slides from Camilo Fosco



CS109B, PROTOPAPAS, GLICKMAN, TANNER
47

Image analysis

Imagine that we want to recognize swans in an image:

47

Oval-shaped white 

blob (body)

Slides from Camilo Fosco



CS109B, PROTOPAPAS, GLICKMAN, TANNER
48

Image analysis

Imagine that we want to recognize swans in an image:

48

Round, elongated 

oval with orange 

protuberance 
Oval-shaped white 

blob (body)

Slides from Camilo Fosco



CS109B, PROTOPAPAS, GLICKMAN, TANNER
49

Image analysis

Imagine that we want to recognize swans in an image:

49

Round, elongated 

oval with orange 

protuberance 

Long white 

rectangular shape 

(neck)

Oval-shaped white 

blob (body)

Slides from Camilo Fosco



CS109B, PROTOPAPAS, GLICKMAN, TANNER
50

Cases can be a bit more complex…

50



CS109B, PROTOPAPAS, GLICKMAN, TANNER
51

Cases can be a bit more complex…

51

Round, elongated 

head with orange 

or black beak



CS109B, PROTOPAPAS, GLICKMAN, TANNER
52

Cases can be a bit more complex…

52

Round, elongated 

head with orange 

or black beak

Long white neck, 

square shape



CS109B, PROTOPAPAS, GLICKMAN, TANNER
53

Cases can be a bit more complex…

53

Round, elongated 

head with orange 

or black beak

Long white neck, 

square shape

Oval-shaped white 

body with or 

without large white 

symmetric blobs 

(wings)



CS109B, PROTOPAPAS, GLICKMAN, TANNER
54

Now what?

54

Round, elongated head with 

orange or black beak, can 

be turned backwards

Long white neck, can bend 

around, not necessarily 

straight

White tail, generally far 

from the head, looks 

feathery White, oval shaped 

body, with or without 

wings visible

Black feet, under 

body, can have 

different shapes



CS109B, PROTOPAPAS, GLICKMAN, TANNER
55

Now what?

55

Round, elongated head with 

orange or black beak, can 

be turned backwards

Long white neck, can bend 

around, not necessarily 

straight

White tail, generally far 

from the head, looks 

feathery White, oval shaped 

body, with or without 

wings visible

Black feet, under 

body, can have 

different shapes

Small black circles, 

can be facing the 

camera, sometimes 

can see both

Black triangular 

shaped form, on the 

head, can have 

different sizes

White elongated piece, can 

be squared or more 

triangular, can be obstructed 

sometimes

Luckily, the 

color is 

consistent…



CS109B, PROTOPAPAS, GLICKMAN, TANNER
56

We need to be able to deal with these cases

56



CS109B, PROTOPAPAS, GLICKMAN, TANNER
57

And these

57



CS109B, PROTOPAPAS, GLICKMAN, TANNER
58

And these

58



CS109B, PROTOPAPAS, GLICKMAN, TANNER
59

And these

59



CS109B, PROTOPAPAS, GLICKMAN, TANNER
60

And these

60



CS109B, PROTOPAPAS, GLICKMAN, TANNER
61

Image features

• We’ve been basically talking about detecting features in images in a very 
naïve way.

• Researchers built multiple computer vision techniques to deal with these 
issues: SIFT, FAST, SURF, BRIEF, etc.

• However, similar problems arose: the detectors where either too general or 
too over-engineered. Humans were designing these feature detectors, and 
that made them either too simple or hard to generalize.

61

FAST corner 

detection 

algorithm

SIFT feature 

descriptor



CS109B, PROTOPAPAS, GLICKMAN, TANNER
62

Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

62



CS109B, PROTOPAPAS, GLICKMAN, TANNER
63

Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

63



CS109B, PROTOPAPAS, GLICKMAN, TANNER
64

Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

Multiple techniques for this: 

• Unsupervised (K-means, PCA, …).

• Supervised  Dictionary learning

• Neural Networks!

64



CS109B, PROTOPAPAS, GLICKMAN, TANNER 65

Some things to consider 

• Nearby Pixels are more strongly 
related that distant ones

• Objects are built up out of 
smaller parts

• Images are Local and 
Hierarchical 



CS109B, PROTOPAPAS, GLICKMAN, TANNER 66

Images are Invariant 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
67

Outline

1. Motivation

2. CNN basic ideas

3. Building a CNN

67



CS109B, PROTOPAPAS, GLICKMAN, TANNER
68

Each neuron from the first layer has one weight per pixel. Recall that the importance of 
the predictors (here pixels) is given by the value of the coefficient (there the weight W)

X

X

In this case, the red weights will be 
larger to better recognize "cat”.

In this case, the blue weights will be 
larger.



CS109B, PROTOPAPAS, GLICKMAN, TANNER
69

X

X

We are learning redundant features. 

Approach is not robust, as cats could 

appear in yet another position.

Each neuron from the first layer has one weight per pixel. Recall that the importance of 
the predictors (here pixels) is given by the value of the coefficient (there the weight W)



CS109B, PROTOPAPAS, GLICKMAN, TANNER
70

𝑋:ℝD×D

Solution: Cut the image into smaller pieces.

64 weights per neuron



CS109B, PROTOPAPAS, GLICKMAN, TANNER
71

𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"



CS109B, PROTOPAPAS, GLICKMAN, TANNER
72

𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"



CS109B, PROTOPAPAS, GLICKMAN, TANNER
73

𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"



CS109B, PROTOPAPAS, GLICKMAN, TANNER
74

𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"

16 weights per neuron but 

4 times more training 
examples. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
75

𝑋:ℝD×D

Do the same for all images

64 weights per neuron

𝑋:ℝ"×"

16 weights per neuron but 

4 times more training 
examples. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
76

What if the cat is not entirely in one of the 4 boxes?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
77

𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"



CS109B, PROTOPAPAS, GLICKMAN, TANNER
78

𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"



CS109B, PROTOPAPAS, GLICKMAN, TANNER
79

𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"

Sliding Window

16 weights per neuron but 

25 times more training 
examples. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
80

Convolution

80

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"" = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

Index here represents the cutout



CS109B, PROTOPAPAS, GLICKMAN, TANNER
81

Convolution

81

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"" = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆ℎ++ = ∑

𝑊") 𝑊"* 𝑥") 𝑥"*

Element wise multiplication and addition of all products



CS109B, PROTOPAPAS, GLICKMAN, TANNER
82

Convolution

82

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"$ = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆ℎ+, = ∑

𝑊") 𝑊"* 𝑥") 𝑥"*

Element wise multiplication and addition of all products



CS109B, PROTOPAPAS, GLICKMAN, TANNER
83

Convolution

83

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

ℎ-. = ∑



CS109B, PROTOPAPAS, GLICKMAN, TANNER
84

Convolution

84

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

KERNEL, K X is the cutout of image center at {𝑖, 𝑗}

ℎ-. = ∑



CS109B, PROTOPAPAS, GLICKMAN, TANNER
85

Convolution

85

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

KERNEL, K X is the cutout of image center at {𝑖, 𝑗}

CONVOLUTION

𝐻 = 𝐾 ⋆ X

Element wise multiplication and addition of all products =

ℎ-. = ∑

Index here represents the output 

from this operation



CS109B, PROTOPAPAS, GLICKMAN, TANNER
86

Convolution and cross-correlation

• A convolution of 𝑓 and 𝑔, (𝑓 ∗ 𝑔), is defined as the integral of the 
product, having one of the functions inverted and shifted:

𝑓 ∗ 𝑔 𝑡 = :
M
𝑓 𝑎 𝑔 𝑡 − 𝑎 𝑑𝑎

• Discrete convolution:

𝑓 ∗ 𝑔 𝑡 = >
MNOP

P
𝑓 𝑎 𝑔(𝑡 − 𝑎)

• Discrete cross-correlation:

86

Function is 

inverted and 

shifted left by t

𝑓 ⋆ 𝑔 𝑡 = >
MNOP

P
𝑓 𝑎 𝑔(𝑡 + 𝑎)



CS109B, PROTOPAPAS, GLICKMAN, TANNER
87

“Convolution” Operation

Source Pixel

Destination Pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)=-3

Convolution Kernel

[WE’LL NEED TO LEARN IT]

Kernel Map



CS109B, PROTOPAPAS, GLICKMAN, TANNER
90

“Convolution” Operation in action

wikipedia.org

What does convolving an image with a Kernel do? 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
91

“Convolution” Operation in action

−1 −1 −1

−1 8 −1

−1 −1 −1

"

#

$
$
$

%

&

'
'
'

* =

0 −1 0

−1 5 −1

0 −1 0

"

#

$
$
$

%

&

'
'
'

* =

Edge detection

Sharpen

Kernel

What does convolving an image with a Kernel do? 



CS109B, PROTOPAPAS, GLICKMAN, TANNER 92

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER 93

+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
94

“Convolution” Operation

Convolution Filter

(3x3x3)

Feature Map

(7x7x1)

RGB Image
(7x7x3)

Convolution Kernels



CS109B, PROTOPAPAS, GLICKMAN, TANNER 95

+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
96

Why more than one feature map?

LAYER 1:



CS109B, PROTOPAPAS, GLICKMAN, TANNER
97

Why more than one feature map?

Filter 1: Horizontal Lines

LAYER 1:



CS109B, PROTOPAPAS, GLICKMAN, TANNER
98

Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

LAYER 1:



CS109B, PROTOPAPAS, GLICKMAN, TANNER
99

Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb

LAYER 1:



CS109B, PROTOPAPAS, GLICKMAN, TANNER
100

Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb

LAYER 1:

Different filters identify different features.



CS109B, PROTOPAPAS, GLICKMAN, TANNER
101

“Convolution” Operation

RGB Image
(7x7x3) 3 Convolution Filters

(3x3x3)

3 Feature Maps

(7x7x3)



CS109B, PROTOPAPAS, GLICKMAN, TANNER 102

+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
103

Why more than one layer?

103



CS109B, PROTOPAPAS, GLICKMAN, TANNER
104

Why more than one layer?

104

Layer 2, Filter 1: Combines 

horizontal and vertical lines from 

Layer 1 produce diagonal lines.



CS109B, PROTOPAPAS, GLICKMAN, TANNER
105

Why more than one layer?

105

Layer 2, Filter 1: Combines 

horizontal and vertical lines from 

Layer 1 produce diagonal lines.

Layer 3, Filter 1: Combines 

diagonal lines to identify shapes



CS109B, PROTOPAPAS, GLICKMAN, TANNER 106

+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
107

So far:

We know that MLPs:

• Do not scale well for images

• Ignore the information brought by pixel position and correlation with 
neighbors

• Cannot handle translations

107



CS109B, PROTOPAPAS, GLICKMAN, TANNER
108

So far:

We know that MLPs:

• Do not scale well for images

• Ignore the information brought by pixel position and correlation with 
neighbors

• Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties 
of images:

• Pixel position and neighborhood have semantic meanings. 

• Elements of interest can appear anywhere in the image.

108



CS109B, PROTOPAPAS, GLICKMAN, TANNER
110

Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be 
down-sampled by an amount depending on the size of the 
filter.

We can avoid this by padding the edges in different ways.

110



CS109B, PROTOPAPAS, GLICKMAN, TANNER
111

Padding

111

Full padding. Introduces zeros such that all 

pixels are visited the same number of times by 

the filter. Increases size of output. 

Same padding. Ensures that the 

output has the same size as the 

input.



CS109B, PROTOPAPAS, GLICKMAN, TANNER
112

Stride

Stride controls how the filter 

convolves around the input 

volume.

The formula for calculating the 

output size is:

Where O is output dim, W is the 

input dim, K is the filter size, P 

is padding and S the stride

112

Stride = 1

Stride = 2
𝑂 = 𝑊 − 𝐾 + 2𝑃

𝑆 + 1



113

Exercise: Pavlos vs Not Pavlos

The aim of this exercise is to train a 
dense neural network and a CNN to 
compare the parameters between 
them 

• Augment the dataset since we only 

have one image of Pavlos and the eagle

• Build a simple feed-forward network 

and train it

• Use the convolution layer to build a 

simple CNN and train it like the 

network before

• Compare performance and parameters



PROTOPAPAS

+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?


