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Convolutional Neural Networks 1
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+ ReLU + ReLU

A Convolutional Network
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The code 
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DONE
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+ ReLU
+ ReLU

A Convolutional Network

What is this square?
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A Convolutional Network

What is this square? What are feature maps 

and why are there 

multiple feature maps?
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+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling?
What are feature maps 

and why are there 

multiple feature maps?
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multiple feature maps?
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+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?
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Outline

1. Motivation

2. CNN basic ideas

3. Building a CNN
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Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element 𝑥 of a set 𝑋 to a 
single element 𝑦 of a set 𝑌

14

𝑥 𝑦𝑓
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Feed forward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element 𝑥 of a set 𝑋 to a 
single element 𝑦 of a set 𝑌

15

𝑥 𝑦𝑓

Neural networks can approximate a wide variety of functions

𝑥 $𝑦%𝑓 =
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Graphical representation of simple functions

We build these complex functions by composing simple functions of the 
form: 

ℎ! 𝑥 = 𝑓(𝑋𝑊 + 𝑏)
where 𝑓 is the activation function. 

We represent our simple function as a graph

Each edge in this graph 
represents multiplication 
by a different weight, 𝑤".
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Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

Loss function
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Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Loss function
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Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Activation 

depends 

on task

Loss function
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Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput

I do not like 

calling it a 

layer

Activation 

depends 

on task

Loss function

Loss 

function 

depends 

on task

Learn weights and biases using backpro and gradient descent
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MLP as an additive model

22

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation
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MLP as an additive model

23

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation

Basis functions. 
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MLP as an additive model

24

output layer

X Y

hidden layer 1

input

𝑊(") 𝑊($)

𝑌 =(
%

𝑊% $ 𝑓 𝑊(")𝑋 + 𝑏(") + 𝑏($)

activation

Basis functions. 

Y		is a linear combination of these basis 

functions.

We learn the coefficients of the basis 

functions 𝑊% $ as well as the parameters of 

the basis functions (𝑊% " , 𝛽_𝑗) 
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MLP as an additive model (cont)

25

E(Y|x)= 𝛼& + 𝛼"𝑥 + 𝛽" 𝑥 − 𝜉" '+𝛽$ 𝑥 − 𝜉$ ' +⋯+ 𝛽( 𝑥 − 𝜉( '

E(Y|x)= 𝛼& + 𝛽& 𝑥 − ∞ ' + 𝛽" 𝑥 − 𝜉" '+𝛽$ 𝑥 − 𝜉$ ' +⋯+ 𝛽( 𝑥 − 𝜉( '

ReLU 𝑊𝑥 + 𝜉" where 𝑊 = 1

From lecture 1:

Minor modification:

X Y

hidden 

layer 1

input layer

𝑊(") 𝑊($)

Location of Knots can be learned 
as well as the 𝛽’s and 𝛼@
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MLP as an additive model (cont)

26

MLP: 
𝜉" = 1.98248

𝜉$ = 5.03615

𝜉) = 7.91110
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Main drawbacks of MLPs

• MLPs use one node for each input (e.g. pixel in an image, or 3 
pixel values in RGB case). The number of weights rapidly 
becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an input (images) and its shifted 
version – they are not translation invariant.

28
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MLP: number of weights

29

hidden layer 1

input

X

𝑊"

𝑊$

𝑊)

𝑊*

How many weights? 

• If 𝑋 ∈ ℝ then |W| = 1

• If 𝑋 ∈ ℝ! then W = m

𝑊"𝑋 + 𝑏"

𝑊$𝑋 + 𝑏$

𝑊)𝑋 + 𝑏)

𝑊*𝑋 + 𝑏*
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MLP: number of weights for images

30

𝒙𝟏𝟏 … … …

𝒙𝟏𝟏

𝒙𝟏𝟏

A strong motivation for performing model selection is to avoid overfitting, which can 

happen when: 

• there are too many predictors

• the feature space is high dimensional

• the polynomial degree is too high

• too many cross-terms are considered

If we consider each pixel as an 
independent  predictor, then 𝑋 ∈ ℝBCB or 
16 predictors, there are 16 weights for 
each node in the fist hidden layer.  
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Common Dataset: MNIST 

MNIST database is a 
large set of handwritten 
digits. 

It contains 60,000 training 
images and 10,000 testing 
images.

Every image 28x28 pixel 
and anti-aliased, which 
introduced grayscale levels

31
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MLP: number of weights for images

Example: CIFAR10 is a dataset of images that are commonly used to train 

machine learning models. It contains 60,000 32x32 color images in 10 

different classes.

Each pixel is a feature: an MLP would have 32𝑥32𝑥3 + 1 = 3073 weights per 

neuron!

32
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MLP: number of weights for images

Example:  ImageNet is a large visual 
database designed for use in visual object 
recognition software research. More than 14 
million images have been hand-annotated by 
the project to indicate what objects are 
pictured. In at least one million of the 
images, bounding boxes are also provided.

Images are usually 224x224x3: an MLP would 
have  150129 weights per neuron. If the first 
layer of the MLP is around 128 nodes, which is 
small, this already becomes very heavy to 
train.

33
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

35
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

36
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

37
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

38
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

• Drop predictors that are highly correlated

39
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Model Selection and Dimensionality Reduction

Recall from CS109A that to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 

• Regularization, in particular L1 will produce sparsity

• Drop predictors that are highly correlated

• Summarize input (image) with high level features => feature 

extraction or representation learning

40
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Feature extraction 

41

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

𝑥



CS109B, PROTOPAPAS, GLICKMAN, TANNER
42

Feature extraction 

42

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

𝑥

WAIT FOR IT 
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Feature extraction 

43

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

𝑥
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Feature extraction 

44

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. No Glasses

5. Awesome

𝑥
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Feature extraction 

45

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. Glasses

5. Awesome

Features: 
1. Bald

2. Grey hair

3. Oval shape head

4. No Glasses

5. Awesome

%𝑓 = $𝑦𝑥′𝑥

"𝑦 : PAVLOS or NOT PAVLOS
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Image analysis

Imagine that we want to recognize swans in an image:

46Slides from Camilo Fosco
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Image analysis

Imagine that we want to recognize swans in an image:

47

Oval-shaped white 

blob (body)

Slides from Camilo Fosco
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Image analysis

Imagine that we want to recognize swans in an image:

48

Round, elongated 

oval with orange 

protuberance 
Oval-shaped white 

blob (body)

Slides from Camilo Fosco
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Image analysis

Imagine that we want to recognize swans in an image:

49

Round, elongated 

oval with orange 

protuberance 

Long white 

rectangular shape 

(neck)

Oval-shaped white 

blob (body)

Slides from Camilo Fosco
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Cases can be a bit more complex…

50



CS109B, PROTOPAPAS, GLICKMAN, TANNER
51

Cases can be a bit more complex…

51

Round, elongated 

head with orange 

or black beak
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Cases can be a bit more complex…

52

Round, elongated 

head with orange 

or black beak

Long white neck, 

square shape
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Cases can be a bit more complex…

53

Round, elongated 

head with orange 

or black beak

Long white neck, 

square shape

Oval-shaped white 

body with or 

without large white 

symmetric blobs 

(wings)
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Now what?

54

Round, elongated head with 

orange or black beak, can 

be turned backwards

Long white neck, can bend 

around, not necessarily 

straight

White tail, generally far 

from the head, looks 

feathery White, oval shaped 

body, with or without 

wings visible

Black feet, under 

body, can have 

different shapes
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Now what?

55

Round, elongated head with 

orange or black beak, can 

be turned backwards

Long white neck, can bend 

around, not necessarily 

straight

White tail, generally far 

from the head, looks 

feathery White, oval shaped 

body, with or without 

wings visible

Black feet, under 

body, can have 

different shapes

Small black circles, 

can be facing the 

camera, sometimes 

can see both

Black triangular 

shaped form, on the 

head, can have 

different sizes

White elongated piece, can 

be squared or more 

triangular, can be obstructed 

sometimes

Luckily, the 

color is 

consistent…
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We need to be able to deal with these cases

56
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And these

57
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And these

58
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And these

59
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And these

60
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Image features

• We’ve been basically talking about detecting features in images in a very 
naïve way.

• Researchers built multiple computer vision techniques to deal with these 
issues: SIFT, FAST, SURF, BRIEF, etc.

• However, similar problems arose: the detectors where either too general or 
too over-engineered. Humans were designing these feature detectors, and 
that made them either too simple or hard to generalize.

61

FAST corner 

detection 

algorithm

SIFT feature 

descriptor
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Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

62
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Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

63
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Image features (cont)

• What if we learned the features? 

• We need a system that can do Representation Learning or Feature 

Learning.

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

Multiple techniques for this: 

• Unsupervised (K-means, PCA, …).

• Supervised  Dictionary learning

• Neural Networks!

64
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Some things to consider 

• Nearby Pixels are more strongly 
related that distant ones

• Objects are built up out of 
smaller parts

• Images are Local and 
Hierarchical 
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Images are Invariant 
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Outline

1. Motivation

2. CNN basic ideas

3. Building a CNN

67
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Each neuron from the first layer has one weight per pixel. Recall that the importance of 
the predictors (here pixels) is given by the value of the coefficient (there the weight W)

X

X

In this case, the red weights will be 
larger to better recognize "cat”.

In this case, the blue weights will be 
larger.
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X

X

We are learning redundant features. 

Approach is not robust, as cats could 

appear in yet another position.

Each neuron from the first layer has one weight per pixel. Recall that the importance of 
the predictors (here pixels) is given by the value of the coefficient (there the weight W)
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𝑋:ℝD×D

Solution: Cut the image into smaller pieces.

64 weights per neuron
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𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"
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𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"
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𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"
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𝑋:ℝD×D

Solution: Cut the image to smaller pieces.

64 weights per neuron

𝑋:ℝ"×"

16 weights per neuron but 

4 times more training 
examples. 
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𝑋:ℝD×D

Do the same for all images

64 weights per neuron

𝑋:ℝ"×"

16 weights per neuron but 

4 times more training 
examples. 
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What if the cat is not entirely in one of the 4 boxes?
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𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"
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𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"
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𝑋:ℝD×D

What if the cat is not entirely in one of the 4 boxes?

64 weights per neuron

𝑋:ℝ"×"

Sliding Window

16 weights per neuron but 

25 times more training 
examples. 



CS109B, PROTOPAPAS, GLICKMAN, TANNER
80

Convolution

80

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"" = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

Index here represents the cutout
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Convolution

81

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"" = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆ℎ++ = ∑

𝑊") 𝑊"* 𝑥") 𝑥"*

Element wise multiplication and addition of all products
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Convolution

82

𝑥$$
𝑥$%

Input

𝑥""

⋮⋮

Hidden Layer

ℎ"$ = 𝑓 𝑊""𝑥"" +𝑊"$𝑥"$ +⋯+𝑊**𝑥** + 𝑏

16 weights

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆ℎ+, = ∑

𝑊") 𝑊"* 𝑥") 𝑥"*

Element wise multiplication and addition of all products
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Convolution

83

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

ℎ-. = ∑
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Convolution

84

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

KERNEL, K X is the cutout of image center at {𝑖, 𝑗}

ℎ-. = ∑
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Convolution

85

𝑥"" 𝑥"$

𝑥**

𝑊"" 𝑊"$

𝑊**

⋆

𝑊") 𝑊"* 𝑥") 𝑥"*

KERNEL, K X is the cutout of image center at {𝑖, 𝑗}

CONVOLUTION

𝐻 = 𝐾 ⋆ X

Element wise multiplication and addition of all products =

ℎ-. = ∑

Index here represents the output 

from this operation
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Convolution and cross-correlation

• A convolution of 𝑓 and 𝑔, (𝑓 ∗ 𝑔), is defined as the integral of the 
product, having one of the functions inverted and shifted:

𝑓 ∗ 𝑔 𝑡 = :
M
𝑓 𝑎 𝑔 𝑡 − 𝑎 𝑑𝑎

• Discrete convolution:

𝑓 ∗ 𝑔 𝑡 = >
MNOP

P
𝑓 𝑎 𝑔(𝑡 − 𝑎)

• Discrete cross-correlation:

86

Function is 

inverted and 

shifted left by t

𝑓 ⋆ 𝑔 𝑡 = >
MNOP

P
𝑓 𝑎 𝑔(𝑡 + 𝑎)
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“Convolution” Operation

Source Pixel

Destination Pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)=-3

Convolution Kernel

[WE’LL NEED TO LEARN IT]

Kernel Map
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“Convolution” Operation in action

wikipedia.org

What does convolving an image with a Kernel do? 
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“Convolution” Operation in action

−1 −1 −1

−1 8 −1

−1 −1 −1

"

#

$
$
$

%

&

'
'
'

* =

0 −1 0

−1 5 −1

0 −1 0

"

#

$
$
$

%

&

'
'
'

* =

Edge detection

Sharpen

Kernel

What does convolving an image with a Kernel do? 
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+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?
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+ ReLU
+ ReLU

A Convolutional Network

What is this square? What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?
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“Convolution” Operation

Convolution Filter

(3x3x3)

Feature Map

(7x7x1)

RGB Image
(7x7x3)

Convolution Kernels
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+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?
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Why more than one feature map?

LAYER 1:
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Why more than one feature map?

Filter 1: Horizontal Lines

LAYER 1:
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Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

LAYER 1:
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Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb

LAYER 1:
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Why more than one feature map?

Filter 1: Horizontal Lines

Filter 2: Vertical Lines

Filter 3: Orange bulb

LAYER 1:

Different filters identify different features.
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“Convolution” Operation

RGB Image
(7x7x3) 3 Convolution Filters

(3x3x3)

3 Feature Maps

(7x7x3)
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+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?What are feature maps 

and why are there 

multiple feature maps?

Why is there more than one layer?



CS109B, PROTOPAPAS, GLICKMAN, TANNER
103

Why more than one layer?

103
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Why more than one layer?

104

Layer 2, Filter 1: Combines 

horizontal and vertical lines from 

Layer 1 produce diagonal lines.
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Why more than one layer?

105

Layer 2, Filter 1: Combines 

horizontal and vertical lines from 

Layer 1 produce diagonal lines.

Layer 3, Filter 1: Combines 

diagonal lines to identify shapes
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+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?

Why is there more than one layer?
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So far:

We know that MLPs:

• Do not scale well for images

• Ignore the information brought by pixel position and correlation with 
neighbors

• Cannot handle translations

107
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So far:

We know that MLPs:

• Do not scale well for images

• Ignore the information brought by pixel position and correlation with 
neighbors

• Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties 
of images:

• Pixel position and neighborhood have semantic meanings. 

• Elements of interest can appear anywhere in the image.

108
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Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be 
down-sampled by an amount depending on the size of the 
filter.

We can avoid this by padding the edges in different ways.

110
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Padding

111

Full padding. Introduces zeros such that all 

pixels are visited the same number of times by 

the filter. Increases size of output. 

Same padding. Ensures that the 

output has the same size as the 

input.
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Stride

Stride controls how the filter 

convolves around the input 

volume.

The formula for calculating the 

output size is:

Where O is output dim, W is the 

input dim, K is the filter size, P 

is padding and S the stride

112

Stride = 1

Stride = 2
𝑂 = 𝑊 − 𝐾 + 2𝑃

𝑆 + 1
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Exercise: Pavlos vs Not Pavlos

The aim of this exercise is to train a 
dense neural network and a CNN to 
compare the parameters between 
them 

• Augment the dataset since we only 

have one image of Pavlos and the eagle

• Build a simple feed-forward network 

and train it

• Use the convolution layer to build a 

simple CNN and train it like the 

network before

• Compare performance and parameters
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+ ReLU
+ ReLU

A Convolutional Network

What is Pooling? What is going on here?


