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RECAP: Word Embeddings
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Each word is represented by a word embedding (e.g., vector of length 200)

• Each rectangle is a floating-point scalar

• Words that are more semantically similar

to one another will have embeddings

that are also proportionally similar

• We can use pre-existing word 

embeddings that have been trained on 
gigantic corpora
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Recap: Word Embeddings

3

These word embeddings are so rich that you get nice properties:

HOW?!?-

womanking man queen

+ ~



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Computer Vision vs Language models

4

CAT DOG
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Computer Vision vs Language models

5
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Computer Vision vs Language models

6

IMAGE OF A CAT RGB CHANNELS 3-D TENSOR
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Computer Vision vs Language models

7

“CAT”

“DOG”
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Words to numbers – One Hot Encoding

8

“CAT”

“DOG”

One-hot encoding of the word “cat”
(length of this vector is size of vocabulary)  
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One Hot Encoding Issues

• The vocabulary 𝑽 of a corpus (large swath of text) can have 10,000

words.

• One-hot encoding of such a corpus is huge.

• Moreover, similarities between words cannot  be established.

DOG

PUPPY

CAT

KITTEN

KITTEN

CAT

PUPPY

DOG
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Pavlos game #4275

WHO IS MOST SIMILAR TO PAVLOS?

Option BOption a Option C
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EXTROVERSION

Emotional stability

agreeableness

conscientiousness

imagination

BIG 5

97 6770 88
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46

62

68

13

22

51

93

87

89

56

80

Personality test

RESULTS



CS109B, PROTOPAPAS, GLICKMAN, TANNER
12

USING PERSONALITY DATA TO FIND SIMILARITY

Where 𝐴! & 𝐵! are components of vector 𝐴 & 𝐵 respectively

What is “Cosine Similarity”?
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COSINE SIMILARITY 0.987

0.912 

0.826

(

(

(

) =

) =

) =

COSINE SIMILARITY

COSINE SIMILARITY

WHO IS MOST SIMILAR TO PAVLOS?
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Word Embeddings

• We use the same idea to map words in a vocabulary to a n-dimensional 

vector space.

• For example, if we choose a 50-dimensional vector space, each word will 

be represented by 50 numbers.

• Such a vector is called an Embedding.

• Two words will be “similar” if their vector representations are close to 

each other.

• An Embedding Matrix is simply a collection of embedding values for all 

words in the vocabulary.

14
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Obligatory example

Vector Representations for a few words
(Color gradient indicates values from embedding)

-

womanking man queen

+ ~

Since these words are now mapped to 

numbers in 𝑅!, we can operate on them

Queen

Woman

Girl

Boy

Man

King

Queen

Water

Embedding Matrix 
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What we want

16

• We want the words of our 
vocabulary to be represented by 
a low-dimensional vector space.

• We also want these vector 
representations to have some 
semantic meaning, i.e vector 
representations of similar words 
must be close to each other.

Embeddings Wishlist?
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Words to Vectors

17

So how do we get such a rich word “embedding?”

Queen

Woman

Girl

Boy

Man

King

Queen

Water

💡IDEA: We could use a language model!
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RECAP: Language Modelling: neural networks

Language modeling is about predicting the next word using the previous words

She went to

𝑃 𝑥"#$|𝑥" , 𝑥"%$, … , 𝑥$

next word previous words

Example input sentence
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RECAP: Language Modelling: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

𝑉 𝑊

Hidden layer
Output layer

Example input sentence

She

went

to

class
𝑃
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Word Embeddings Training

• Text is a semantic sequence of words i.e., words used in a sentence are 
not random.

• We assume that If we build a neural network for language models and 

train them sufficiently well, we could get an embedding of words which 

can have a semantic relationship.

• We expect that two words that are similar will be mapped closely in the 
embedding space. 

Example:

SENTENCE #1: Pavlos ate an apple before the lecture.

SENTENCE #2: Shivas ate an orange before the session. 

Both apple & orange are surrounded by similar words. 20



PROTOPAPAS
21

APPLES AND
egg
APPLES A

ORANGES

of EATING fg ARE NOW

ORANGES CLOSE
TO

EACHOTHER
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Word Embeddings Training

• Text is a semantic sequence of words i.e., words used in a sentence are 
not random.

• We assume that If we build a neural network for language models and 

train them sufficiently well, we could get an embedding of words which 

can have a semantic relationship.

• We expect that two words that are similar will be mapped closely in the 
embedding space. 

Example: 

SENTENCE #1: Pavlos ate an apple before the lecture.

SENTENCE #2: Shivas ate an orange before the session. 

Both apple & orange are surrounded by similar words.
22

How do we do 
this?
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Word Embeddings Training

23

Training Set Model/Neural 
Network

Loss Function

With the ABC 
of supervised 
learning!
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Training Set Model/Neural 
Network

Loss Function

Let’s start with 
the training 
set

Word Embeddings Training
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Training set

25

Training Set

• To build a language model training set, we 
need to select a sequence of some words as 
input and use the next immediate word as the 
output label.

• We can use a sliding window to create several 
such training examples.

• There are other approaches to building a 
language model training set, but more on that 
later.
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The dog was chased by a  ⎽⎽⎽

Example sentence: Guess the next word 
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How do we set up a training  set?

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was chased by

The dog was chased by a cat as 

Sliding window across running text

Dataset
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Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was chased by

chased by a

Sliding window across running text

Dataset

The dog was chased by a cat as 

How do we set up a training  set?
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Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was hit by

hit by a

by a cat

Sliding window across running text

Dataset

NOTE: This approach of building training samples is called Continuous Bags of Words (CBOW)

The dog was chased by a cat as 

Continuous Bags of Words (CBOW)
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The dog was chased by a  ⎽⎽⎽

Example sentence: Guess the next word 
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The dog was chased by a  ⎽⎽⎽

If we go from left to right, 

the most likely word is CAT

Example sentence: Guess the next word 
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The dog was chased by a  ⎽⎽⎽ cat

However, if we see the complete 
sentence, the most likely word 

now is WHITE or BROWN or 

BLACK

Example sentence: Guess the next word 
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The dog was chased by a  ⎽⎽⎽ cat

This leads to the Skip-Gram architecture

Why not look both ways?

Example sentence: Guess the next word 
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SKIP-GRAM: Predict Surrounding Words

Choose a window size (here 4) and construct a dataset by sliding a window
across.

The dog was chased by a white cat as it …

input word target word

by was

by chased

by a 

by white 

The dog was chased by a white cat as it was
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SKIP-GRAM: Predict Surrounding Words

Choose a window size (here 4) and construct a dataset by sliding a window
across.

input word target word

by was

by chased

by a 

by white 

a chased

a by 

a white 

a cat 

The dog was chased by a white cat as it was

The dog was chased by a white cat as it …
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Training Set Model/Neural 

Network

Loss Function

Now let’s 
build a model

Word Embeddings Model
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Model

37

• To build a language model we need a network 
that takes a one-hot encoded input, 
connected to a low dimensional hidden state 
of size N, and outputs a vector with the same 
size as the input.

• We can then map the output (logits) to 
probabilities by using the softmax function.

• In principle, the hidden state will be the 
embedding of the word.

Model/Neural 

Network
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Going from One-Hot encoded to Embedding

DOG

PUPPY

CAT

KITTEN

KITTEN

CAT

PUPPY

DOG

How do we go from one-hot encoding to embedding space? 
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Going from One-Hot encoded to Embedding

Size of embedding

v
=

 S
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f 
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One-hot 
encoded input 

[‘Dog’]

INPUT EMBEDDING

Embedding 
Matrix

…

…

…

…

…

…

…………… …

Embedding 
[‘Dog’]

DOG

DOG
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Going from One-Hot encoded to Embedding

Size of embedding

v
=
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Embedding 
[‘Dog’]

DOG

DOG



41

INPUT [Vx1]

HIDDEN LAYER
[Nx1]

We want to go from 
hidden state of center 

word, 𝑤! , to 
probabilities 𝑃 𝑤" w#) 

for each word, 𝑤" , in 
the vocabulary

WISHLIST



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Skipgram Language model

42

Size of embedding

v
=
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0.4

INPUT
EMBEDDING

CONTEXTHIDDEN

OUTPUT SCORE
cat  

.

cat  white 

=

Vector for 
[‘CAT’] from 

embedding matrix

Vector for 
[‘WHITE’] from a 

‘different’ context 
matrix

Cosine similarity
describes how close the two 

vectors are to each other
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Skipgram Language model: Why two embeddings?

43

Size of embedding

v
=

 S
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e
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f 
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u
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ry0

0

…

0

0

1

0.001

INPUT
EMBEDDING

CONTEXTHIDDEN

cat  

.

cat  cat

=
The two words ‘cat’ 
come from different 
matrices, and we 
assume they will 
not be similar

OUTPUT SCORE
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Skipgram Language model

44
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[Vx1]
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[Nx1] 

Output layer
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Skipgram language model – Neural net edition

S
o

ft
M

a
x

INPUT [Vx1]

HIDDEN LAYER
[Nx1]

OUTPUT [Vx1]𝑷(OUTPUT/WORD)
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Loss Function

46

Training Set Model/Neural 

Network

Loss Function

Finally, we 
define the loss
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Training set

47

• Once we have the output probabilities, we can 
select the context words for each input, and 
multiply the probabilities to construct the 
likelihood

• We then maximize this probability 
(likelihood)

• The loss of choice is the Negative Log 
Likelihood, which must be minimized – this is 
equivalent to maximize the likelihood of the 
context words given central words 

Loss Function



CS109B, PROTOPAPAS, GLICKMAN, TANNER

SKIP-GRAM: Details

We assume that Naive Bayes style, the joint probability of all context words (𝑤!) in a 
window conditioned on the central word (𝑤"), is the product of the individual conditional 

probabilities: 

{𝑤"} = words in the 
window of the 
central word: 
context words

𝑃 {𝑤)} 𝑤*) = (
+ ∈ -+./)-

ℙ(𝑤)+ |𝑤*)

𝑤$ = central word

product of the 
probabilities of 
each word in the 
window, given the 
central word
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Loss function for gradient descent

50

input word target word

by was

by chased

by a 

by white 

a chased

a by 

a white 

a cat 

Then, assuming a text sequence of length T and window size m , the 
likelihood function is: 

"
!"#

$

"
%&'('&,( *+

ℙ 𝑤 !,( 𝑤!)

We want to maximize this likelihood hence we will minimize 
the Negative Log likelihood and use it as our loss function
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Alternatively…

52

Now assume that each word is 
represented as 2 embeddings, an 

input embedding, 𝑣" , (c is for central) 
when we talk about the central word 
and a context embedding (𝑢!) when 

we talk about the surrounding window 
(o is for output). 

Size of embedding

v
=
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f 
vo
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u
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ry ant

awesome
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.
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.
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.

.

.

EMBEDDING

Size of embedding

v
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CONTEXT

The probability of an output word, given a central 

word, is assumed to be given by a softmax of the 
dot product of the embeddings. 

Look-up table approach
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Loss function for gradient descent

53

Sum over all the 
central words in 
the training

Sum over all 
the words in 
the window

Softmax over the dot 
product with every 
possible word in the 
vocabulary
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59

red

UNTRAINED MODEL
NN(V,U)

TASK:

PREDICT THE NEIGHBOURING WORD …

0.02

0.4

a

by

as

cat

zinger

1.   Look up embeddings

2.   Calculate predictions

3.   Project to outward vocabulary

Putting it all together…

With random initial weights , we make a 
prediction for surrounding words, and 
calculate the NLL for the prediction. We then 
backpropagate the NLL's gradients to find 
new weights and repeat 

0.1

0.01

0.001
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red

UNTRAINED MODEL
NN(V,U)

TASK:

PREDICT THE NEIGHBOURING WORD …

0.02

0.4

a

by

as

cat

zinger

1.   Look up embeddings

2.   Calculate predictions

3.   Project to outward vocabulary

Putting it all together…

With random initial weights , we make a 
prediction for surrounding words, and 
calculate the NLL for the prediction. We then 
backpropagate the NLL's gradients to find 
new weights and repeat 

0.1

0.01

0.001

What 

weights are 

you talking 

about?
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DONE!?

61
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Problems with implementation

• In the forward mode, the calculation of softmax requires a sum over 
the entire vocabulary 
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Problems with implementation

• In the forward mode, the calculation of softmax requires a sum over 
the entire vocabulary 
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Problems with implementation

• In the backward mode, the gradients need this sum too. For example:

For large vocabularies, this is very expensive! 
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Problems with implementation

• In the backward mode, the gradients need this sum too. For example:

For large vocabularies, this is very expensive! 
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Changing Tasks

66

white OLD MODEL cat

FROM:

Center word Context word
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Changing Tasks

67

white

NEW MODEL

cat

0.9

Probability of 
“closeness”

TO:
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Changing Tasks

Changing from predicting neighbors to "are we neighbors? " changes 
model from multi class classification to binary classification. 

68

white
MODEL cat cat MODEL 0.9

FROM TO

white
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Changing Tasks (cont)

But the response variable in the dataset changes to all 1’s, and a trivial 
classifier always returning 1 will give the best score. 

Not good (this is equivalent to all embeddings being equal and infinite)! 

We now choose 𝑃 𝐷 = 1 𝑤$, 𝑤" = 𝜎(𝑢"
%𝑣$) and maximize the likelihood:
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Changing Tasks (cont)

But the response variable in the dataset changes to all 1’s, and a trivial 
classifier always returning 1 will give the best score. 

Not good (this is equivalent to all embeddings being equal and infinite)! 

We now choose 𝑃 𝐷 = 1 𝑤$, 𝑤" = 𝜎(𝑢"
%𝑣$) and maximize the likelihood:

Infinite?
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Training the model

• The positive sampling probabilities are 
simply sigmoids. 

• We now compute the loss and repeat over 
training examples in our batch and 
backpropagate to obtain gradients and 
change the embeddings and weights some, 
for each batch, in each epoch.

ant

awesome

chased

.

.

.

.

.

.

.

.

.

EMBEDDING

ant

cat

by

.

.

.

.

.

.

.

.

CONTEXT

zomato

chased

cat

by

white

Input word Output word Target Input & Output Sigmoid()

chased cat 1 -1.11 0.25

chased by 1 0.2 0.55

chased white 1 0.74 0.68

.

.

.

.
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Negative Sampling (change)

Pick randomly from our 
vocabulary (random sampling)
and label them with 0. 

input word
Output 
word

target

a chased 1

a by 1

a white 1

a cat 1

white by 1

white a 1

white cat 1

white as 1

input word target word

a chased

a by

a white 

a cat 

white by

white a 

white cat 

white as 

input word Output word target

a chased 1

a bigfoot 0

a zomato 0

a by 1

.. .. ..

.. .. ..

a white 1

we need to introduce negative samples to our dataset – samples of 

words that are not neighbors. Our model needs to return 0 for those 
samples.
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Training the model

• The negative sampling probabilities are 
now sigmoids subtracted from 1, whereas 
the positives are simply sigmoids. 

• We now compute the loss, and repeat 
over training examples in our batch. 

• And backpropagate to obtain gradients 
and change the embeddings and weights 
some, for each batch, in each epoch 

ant

chased

.

.

.

.

.

.

.

.

.

EMBEDDING

ant

bigfoot

cat

.

.

.

.

.

.

.

.

CONTEXT

zomato

chased

bigfoot

by

zomato

Input word Output word Target Input &
Output

Sigmoid()

chased bigfoot 0 -1.11 0.25

chased by 1 0.2 0.55

chased zomato 0 0.74 0.68

bigfoot
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The result

• We discard the Context matrix and save the embedding matrix.

• We can use the embedding matrix for our next task (perhaps a 
sentiment  classifier).

• We could have trained embeddings along with that particular task to
make the embeddings sentiment specific. There is always a tension
between domain/task specific embeddings and generic ones.

• This tension is usually resolved in favor of using generic embeddings
since task specific datasets seem to be smaller.

• We can still unfreeze pre-trained embedding layers to modify them
for domain specific tasks via transfer learning.
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Usage of word2vec

• The pre-trained word2vec and other embeddings (such as GloVe) are 
used everywhere in NLP today. 

• The ideas have been used elsewhere as well. AirBnB and Anghami model 
sequences of listings and songs using word2vec like techniques. 

• Alibaba and Facebook use word2vec and graph embeddings for 
recommendations and social network analysis. 
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Exercise: 🆓

The goal of the exercise is to understand and implement the 
cosine similarity in context of embeddings.

Use the embeddings to answer:

awesome - eagle + person = ? 



PROTOPAPAS

Exercise: 🆓

The goal of this exercise is to understand the Word2Vec 
architecture with skipgram & negative sampling.

You will build and train a word2vec!


