
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Word Embedding

A-sec 3

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RECAP: Word Embeddings

woman tableman

1

.

.

.

.

.

200

1

.

.

.

.

.

200

1

.

.

.

.

.

200

Each word is represented by a word embedding (e.g., vector of length 200)

• Each rectangle is a floating-point scalar

• Words that are more semantically similar

to one another will have embeddings

that are also proportionally similar

• We can use pre-existing word

embeddings that have been trained on
gigantic corpora

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Recap: Word Embeddings

3

These word embeddings are so rich that you get nice properties:

HOW?!?-

womanking man queen

+ ~

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Computer Vision vs Language models

4

CAT DOG

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Computer Vision vs Language models

5

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Computer Vision vs Language models

6

IMAGE OF A CAT RGB CHANNELS 3-D TENSOR

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Computer Vision vs Language models

7

“CAT”

“DOG”

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Words to numbers – One Hot Encoding

8

“CAT”

“DOG”

One-hot encoding of the word “cat”
(length of this vector is size of vocabulary)

9

One Hot Encoding Issues

• The vocabulary 𝑽 of a corpus (large swath of text) can have 10,000

words.

• One-hot encoding of such a corpus is huge.

• Moreover, similarities between words cannot be established.

DOG

PUPPY

CAT

KITTEN

KITTEN

CAT

PUPPY

DOG

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Pavlos game #4275

WHO IS MOST SIMILAR TO PAVLOS?

Option BOption a Option C

11

EXTROVERSION

Emotional stability

agreeableness

conscientiousness

imagination

BIG 5

97 6770 88

98

88

73

76

74

46

62

68

13

22

51

93

87

89

56

80

Personality test

RESULTS

CS109B, PROTOPAPAS, GLICKMAN, TANNER
12

USING PERSONALITY DATA TO FIND SIMILARITY

Where 𝐴! & 𝐵! are components of vector 𝐴 & 𝐵 respectively

What is “Cosine Similarity”?

13

COSINE SIMILARITY 0.987

0.912

0.826

(

(

(

) =

) =

) =

COSINE SIMILARITY

COSINE SIMILARITY

WHO IS MOST SIMILAR TO PAVLOS?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Word Embeddings

• We use the same idea to map words in a vocabulary to a n-dimensional

vector space.

• For example, if we choose a 50-dimensional vector space, each word will

be represented by 50 numbers.

• Such a vector is called an Embedding.

• Two words will be “similar” if their vector representations are close to

each other.

• An Embedding Matrix is simply a collection of embedding values for all

words in the vocabulary.

14

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Obligatory example

Vector Representations for a few words
(Color gradient indicates values from embedding)

-

womanking man queen

+ ~

Since these words are now mapped to

numbers in 𝑅!, we can operate on them

Queen

Woman

Girl

Boy

Man

King

Queen

Water

Embedding Matrix

CS109B, PROTOPAPAS, GLICKMAN, TANNER

What we want

16

• We want the words of our
vocabulary to be represented by
a low-dimensional vector space.

• We also want these vector
representations to have some
semantic meaning, i.e vector
representations of similar words
must be close to each other.

Embeddings Wishlist?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Words to Vectors

17

So how do we get such a rich word “embedding?”

Queen

Woman

Girl

Boy

Man

King

Queen

Water

💡IDEA: We could use a language model!

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RECAP: Language Modelling: neural networks

Language modeling is about predicting the next word using the previous words

She went to

𝑃 𝑥"#$|𝑥" , 𝑥"%$, … , 𝑥$

next word previous words

Example input sentence

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RECAP: Language Modelling: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

𝑉 𝑊

Hidden layer
Output layer

Example input sentence

She

went

to

class
𝑃

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Word Embeddings Training

• Text is a semantic sequence of words i.e., words used in a sentence are
not random.

• We assume that If we build a neural network for language models and

train them sufficiently well, we could get an embedding of words which

can have a semantic relationship.

• We expect that two words that are similar will be mapped closely in the
embedding space.

Example:

SENTENCE #1: Pavlos ate an apple before the lecture.

SENTENCE #2: Shivas ate an orange before the session.

Both apple & orange are surrounded by similar words. 20

PROTOPAPAS
21

APPLES AND
egg
APPLES A

ORANGES

of EATING fg ARE NOW

ORANGES CLOSE
TO

EACHOTHER

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Word Embeddings Training

• Text is a semantic sequence of words i.e., words used in a sentence are
not random.

• We assume that If we build a neural network for language models and

train them sufficiently well, we could get an embedding of words which

can have a semantic relationship.

• We expect that two words that are similar will be mapped closely in the
embedding space.

Example:

SENTENCE #1: Pavlos ate an apple before the lecture.

SENTENCE #2: Shivas ate an orange before the session.

Both apple & orange are surrounded by similar words.
22

How do we do
this?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Word Embeddings Training

23

Training Set Model/Neural
Network

Loss Function

With the ABC
of supervised
learning!

CS109B, PROTOPAPAS, GLICKMAN, TANNER
24

Training Set Model/Neural
Network

Loss Function

Let’s start with
the training
set

Word Embeddings Training

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Training set

25

Training Set

• To build a language model training set, we
need to select a sequence of some words as
input and use the next immediate word as the
output label.

• We can use a sliding window to create several
such training examples.

• There are other approaches to building a
language model training set, but more on that
later.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The dog was chased by a ⎽⎽⎽

Example sentence: Guess the next word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

How do we set up a training set?

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was chased by

The dog was chased by a cat as

Sliding window across running text

Dataset

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was chased by

chased by a

Sliding window across running text

Dataset

The dog was chased by a cat as

How do we set up a training set?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

Shivas was chased by a cat as …

input 1 input 2 output

was hit by

hit by a

by a cat

Sliding window across running text

Dataset

NOTE: This approach of building training samples is called Continuous Bags of Words (CBOW)

The dog was chased by a cat as

Continuous Bags of Words (CBOW)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The dog was chased by a ⎽⎽⎽

Example sentence: Guess the next word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The dog was chased by a ⎽⎽⎽

If we go from left to right,

the most likely word is CAT

Example sentence: Guess the next word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The dog was chased by a ⎽⎽⎽ cat

However, if we see the complete
sentence, the most likely word

now is WHITE or BROWN or

BLACK

Example sentence: Guess the next word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The dog was chased by a ⎽⎽⎽ cat

This leads to the Skip-Gram architecture

Why not look both ways?

Example sentence: Guess the next word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

SKIP-GRAM: Predict Surrounding Words

Choose a window size (here 4) and construct a dataset by sliding a window
across.

The dog was chased by a white cat as it …

input word target word

by was

by chased

by a

by white

The dog was chased by a white cat as it was

CS109B, PROTOPAPAS, GLICKMAN, TANNER

SKIP-GRAM: Predict Surrounding Words

Choose a window size (here 4) and construct a dataset by sliding a window
across.

input word target word

by was

by chased

by a

by white

a chased

a by

a white

a cat

The dog was chased by a white cat as it was

The dog was chased by a white cat as it …

CS109B, PROTOPAPAS, GLICKMAN, TANNER
36

Training Set Model/Neural

Network

Loss Function

Now let’s
build a model

Word Embeddings Model

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Model

37

• To build a language model we need a network
that takes a one-hot encoded input,
connected to a low dimensional hidden state
of size N, and outputs a vector with the same
size as the input.

• We can then map the output (logits) to
probabilities by using the softmax function.

• In principle, the hidden state will be the
embedding of the word.

Model/Neural

Network

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Going from One-Hot encoded to Embedding

DOG

PUPPY

CAT

KITTEN

KITTEN

CAT

PUPPY

DOG

How do we go from one-hot encoding to embedding space?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Going from One-Hot encoded to Embedding

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry0

0

…

0

0

1

One-hot
encoded input

[‘Dog’]

INPUT EMBEDDING

Embedding
Matrix

…

…

…

…

…

…

…………… …

Embedding
[‘Dog’]

DOG

DOG

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Going from One-Hot encoded to Embedding

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry0

0

…

0

0

1

One-hot
encoded input

[‘Dog’]

INPUT EMBEDDING

Embedding
Matrix

…

…

…

…

…

…

…………… …

Embedding
[‘Dog’]

DOG

DOG

41

INPUT [Vx1]

HIDDEN LAYER
[Nx1]

We want to go from
hidden state of center

word, 𝑤! , to
probabilities 𝑃 𝑤" w#)

for each word, 𝑤" , in
the vocabulary

WISHLIST

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Skipgram Language model

42

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry0

0

…

0

0

1

0.4

INPUT
EMBEDDING

CONTEXTHIDDEN

OUTPUT SCORE
cat

.

cat white

=

Vector for
[‘CAT’] from

embedding matrix

Vector for
[‘WHITE’] from a

‘different’ context
matrix

Cosine similarity
describes how close the two

vectors are to each other

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Skipgram Language model: Why two embeddings?

43

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry0

0

…

0

0

1

0.001

INPUT
EMBEDDING

CONTEXTHIDDEN

cat

.

cat cat

=
The two words ‘cat’
come from different
matrices, and we
assume they will
not be similar

OUTPUT SCORE

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Skipgram Language model

44
S

iz
e

 o
f

e
m

b
e

d
d

in
g

v = Size of vocabulary

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry0

0

…

0

0

1

One-hot
encoded input

[Vx1]

Hidden layer
[Nx1]

Output layer
𝑝(𝑤"#|𝑤$)

[VX1]

0.4

INPUT
EMBEDDING

CONTEXTHIDDEN

OUTPUT
PROB

…

…

…

…

…

cat

S
O

F
T

M
A

X

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Skipgram language model – Neural net edition

S
o

ft
M

a
x

INPUT [Vx1]

HIDDEN LAYER
[Nx1]

OUTPUT [Vx1]𝑷(OUTPUT/WORD)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Loss Function

46

Training Set Model/Neural

Network

Loss Function

Finally, we
define the loss

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Training set

47

• Once we have the output probabilities, we can
select the context words for each input, and
multiply the probabilities to construct the
likelihood

• We then maximize this probability
(likelihood)

• The loss of choice is the Negative Log
Likelihood, which must be minimized – this is
equivalent to maximize the likelihood of the
context words given central words

Loss Function

CS109B, PROTOPAPAS, GLICKMAN, TANNER

SKIP-GRAM: Details

We assume that Naive Bayes style, the joint probability of all context words (𝑤!) in a
window conditioned on the central word (𝑤"), is the product of the individual conditional

probabilities:

{𝑤"} = words in the
window of the
central word:
context words

𝑃 {𝑤)} 𝑤*) = (
+ ∈ -+./)-

ℙ(𝑤)+ |𝑤*)

𝑤$ = central word

product of the
probabilities of
each word in the
window, given the
central word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Loss function for gradient descent

50

input word target word

by was

by chased

by a

by white

a chased

a by

a white

a cat

Then, assuming a text sequence of length T and window size m , the
likelihood function is:

"
!"#

$

"
%&'('&,(*+

ℙ 𝑤 !,(𝑤!)

We want to maximize this likelihood hence we will minimize
the Negative Log likelihood and use it as our loss function

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Alternatively…

52

Now assume that each word is
represented as 2 embeddings, an

input embedding, 𝑣" , (c is for central)
when we talk about the central word
and a context embedding (𝑢!) when

we talk about the surrounding window
(o is for output).

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry ant

awesome

cat

.

.

.

.

.

.

.

.

.

EMBEDDING

Size of embedding

v
=

 S
iz

e
 o

f
vo

ca
b

u
la

ry ant

awesome

cat

.

.

.

.

.

.

.

.

.

CONTEXT

The probability of an output word, given a central

word, is assumed to be given by a softmax of the
dot product of the embeddings.

Look-up table approach

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Loss function for gradient descent

53

Sum over all the
central words in
the training

Sum over all
the words in
the window

Softmax over the dot
product with every
possible word in the
vocabulary

CS109B, PROTOPAPAS, GLICKMAN, TANNER

59

red

UNTRAINED MODEL
NN(V,U)

TASK:

PREDICT THE NEIGHBOURING WORD …

0.02

0.4

a

by

as

cat

zinger

1. Look up embeddings

2. Calculate predictions

3. Project to outward vocabulary

Putting it all together…

With random initial weights , we make a
prediction for surrounding words, and
calculate the NLL for the prediction. We then
backpropagate the NLL's gradients to find
new weights and repeat

0.1

0.01

0.001

CS109B, PROTOPAPAS, GLICKMAN, TANNER

60

red

UNTRAINED MODEL
NN(V,U)

TASK:

PREDICT THE NEIGHBOURING WORD …

0.02

0.4

a

by

as

cat

zinger

1. Look up embeddings

2. Calculate predictions

3. Project to outward vocabulary

Putting it all together…

With random initial weights , we make a
prediction for surrounding words, and
calculate the NLL for the prediction. We then
backpropagate the NLL's gradients to find
new weights and repeat

0.1

0.01

0.001

What

weights are

you talking

about?

PROTOPAPAS

DONE!?

61

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Problems with implementation

• In the forward mode, the calculation of softmax requires a sum over
the entire vocabulary

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Problems with implementation

• In the forward mode, the calculation of softmax requires a sum over
the entire vocabulary

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Problems with implementation

• In the backward mode, the gradients need this sum too. For example:

For large vocabularies, this is very expensive!

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Problems with implementation

• In the backward mode, the gradients need this sum too. For example:

For large vocabularies, this is very expensive!

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Changing Tasks

66

white OLD MODEL cat

FROM:

Center word Context word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Changing Tasks

67

white

NEW MODEL

cat

0.9

Probability of
“closeness”

TO:

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Changing Tasks

Changing from predicting neighbors to "are we neighbors? " changes
model from multi class classification to binary classification.

68

white
MODEL cat cat MODEL 0.9

FROM TO

white

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Changing Tasks (cont)

But the response variable in the dataset changes to all 1’s, and a trivial
classifier always returning 1 will give the best score.

Not good (this is equivalent to all embeddings being equal and infinite)!

We now choose 𝑃 𝐷 = 1 𝑤$, 𝑤" = 𝜎(𝑢"
%𝑣$) and maximize the likelihood:

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Changing Tasks (cont)

But the response variable in the dataset changes to all 1’s, and a trivial
classifier always returning 1 will give the best score.

Not good (this is equivalent to all embeddings being equal and infinite)!

We now choose 𝑃 𝐷 = 1 𝑤$, 𝑤" = 𝜎(𝑢"
%𝑣$) and maximize the likelihood:

Infinite?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Training the model

• The positive sampling probabilities are
simply sigmoids.

• We now compute the loss and repeat over
training examples in our batch and
backpropagate to obtain gradients and
change the embeddings and weights some,
for each batch, in each epoch.

ant

awesome

chased

.

.

.

.

.

.

.

.

.

EMBEDDING

ant

cat

by

.

.

.

.

.

.

.

.

CONTEXT

zomato

chased

cat

by

white

Input word Output word Target Input & Output Sigmoid()

chased cat 1 -1.11 0.25

chased by 1 0.2 0.55

chased white 1 0.74 0.68

.

.

.

.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Negative Sampling (change)

Pick randomly from our
vocabulary (random sampling)
and label them with 0.

input word
Output
word

target

a chased 1

a by 1

a white 1

a cat 1

white by 1

white a 1

white cat 1

white as 1

input word target word

a chased

a by

a white

a cat

white by

white a

white cat

white as

input word Output word target

a chased 1

a bigfoot 0

a zomato 0

a by 1

..

..

a white 1

we need to introduce negative samples to our dataset – samples of

words that are not neighbors. Our model needs to return 0 for those
samples.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Training the model

• The negative sampling probabilities are
now sigmoids subtracted from 1, whereas
the positives are simply sigmoids.

• We now compute the loss, and repeat
over training examples in our batch.

• And backpropagate to obtain gradients
and change the embeddings and weights
some, for each batch, in each epoch

ant

chased

.

.

.

.

.

.

.

.

.

EMBEDDING

ant

bigfoot

cat

.

.

.

.

.

.

.

.

CONTEXT

zomato

chased

bigfoot

by

zomato

Input word Output word Target Input &
Output

Sigmoid()

chased bigfoot 0 -1.11 0.25

chased by 1 0.2 0.55

chased zomato 0 0.74 0.68

bigfoot

CS109B, PROTOPAPAS, GLICKMAN, TANNER

The result

• We discard the Context matrix and save the embedding matrix.

• We can use the embedding matrix for our next task (perhaps a
sentiment classifier).

• We could have trained embeddings along with that particular task to
make the embeddings sentiment specific. There is always a tension
between domain/task specific embeddings and generic ones.

• This tension is usually resolved in favor of using generic embeddings
since task specific datasets seem to be smaller.

• We can still unfreeze pre-trained embedding layers to modify them
for domain specific tasks via transfer learning.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Usage of word2vec

• The pre-trained word2vec and other embeddings (such as GloVe) are
used everywhere in NLP today.

• The ideas have been used elsewhere as well. AirBnB and Anghami model
sequences of listings and songs using word2vec like techniques.

• Alibaba and Facebook use word2vec and graph embeddings for
recommendations and social network analysis.

PROTOPAPAS

Exercise: 🆓

The goal of the exercise is to understand and implement the
cosine similarity in context of embeddings.

Use the embeddings to answer:

awesome - eagle + person = ?

PROTOPAPAS

Exercise: 🆓

The goal of this exercise is to understand the Word2Vec
architecture with skipgram & negative sampling.

You will build and train a word2vec!

