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Simple Prediction Model (KNN)
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Simple Prediction Model
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Extend the Prediction Model
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Simple Prediction Models 
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Simple Prediction Models 
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We can try different k-models on more data
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Estimate of the regression coefficients
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For a given data set
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Estimate of the regression coefficients (cont)

13

Is this line good?
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Estimate of the regression coefficients (cont) 
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Maybe this one?
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Estimate of the regression coefficients (cont) 
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Or this one?
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Estimate of the regression coefficients (cont) 
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Question: Which line is the best? 
First calculate the residuals 
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Estimate of the regression coefficients (cont) 
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Estimate of the regression coefficients: brute force
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One way to estimate our coefficients would be to calculate 
the loss function for every possible 𝞫0 and 𝞫1. Then select the 
betas where the loss function is at the minimum.

E.g. the loss function for different 𝞫1 values when 𝞫0 is fixed 
to be 6:
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Estimate of the regression coefficients: exact method 
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Confidence intervals for the predictors estimates
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 In our magical realisms, we can now sample multiple times 
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Confidence intervals for the predictors estimates (cont)

23

Another sample 
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Confidence intervals for the predictors estimates (cont)
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Another sample 
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Confidence intervals for the predictors estimates (cont)
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And another sample 
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Confidence intervals for the predictors estimates (cont)
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Repeat this for 100 times 
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Confidence intervals for the predictors estimates (cont)
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Confidence intervals for the predictors estimates (cont)

Finally we can calculate the confidence intervals, which are the ranges of 
values such that the true value of is contained in this interval with n percent 
probability.

28

68%
95%
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Below we show all regression lines for a thousand of such bootstrapped 
samples. 
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Below we show all regression lines for a thousand of such sub-samples. 
For each one of those “realizations” we can fit a model and testament 
the coefficients. 
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Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.

It is obvious that degree=3 is the 
correct model but the validation 
set by chance favors the linear 
model. 
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Train-Validation-Test

We use this to 
train a model

We use this to 
select model

We use this to 
report model 
performance

Train TestValidation

We introduce a different sub-set, which we called validation and we use it to 
select the model.
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Train-Validation-Test

We use this to 
train a model

We use this to 
select model

Train TestValidation

We introduce a different sub-set, which we called validation and we use it to 
select the model.

The test set should never be 
touched for model training or 

selection. 

We use this to 
report model 
performance
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Cross Validation

Test

Train Train Train TrainValid.

Train

Test

 Train 
model
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Cross Validation
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Linear models: 20 data points per line 2000 simulations
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Poly 10 degree models : 20 data points per line 2000 simulations
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Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point training 
set. 
Right: Best-fit models using degree 10 polynomial
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Regularization: An Overview
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LASSO Regression

Since we wish to discourage extreme values in model parameter, we 
need to choose a regularization term that penalizes parameter 
magnitudes. For our loss function, we will again use MSE.

Together our regularized loss function is:

Note that              is the l1 norm of the vector β
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the 
squares of the parameter magnitudes. Then, our regularized loss 
function is:

Note that               is the l2 norm of the vector β
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Ridge regularization with a single validation set
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Ridge regularization with k-fold cross-validation
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The Intuition Behind PCA

Top PCA components capture the most of amount of variation 
(interesting features) of the data. 
Each component is a linear combination of the original predictors - we 
visualize them as vectors in the feature space.
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The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our dataset onto the 
space defined by the top m PCA components, these components are our 
new predictors.

65



CS109A, PROTOPAPAS, PILLAI

An Alternative Interpretation of PCA
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A Simple Classification Problem: Binary Response

What could go wrong with this linear regression model? 
.
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Output Should Be Interpretable As Probabilities

 

Think of a function that would do this for us

72



CS109A, PROTOPAPAS, PILLAI

Logistic Regression
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Estimation in Logistic Regression
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 Likelihood

The likelihood of a single observation for p given x and y  is:

Given the observations are independent, what is the likelihood function for 
p?
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 Loss Function

How do we minimize this?

Differentiate, equate to zero and solve for it! 

But yikes, does this look messy!  It will not necessarily have a closed form 
solution.

So how do we determine the parameter estimates?  Through an iterative 
approach! 
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Classifier with two predictors

How can we estimate a classifier, based on logistic regression, for the 
following plot?
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Multiple Logistic Regression
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Regularization in Logistic Regression
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ROC Curve Example 

The Radio Operator Characteristics (ROC) curve 
illustrates the trade-off for all possible thresholds 
chosen for the two types of error (or correct 
classification). 

The vertical axis displays the true positive predictive 
value and the horizontal axis depicts the true 
negative predictive value. 

The overall performance of a classifier, calculated 
over all possible thresholds, is given by the area 
under the ROC curve (AUC). 

An ideal ROC curve will hug the top left corner, so the 
larger the AUC the better the classifier. 
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k-NN for Classification: formal definition 
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Estimated Probabilities in k-NN Classification
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Types of Missingness

There are 3 major types of missingness to be concerned about:
1. Missing Completely at Random (MCAR) - the probability of 

missingness in a variable is the same for all units.  Like 
randomly poking holes in a data set.

2. Missing at Random (MAR) - the probability of missingness in 
a variable depends only on available information (in other 
predictors).

3. Missing Not at Random (MNAR) - the probability of 
missingness depends on information that has not been 
recorded and this information also predicts the missing values.

What are examples of each these 3 types?
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Imputation Methods
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Schematic: imputation through modeling 

How do we use models to fill in missing data? Using k-NN for k = 2? 
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Imputation through modeling /w uncertainty: an illustration 
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SIMPLE   DECISION 
TREE
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Although regression models with linear 
boundaries are intuitive to interpret, it’s harder 
to interpret non-linear decision boundaries.

Trees:

1. Allow for complex decision boundaries

2. Are easy to interpret
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The Geometry of Flow Charts

Each comparison and branching represents splitting a region in the 
feature space on a single feature.

The prediction is based on the most common class
(or mean value).
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Considerations

1. Splitting Criterion. e.g.,
• Gini Index
• misclassification error
• Entropy

2. Stopping Criterion. e.g.,
• Minimum MSE
• Uniformity of the data samples’ labels
• Size of tree, such as maximum depth
• The “gain” converges
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Considerations

Shallow trees have: high bias and low variance

98

Deep trees have: low bias and high variance

Simple decision trees often:
• Overfit
• Underperform when compared to other classification 

and regression methods
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BAGGING
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Bootstrap Aggregating

Bootstrap = generate data via sampling w/ replacement

Aggregating = return the average (regression) or majority class 
(classification)
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Combine them? 2 magic realisms

101
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Combine them? 20 magic realisms
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Combine them? 100 magic realisms
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Bagging (regression)

The resulting tree is the 
average of all tree (estimators). 
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Bagging (classification)

For each bootstrap, we build a decision tree. The results is a combination 
(majority) of the predictions from all trees. 
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Bootstrap Aggregating

BENEFITS
• More expressive
• Helps prevent overfitting
• Decreases variance

(less sensitive to different data)

106

ISSUES
• interpretability ("majority")

solution: variable importance via the avg 

Gini/MSE for each feature

• can still underfit or overfit

solution: validation via out-of-bag error

• Trees tend to be highly correlated

(split the same at the beginning)

solution: random forests
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RANDOM   
FORESTS
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Random Forests
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Random Forests

SPECIFY

• Number of trees (n_estimators)

• Number of predictors (max_features)

CONSIDERATIONS

• Be careful w/ the # of predictors. If you select a small %, you’ll have an ensemble of 
weak models

• A lot of hyperparameters. Vary all of them together.

109
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BOOSTING
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Motivation for Boosting 

Question: Could we address the shortcomings of single decision trees 
models in some other way? 

For example, rather than performing variance reduction on complex trees, 
can we decrease the bias of simple trees - make them more expressive? 

Can we learn from our mistakes? 

A solution to this problem, making an expressive model from simple trees, 
is another class of ensemble methods called boosting. 
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Gradient Boosting 

The key intuition behind boosting is that one can take an ensemble of 
simple models {Th}h∈H and additively combine them into a single, more 
complex model.
 
Each model Th might be a poor fit for the data, but a linear combination of 
the ensemble:

can be expressive/flexible.
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Gradient Boosting: the algorithm 

Gradient boosting is a method for iteratively building a complex 
regression model T  by adding simple models. 

Each new simple model added to the ensemble compensates for the 
weaknesses of the current ensemble. 
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Gradient Boosting: the algorithm 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Courses Related to Data Science

• CS 109B: Advanced Topics in Data Science 
• https://harvard-iacs.github.io/2021-CS109B/

• CS 171: Visualizations
• CS 181/281: Machine Learning
• CS 182: Artificial Intelligence (AI)
• CS 205:  Distributive Computing
• Stat 110/210: Probability Theory
• Stat 111/211: Statistical Inference
• Stat 139: Linear Models 
• Stat 149: Generalized Linear Models
• Stat 195: Statistical Machine Learning
This list is not exhaustive!
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State of Machine Learning and Data Science 2020

Kaggle enterprise executive summary report 
Kaggle surveyed its community of data enthusiasts to share trends 
within a quickly growing field.

Based on responses from 20,036 Kaggle members, they’ve created a 
report focused on the 13% (2,675 respondents) who are currently 
employed as data scientists.
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Key findings: Gender  
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Key findings: Age  
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Key findings: Nationalities  
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Key findings: Education  
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Key findings: Salary  
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Key findings: Salary by Country  
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Key findings: Methods and Algorithms
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Key findings: ML Frameworks
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Thank You! 
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