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Approach #1: Dry definitions
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Classification Metrics 

𝑃 𝐷 + 𝑇 + =
𝑃 𝑇 + 𝐷 + 𝑃(𝐷+)

𝑃 𝑇 + 𝐷 + 𝑃(𝐷+) + 𝑃 𝑇 + 𝐷 − 𝑃(𝐷−)

• Sensitivity: 𝑃 𝑇 + 𝐷 +
• Specificity: 𝑃 𝑇 − 𝐷 −
• Prevalence: 𝑃(𝐷+)
• Positive Predictive Value: 𝑃(𝐷 + |𝑇+)
• Negative Predictive Value: 𝑃(𝐷 − |𝑇−)

D + - Disease
D - - Doesn't have disease
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THE END
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Approach #2: Case Study
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Covid Case Study

• At the peak of the pandemic, many 
nations with poor healthcare were 
running short of hospital beds to 
admit patients.

• Hospital authorities had to take a 
call on who to admit and who to 
send home.

• What if we could build a classifier 
that suggests whether the patient 
should be immediately admitted to 
the hospital or sent home ? 
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Who should get medical attention first ?
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Covid case study

ISSUES?

This analysis is for educational purpose only 

• The data is sourced by online forms and 
thus is of questionable source.

• A lot of missing values in the original 
dataset are simply ignored for simpler 
analysis.

• The entire premise of predicting urgency 
of admission is false because some 
people had to wait longer to be admitted 
because of lack of hospital beds & 
resources.



CS109A, PROTOPAPAS, PILLAI 10

Covid case-study

Primary predictors
• age (if an age range was provided in the 

source data, only the first number is used)
• sex
• cough, fever, chills, sore throat, headache, 

fatigue

Outcomes
Classification: urgency_of_admission
• 0-1 days from onset of symptoms to 

admission -> High
• 2+ days from onset of symptoms to 

admission or no admission -> Low
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Scenario #1 - Brazil
BRAZIL

• The new covid variant is contagious 
and infecting many Brazilians. 

• Brazilian officials however dictate that 
hospitals do not classify many people 
at 'high' risk to avoid bad press and 
subsequent political global backlash.

• In numbers we need the best classifier 
with the following restriction.

𝑻𝑷𝑹 + 𝑭𝑷𝑹 ≤ 𝟎. 𝟓
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Scenario #2 - Germany
GERMANY

• German officials want the fatality 
ratio to be as less as possible.

• Thus, it is imperative to find cases in 
need of urgent attention and give them 
the best chance of survival.

• In numbers we need the best classifier 
with the following restriction.

𝑻𝑷𝑹 ≥ 𝟎. 𝟖𝟓
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Scenario #3 - India
INDIA

• India has only 1 million beds left, and 
there are already 2 million people 
suspected of having the disease

• The officials need to work out a 
strategy to find the people at most 
need of urgent 

• In numbers we need the best classifier 
with the following restriction

𝑻𝑷𝑹 + 𝑭𝑷𝑹 ≤ 𝟏



CS109A, PROTOPAPAS, PILLAI 14

Two models

Logistic Regression kNN Classification
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Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy

Sensitivity 
(Recall)

Specificity 

Precision

F1 score

Model Comparison – Logistic vs kNN
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix

TRUE POSITIVE (TP)

• Samples that are positive and the 
classifier predicts them as positive 
are called True Positives.

• For eg. a positive Covid test result 
would be a TRUE POSITIVE if you 
actually have Covid.
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix

FALSE POSITIVE  (FP)

• Samples that are negative and the 
classifier predicts them as positive 
are called False Positives.

• For eg. a positive Covid test result 
would be a FALSE POSITIVE if you 
actually don't have Covid. 
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix

TRUE NEGATIVE (TN)

• Samples that are negative and the 
classifier predicts them as negative 
are called True Negatives.

• For eg. a negative Covid test result 
would be a TRUE NEGATIVE if you 
actually don't have Covid.



CS109A, PROTOPAPAS, PILLAI 21

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix

FALSE NEGATIVE  (FN)

• Samples that are negative and the 
classifier predicts them as positive 
are called False Negatives.

• For eg. a negative Covid test result 
would be a FALSE NEGATIVE if you 
actually have Covid.
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

The 'Confusion' Matrix
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Let's Begin
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The 'Confusion' Matrix

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

58

97

59

37

Logistic Regression
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The 'Confusion' Matrix

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

55

101

62

33

kNN Classification
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The 'Confusion' Matrix
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HIGH
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HIGH
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kNN Classification
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

𝑇𝑁 + 𝑇𝑃
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Accuracy
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Accuracy 

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

55

101

62

33

kNN Classification

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

58

97

59

37

Logistic Regression

Accuracy =
!"#$%

!"#$%#&%#!$ = 0.62 Accuracy =
!!#'('

!!#'('#&&#)* = 0.62
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Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity 
(Recall)

Specificity 

Precision

F1 score

Model Comparison – Logistic vs kNN
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Sensitivity/True Positive Rate/Recall
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Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity 
(Recall)

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Specificity 

Precision

F1 score

Model Comparison – Logistic vs kNN
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

Specificity/True Negative Rate
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PREDICTED 
LOW
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HIGH
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FALSE
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False Positive Rate



CS109A, PROTOPAPAS, PILLAI 37

Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity 
(Recall)

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Precision

F1 score

Model Comparison – Logistic vs kNN
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Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity 
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𝑇𝑃 + 𝐹𝑁
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𝑇𝑁 + 𝐹𝑃

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1 score

Model Comparison – Logistic vs kNN
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PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

TRUE 
NEGATIVE

TRUE
POSITIVE

FALSE 
POSITIVE

FALSE
NEGATIVE

Precision = &'
&'()'

F1-score

Recall = &'
&'()*

F1 score = 
+∗'-./01023∗4./566
'-./01023(4./566
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Classification Metric Formula
Logistic 

Regression
kNN

Classification

Accuracy
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity 
(Recall)

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1 score 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Model Comparison – Logistic vs kNN



CS109A, PROTOPAPAS, RADER, TANNER

Bayes threshold
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Bayes Threshold

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

Logistic Regression

58

97

59

37
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39

Bayes Threshold

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

Logistic Regression

61

95

56
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36

Bayes Threshold

PREDICTED 
LOW

HIGH

LOW

PREDICTED 
HIGH

Logistic Regression

58

99

59
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Receiver Operating Characteristic curve (ROC) 

• The ROC curve was first developed by 
radar engineers during World War II 
for detecting enemy objects in 
battlefields.

• The ROC curve is created by plotting 
the true positive rate (TPR) against 
the false positive rate (FPR) at 
various threshold settings.

• If used correctly, ROC curves are a 
very powerful tool as a statistical 
performance measure in 
detection/classification theory.
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ROC curve for various thresholds
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Two models

Logistic Regression kNN Classification

v/s
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Choice of Classifier

Based on the constraints we have 
the following choice of classifier: 

• BRAZIL: Logistic regression with a 
high threshold

• GERMANY: Logistic regression 
with a low threshold

• INDIA: kNN classifier with a 
moderate threshold

The choice of classifier depends on the constraints and the threshold value.


