
CS109A Introduction to Data Science
Pavlos Protopapas, Natesh Pillai

AdaBoost

CS109A, PROTOPAPAS, PILLAI 2

•Do we recombine our residual predictions at the end of the boosting
process to come up with a final model prediction or do we iteratively
combine residual predictions to determine the next set of residuals?
•When would gradient boosting not be suitable for an application?
•Can you combine bootstrapping and boosting?
•How do we choose the appropriate lambda parameters?
•Why does boosting face the issue of overfitting when tree number
increases while on the other hand random forest doesn't face this
issue?
•In boosting, how can we make sure that the different trees are not
highly correlated? Is there a mechanism similar to random forest?
•In boosting, if one has extreme outliers, can it ruin the boosting
model since it is trained on residuals?

CS109A, PROTOPAPAS, PILLAI 3

CS109A, PROTOPAPAS, PILLAI

Motivation for AdaBoost

Using the language of gradient descent also allows us to connect
gradient boosting for regression to a boosting algorithm often used for
classification, AdaBoost.

In classification, we typically want to minimize the classification error:

Naively, we can try to minimize Error via gradient descent, just like we
did for MSE in gradient boosting.

Unfortunately, Error is not differentiable L

4

CS109A, PROTOPAPAS, PILLAI

Motivation for AdaBoost (cont.)

Our solution: we replace the Error function with a differentiable function
that is a good indicator of classification error.

The function we choose is called exponential loss:

Exponential loss is differentiable with respect to !𝑦! and it is an upper
bound of Error.

5

CS109A, PROTOPAPAS, PILLAI

Gradient Descent with Exponential Loss

We first compute the gradient for ExpLoss:

It’s easier to decompose each 𝑦!exp −𝑦! !𝑦! as 𝑤!𝑦!, where
𝑤! = exp −𝑦! !𝑦! .

This way, we see that the gradient is just a re-weighting applied the
target values

Notice that when 𝑦! = !𝑦!, the weight 𝑤! is small; when 𝑦! ≠ !𝑦!, the
weight is larger.

6

CS109A, PROTOPAPAS, PILLAI

Gradient Descent with Exponential Loss

The update step in the gradient descent is

Just like in gradient boosting, we approximate the gradient, 𝜆𝑤!𝑦!with a
simple model, T(i), that depends on 𝑥!.

This means training T(i) on a re-weighted set of target values,

{ 𝑥!, 𝑤!𝑦! , … , (𝑥" , 𝑤"𝑦")}

That is, gradient descent with exponential loss means iteratively
training simple models that focuses on the points misclassified by the
previous model.

7

*𝑦# ← *𝑦# + 𝜆𝑤#𝑦# , 𝑛 = 1,… ,𝑁

CS109A, PROTOPAPAS, PILLAI

AdaBoost

With a minor adjustment to the exponential loss function, we have the
algorithm for gradient descent:

1. Choose an initial distribution over the training data, 𝑤! = 1/𝑁.

2. At the ith step, fit a simple classifier T(i) on weighted training data

3. Update the weights:

where Z is the normalizing constant for the collection of updated
weights

4. Update 𝑇: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)

where 𝜆 is the learning rate.
8

{ 𝑥%, 𝑤%𝑦% , … , (𝑥&, 𝑤&𝑦&)}

CS109A, PROTOPAPAS, PILLAI

AdaBoost: start with equal weights

9

CS109A, PROTOPAPAS, PILLAI

AdaBoost: fit a simple decision tree

10

fit a simple classifier T(i)

CS109A, PROTOPAPAS, PILLAI

AdaBoost: update the weights

11

Update the weights:

CS109A, PROTOPAPAS, PILLAI

AdaBoost:

12

fit another simple decision tree on re-weighted data

CS109A, PROTOPAPAS, PILLAI

AdaBoost:

13

add the new model to the ensemble: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)

CS109A, PROTOPAPAS, PILLAI

AdaBoost: update the weights

14

Update the weights:

CS109A, PROTOPAPAS, PILLAI

AdaBoost

15

fit another simple decision tree on re-weighted data

CS109A, PROTOPAPAS, PILLAI

AdaBoost: add the new model to the ensemble, repeat…

16

add the new model to the ensemble: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)

CS109A, PROTOPAPAS, PILLAI

Choosing the Learning Rate

Unlike in the case of gradient boosting for regression, we can
analytically solve for the optimal learning rate for AdaBoost, by
optimizing:

Doing so, we get that

17

CS109A, PROTOPAPAS, PILLAI

Final thoughts on Boosting

There are few implementations on boosting:

• XGBoost: An efficient Gradient Boosting Decision

• LGBM: Light Gradient Boosted Machines. It is a library for training
GBMs developed by Microsoft, and it competes with XGBoost

• CatBoost: A new library for Gradient Boosting Decision Trees, offering
appropriate handling of categorical features

18

CS109A, PROTOPAPAS, PILLAI

Final thoughts on Boosting

Increasing the number of trees can lead to overfitting.

Question: Why?

19

20

CS109A, PROTOPAPAS, PILLAI 21

