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•Do we recombine our residual predictions at the end of the boosting 
process to come up with a final model prediction or do we iteratively 
combine residual predictions to determine the next set of residuals? 
•When would gradient boosting not be suitable for an application?
•Can you combine bootstrapping and boosting?
•How do we choose the appropriate lambda parameters?
•Why does boosting face the issue of overfitting when tree number 
increases while on the other hand random forest doesn't face this 
issue?
•In boosting, how can we make sure that the different trees are not 
highly correlated? Is there a mechanism similar to random forest?
•In boosting, if one has extreme outliers, can it ruin the boosting 
model since it is trained on residuals?
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Motivation for AdaBoost 

Using the language of gradient descent also allows us to connect 
gradient boosting for regression to a boosting algorithm often used for 
classification, AdaBoost. 

In classification, we typically want to minimize the classification error: 

Naively, we can try to minimize Error via gradient  descent, just like we 
did for MSE in gradient boosting. 

Unfortunately, Error is not differentiable L
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Motivation for AdaBoost (cont.)

Our solution: we replace the Error function with a differentiable function 
that is a good indicator of classification error. 

The function we choose is called exponential loss:

Exponential loss is differentiable with respect to !𝑦! and it is an upper 
bound of Error. 
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Gradient Descent with Exponential Loss 

We first compute the gradient for ExpLoss:

It’s easier to decompose each  𝑦!exp −𝑦! !𝑦! as 𝑤!𝑦!, where
𝑤! = exp −𝑦! !𝑦! .

This way, we see that the gradient is just a re-weighting applied the 
target values 

Notice that when 𝑦! = !𝑦!, the weight 𝑤! is small; when 𝑦! ≠ !𝑦!, the 
weight is larger. 
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Gradient Descent with Exponential Loss 

The update step in the gradient descent is 

Just like in gradient boosting, we approximate the gradient, 𝜆𝑤!𝑦!with a 
simple model, T(i), that depends on  𝑥!. 

This means training T(i) on a re-weighted set of target values, 

{ 𝑥!, 𝑤!𝑦! , … , (𝑥" , 𝑤"𝑦")}

That is, gradient descent with exponential loss means iteratively 
training simple models that focuses on the points misclassified by the 
previous model. 
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*𝑦# ← *𝑦# + 𝜆𝑤#𝑦# , 𝑛 = 1,… ,𝑁
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AdaBoost 

With a minor adjustment to the exponential loss function, we have the 
algorithm for gradient descent: 

1. Choose an initial distribution over the training data, 𝑤! = 1/𝑁.

2. At the ith step, fit a simple classifier T(i) on weighted training data 

3. Update the weights: 

where Z is the normalizing constant for the collection of updated 
weights 

4. Update 𝑇: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)

where 𝜆 is the learning rate. 
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{ 𝑥%, 𝑤%𝑦% , … , (𝑥&, 𝑤&𝑦&)}
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AdaBoost: start with equal weights 
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AdaBoost: fit a simple decision tree
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fit a simple classifier T(i)
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AdaBoost: update the weights
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Update the weights:
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AdaBoost:

12

fit another simple decision tree on re-weighted data
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AdaBoost:
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add the new model to the ensemble: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)
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AdaBoost: update the weights

14

Update the weights:
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AdaBoost
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fit another simple decision tree on re-weighted data
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AdaBoost: add the new model to the ensemble, repeat…
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add the new model to the ensemble: 𝑇 ← 𝑇 + 𝜆(#)𝑇(#)
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Choosing the Learning Rate 

Unlike in the case of gradient boosting for regression, we can 
analytically solve for the optimal learning rate for AdaBoost, by 
optimizing: 

Doing so, we get that 
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Final thoughts on Boosting

There are few implementations on boosting: 

• XGBoost:  An efficient Gradient Boosting Decision 

• LGBM: Light Gradient Boosted Machines. It is a library for training 
GBMs developed by Microsoft, and it competes with XGBoost

• CatBoost: A new library for Gradient Boosting Decision Trees, offering 
appropriate handling of categorical features
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Final thoughts on Boosting

Increasing the number of trees can lead to overfitting.

Question: Why? 
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