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Can boosting still have problems with overfitting or underfitting?

When should we choose boosting over random forest?

How do we differentiate between using bagging and boosting?

Does random forest deal well with imbalanced data?

Does having feature importance mean that the model is an interpretable one?

When should we use boosting over RFs?

Why is using false-positive rate and true-positive rates not as good as precision 
and recall for evaluating models with unbalanced data?

How do we overcome the challenge of overfitting with boosting given that 
several learners are chained together to reduce bias?

How do adaboost and gradient boost differ?
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Has a fixed
form fcx) computational

easy to

parametric interpret complexity
Linear Regression YES YES how

polynomial Regression yes NO Low

-

Regression Trees NO YES how

- -

Bagging and RF NO TENNO MEDIUM

z #

NO YES HIGH
K-nearest Neighbors

Comparison of Models: 

Choosing the right model isn’t just about minimizing the test errors. 
We want extra insights from our models:
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"Can a set of weak learners create a single strong learner?"
Leslie Gabriel Valiant 

How many jelly beans do you see? 
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Motivation for Boosting 

Question: Could we address the shortcomings of single decision trees 
models in some other way? 

For example, rather than performing variance reduction on complex 
trees, can we decrease the bias of simple trees - make them more 
expressive? 

Can we learn from our mistakes? 

A solution to this problem, making an expressive model from simple 
trees, is another class of ensemble methods called boosting. 
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Gradient Boosting 

The key intuition behind boosting is that one can take an ensemble of 
simple models {Th}h∈H and additively combine them into a single, more 
complex model.

Each model Th might be a poor fit for the data, but a linear combination 
of the ensemble:

can be expressive/flexible.
Question: But which models should we include in our ensemble? What 
should the coefficients or weights in the linear combination be? 
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Gradient Boosting: the algorithm 

Gradient boosting is a method for iteratively building a 
complex regression model T by adding simple models. 

Each new simple model added to the ensemble compensates for 
the weaknesses of the current ensemble. 

9
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Gradient Boosting: the algorithm 

1. Fit a simple model 𝑇(") on the training data 

{ 𝑥$, 𝑦$ , … , (𝑥%, 𝑦%)}

Set 𝑇 ← 𝑇(") .   

Compute the residuals {r1 , . . . , rN } for T. 

2. Fit a simple model, 𝑇($) , to the current residuals, i.e. train using

{ 𝑥$, 𝑟$ , … , (𝑥%, 𝑟%)}

3. Set 𝑇 ← 𝑇 + 𝜆𝑇($)

4. Compute residuals, set 𝑟& ← 𝑟& − 𝜆𝑇' 𝑥& , 𝑛 = 1,… , 𝑁

5. Repeat steps 2-4 until stopping condition met.

where 𝜆 is a constant called the learning rate. 
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Gradient Boosting: illustration 
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training data: { 𝑥!, 𝑦! , … , (𝑥", 𝑦")}
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Gradient Boosting: illustration 
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Fit a simple model 𝑇($)
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Gradient Boosting: illustration 
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Compute the residuals {r1 , . . . , rN } for T. 
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Gradient Boosting: illustration 
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train using: { 𝑥!, 𝑟! , … , (𝑥", 𝑟")}
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Gradient Boosting: illustration 
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Set 𝑇 ← 𝑇 + 𝜆𝑇(!)
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Gradient Boosting: illustration 
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𝑟& ← 𝑟& − 𝜆𝑇' 𝑥&
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Why Does Gradient Boosting Work? 

Intuitively, each simple model T(i) we add to our ensemble model T, 
models the errors of T. 
Thus, with each addition of T(i), the residual is reduced 

𝑟& − 𝜆𝑇 ' (𝑥&)

Note that gradient boosting has a tuning parameter, 𝜆. 

If we want to easily reason about how to choose 𝜆 and investigate the 
effect of 𝜆 on the model T, we need a bit more mathematical formalism. 
In particular, how can we effectively descend through this optimization 
via an iterative algorithm?
We need to formulate gradient boosting as a type of gradient descent. 

20
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Review: A Brief Sketch of Gradient Descent 

In optimization, when we wish to minimize a function, called the objective 
function (or loss function), over a set of variables, we compute the partial 
derivatives of this function with respect to the variables. 

If the partial derivatives are sufficiently simple, one can analytically find a 
common root - i.e. a point at which all the partial derivatives vanish; this is 
called a stationary point.

If the objective function has the property of being convex, then the stationary 
point is precisely the min. 

21
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Review: A Brief Sketch of Gradient Descent the Algorithm

In practice, our objective functions are complicated and analytically find the 
stationary point is intractable. 
Instead, we use an iterative method called gradient descent

1. Initialize the variables at any value: 

2. Take the gradient of the objective function at the current variable values:

3. Adjust the variables values by some negative multiple of the gradient:

The factor 𝜆 is often called the learning rate. 
22
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Why Does Gradient Descent Work? 

Claim: If the function is convex, this iterative methods will eventually 
move x close enough to the minimum, for an appropriate choice of 𝜆. 

Why does this work? Recall, that as a vector, the gradient at at point 
gives the direction for the greatest possible rate of increase. 
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Why Does Gradient Descent Work? 

Subtracting a 𝜆 multiple of the gradient from x, moves x in the opposite 
direction of the gradient (hence towards the steepest decline) by a step 
of size 𝜆. 

If f is convex, and we keep taking steps descending on the graph of f, we 
will eventually reach the minimum. 
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Gradient Boosting as Gradient Descent 

Often in regression, our objective is to minimize the MSE

Treating this as an optimization problem, we can try to directly minimize 
the MSE with respect to the predictions 

The update step for gradient descent would look like 

25
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Gradient Boosting as Gradient Descent (cont.) 

There are two reasons why minimizing the MSE with respect to  /𝑦&’s is 
not interesting: 

• We know where the minimum MSE occurs: /𝑦& = 𝑦&, for every n. 
• Learning sequences of predictions, /𝑦&!, … , /𝑦&' , …, does not produce a 

model. The predictions in the sequences do not depend on the 
predictors! 
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Gradient Boosting as Gradient Descent (cont.) 

The solution is to change the update step in gradient descent. Instead of 
using the gradient - the residuals - we use an approximation of the 
gradient that depends on the predictors: 

/𝑦 ← /𝑦& + 𝜆 𝑟̂& 𝑥& , 𝑛 = 1,… ,𝑁

In gradient boosting, we use a simple model to  approximate the 
residuals, 𝑟̂&(𝑥&), in each iteration. 

Motto: gradient boosting is a form of gradient descent with the MSE as 
the loss (objective) function. 

Technical note: note that gradient boosting is descending in a space of 
models or functions relating 𝑥& to 𝑦&! 

27
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Gradient Boosting as Gradient Descent (cont.) 

But why do we care that gradient boosting is gradient descent? 

By making this connection, we can import the massive amount of 
techniques for studying gradient descent to analyze gradient boosting.

For example, we can easily reason about how to choose the learning rate 
𝜆 in gradient boosting. 

28
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Choosing a Learning Rate 

Under ideal conditions, gradient descent iteratively approximates and 
converges to the optimum. 

When do we terminate gradient descent? 

• We can limit the number of iterations in the descent. But for an 
arbitrary choice of maximum iterations, we cannot guarantee that we 
are sufficiently close to the optimum in the end. 

• If the descent is stopped when the updates are sufficiently small (e.g.
the residuals of T are small), we encounter a new problem: the 
algorithm may never terminate! 

Both problems have to do with the magnitude of the learning rate, 𝜆. 
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Choosing a Learning Rate 

For a constant learning rate, 𝜆, if 𝜆 is too small, it takes too many 
iterations to reach the optimum. 

If 𝜆 is too large, the algorithm may ‘bounce’ around the optimum and 
never get sufficiently close. 
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Choosing a Learning Rate 

Choosing 𝜆: 
• If 𝜆 is a constant, then it should be tuned through cross validation. 
• For better results, use a variable 𝜆. That is, let the value of 𝜆 depend on 

the gradient

where                 is the magnitude of the gradient,              . So 
• around the optimum, when the gradient is small, 𝜆 should be 

small 
• far from the optimum, when the gradient is large, 𝜆 should be 

larger 
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Thank you
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