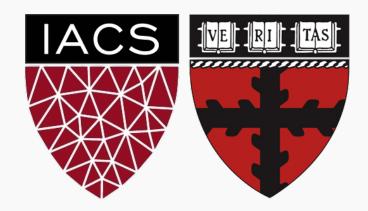
Decision Trees

CS109A Introduction to Data Science Pavlos Protopapas, Natesh Pillai



- Motivation
- Decision Trees
- Classification Trees
- Splitting Criteria
- Stopping Conditions
- Regression Trees
- Pruning

?

What is the major issue with pre-specifying a stopping condition?

• you may stop too early or stop too late.

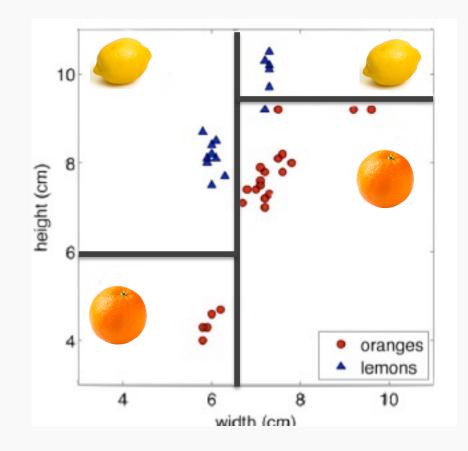
How can we fix this issue?

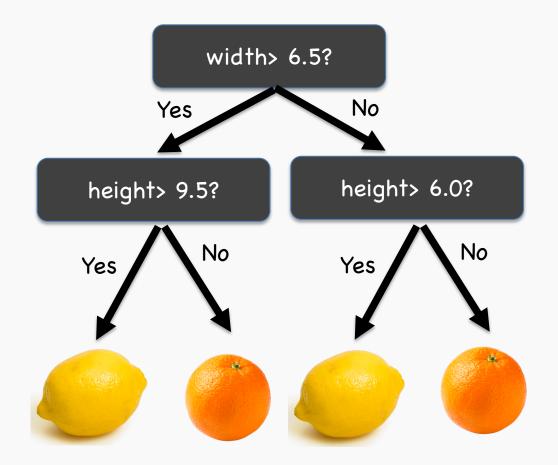
• choose several stopping criterion (set minimal Gain(*R*) at various levels) and cross-validate which is the best.

What is an alternative approach to this issue?

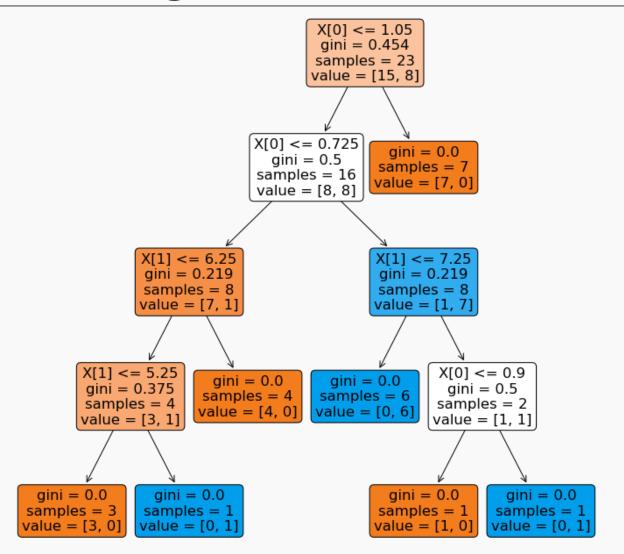
• Don't stop. Instead prune back!

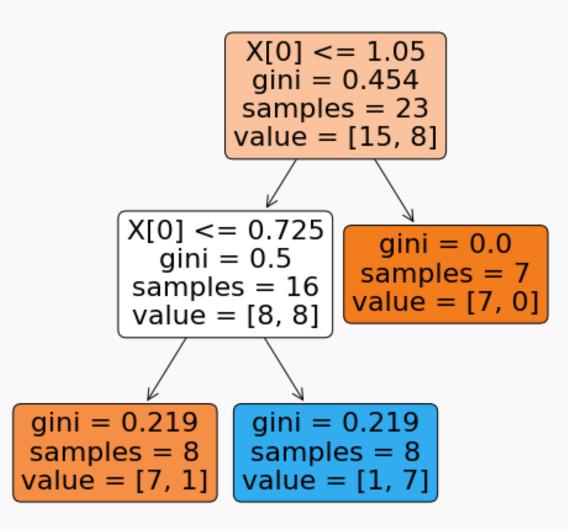
Lemons or Oranges



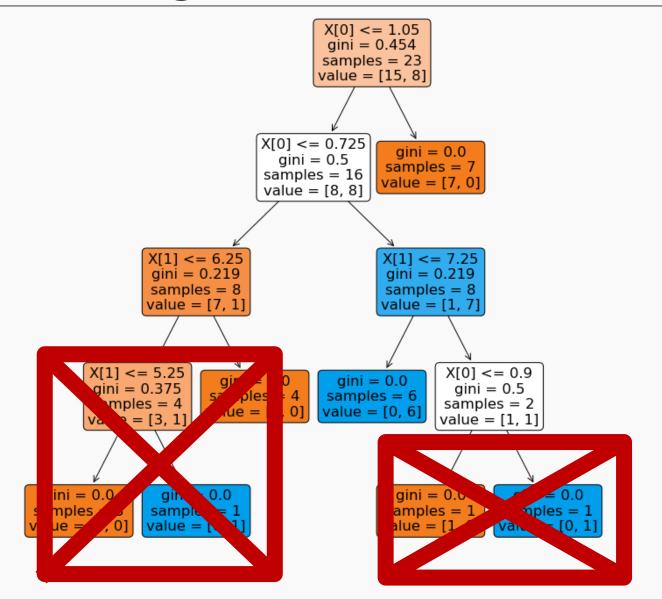


Motivation for Pruning

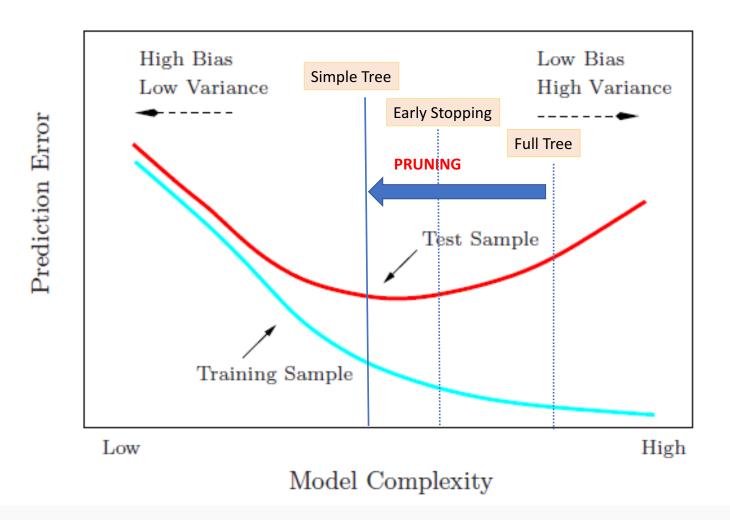




Motivation for Pruning



CS109A, PROTOPAPAS, PILLAI



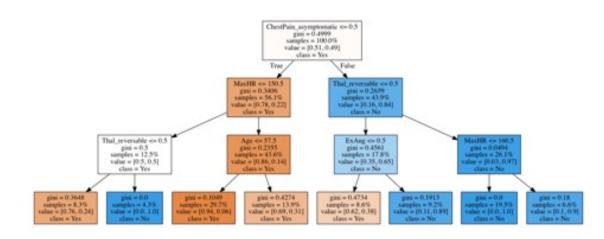
Rather than preventing a complex tree from growing, we can obtain a simpler tree by 'pruning' a complex one.

There are many method of pruning, a common one is **cost complexity pruning**, where by we select from a array of smaller subtrees of the full model that optimizes a balance of performance and efficiency.

That is, we measure

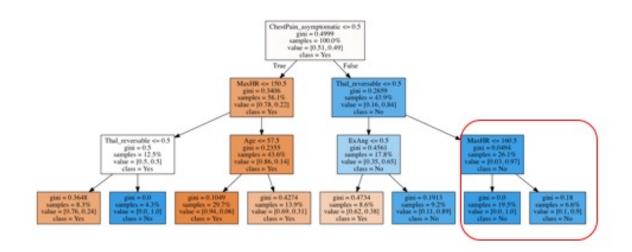
$$C(T) = Error(T) + \alpha |T|$$

where T is a decision tree, |T| is the number of leaves in the tree and α is the parameter for penalizing model complexity.



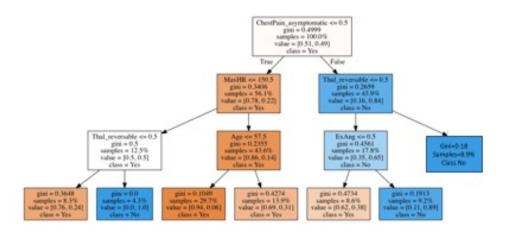
 $\alpha = 0.2$

Tree	Error	Num Leaves	Total



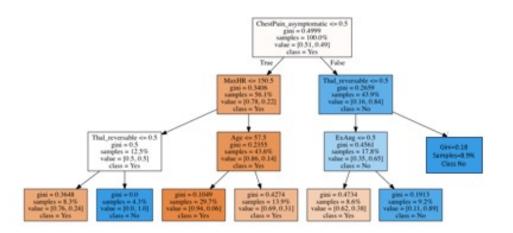
 $\alpha = 0.2$

Tree	Error	Num Leaves	Total
т	0.32	8	1.92



 $\alpha = 0.2$

Tree	Error	Num Leaves	Total
т	0.32	8	1.92
Tsmall	0.33	7	1.73



 $\alpha = 0.2$

Tree	Error	Num Leaves	Total
Т	0.32	8	1.92
Tsmall	0.33	7	1.73

Smaller tree has larger error but less cost complexity score

$$C(T) = Error(T) + \alpha |T|$$

1. Fix α .

2. Find best tree for a given α and based on cost complexity C.

3. Find best α using CV (what should be the error measure?)

The pruning algorithm:

- 1. Start with a full tree T_0 (each leaf node is pure)
- 2. Replace a subtree in T_0 with a leaf node to obtain a pruned tree T_1 . This subtree should be selected to minimize $\underline{Error(T_0) - Error(T_1)}$

$$|T_0| - |T_1|$$

- 3. Iterate this pruning process to obtain T_0, T_1, \dots, T_L where T_L is the tree containing just the root of T_0
- 4. Select the optimal tree T_i by cross validation.

Note: you might wonder where we are computing the cost-complexity $C(T_l)$. One can prove that this process is equivalent to explicitly optimizing C at each step.

