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Geometry of Data

Recall that:

logistic regression for building classification boundaries works 
best when:

- the classes are well-separated in the feature space 

- have a nice geometry for the classification boundary
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Geometry of Data

Recall that:

the decision boundary is defined where the probability of being in 
class 1 and class 0 are equal, i.e. 

𝑃 𝑌 = 1 = 1 − 𝑃 𝑌 = 1

Which is equivalent to when the log-odds=0:  

𝑋𝛽 = 0

This equation defines a line or a hyperplane.  

And it can be generalized with higher order polynomial terms.
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⇒ 𝑃 𝑌 = 1 = 0.5
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Geometry of Data

Question: Can you guess the equation that defines the decision 
boundary below?
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𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 0.8 𝐿𝑜𝑛𝑔+0.1 𝑜𝑟 − 0.8𝑥! + 𝑥" − 0.1 =0
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Geometry of Data

Question: How about these?
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Geometry of Data

Question: Or these?
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Geometry of Data

Notice that in all the datasets the classes are still well-separated in the 
feature space, but the decision boundaries cannot easily be described by a 
single equation: 
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Geometry of Data

While logistic regression models with linear boundaries are intuitive to 
interpret by examining the impact of each predictor on the log-odds of a 
positive classification, it is less straightforward to interpret nonlinear 
decision boundaries in context: 

(𝑥3+2𝑥4) − 𝑥54 + 10 = 0

It would be desirable to build models that:

1. allow for complex decision boundaries.

2. are also easy to interpret. 
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Interpretable Models

People in every walk of life have long been using interpretable models 
for differentiating between classes of objects and phenomena: 
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Decision Trees

It turns out that the simple flow charts in our examples can be 
formulated as mathematical models for classification and these 
models have the properties we desire; they are: 

1. interpretable by humans 

2. have sufficiently complex decision boundaries 

3. the decision boundaries are locally linear, each component of the 
decision boundary is simple to describe mathematically. 
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Decision Trees
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The Geometry of Flow Charts 

Flow charts whose graph is a tree (connected and there are no cycles) 
represents a model called a decision tree. 

Formally, a decision tree model is one in which the final outcome of the 
model is based on a series of comparisons of the values of predictors 
against threshold values. 

In a graphical representation (flow chart), 

• the internal nodes of the tree represent attribute testing.

• branching in the next level is determined by attribute value 
(yes/no).

• terminal leaf nodes represent class assignments.
13
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Example: Lemons and Oranges
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width> 6.5?

Yes No

height> 9.5? height> 6.0?

Yes No Yes No
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The Geometry of Flow Charts

Every flow chart tree corresponds to a partition of the feature space by 
axis aligned lines or (hyper) planes. Conversely, every such partition 
can be written as a flow chart tree. 
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width> 6.5?

Yes No

height> 9.5? height> 6.0?

Yes No Yes No
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Learning the Model

Given a training set, learning a decision tree model for binary 
classification means:

• producing an optimal partition of the feature space with axis-aligned 
linear boundaries (very interpretable!), 

• each region is predicted to have a class label based on the largest 
class of the training points in that region (Bayes’ classifier) when 
performing prediction. 
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Learning the Model

Learning the smallest ‘optimal’ decision tree for any given set of data is 
NP complete (intractable) for numerous simple definitions of ‘optimal’. 
Instead, we will seek a reasonably model using a greedy algorithm. 

1. Start with an empty decision tree (undivided feature space) 

2. Choose the ‘optimal’ predictor on which to split and choose the 
‘optimal’ threshold value for splitting. 

3. Recurse on each new node until stopping condition is met 

Now, we need only define our splitting criterion and stopping condition. 
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Splitting Criteria

18



CS109A, PROTOPAPAS, PILLAI

Optimality of Splitting 

While there is no ‘correct’ way to define an optimal split, there are some 
common sensical guidelines for every splitting criterion: 

• the regions in the feature space should grow progressively purer with 
the number of splits. That is, we should see that each region 
‘specializes’ towards a single class. 

• the fitness metric of a split should take a differentiable form (making 
optimization possible). 

• we shouldn’t end up with empty regions - regions containing no 
training points. 
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Classification Error

Suppose we have 𝐽 number of predictors and 𝐾 classes. 

Suppose we select the 𝑗th predictor and split a region containing 𝑁
number of training points along the threshold 𝑡6 ∈ ℝ .

We can assess the quality of this split by measuring the classification 
error made by each newly created region, 𝑅5, 𝑅4:

where 𝑝(𝑘|𝑅7) is the proportion of training points in 𝑅7 that are labeled 
class 𝑘.
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Error(i|j, tj) = 1�max
k

p(k|Ri)
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Classification Error

We can now try to find the predictor 𝑗 and the threshold 𝑡! that 
minimizes the average classification error over the two regions, 
weighted by the population of the regions: 

where 𝑁" is the number of training points inside region 𝑅" . 
21

min
j,tj

⇢
N1

N
Error(1|j, tj) +

N2

N
Error(2|j, tj)

�
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Gini Index
Suppose we have 𝐽 number of predictors, 𝑁 number of training points 
and 𝐾 classes. 

Suppose we select the 𝑗th predictor and split a region containing 𝑁
number of training points along the threshold 𝑡6 ∈ ℝ . 

We can assess the quality of this split by measuring the purity of each 
newly created region, 𝑅5, 𝑅4. This metric is called the Gini Index: 

Question: What is the effect of squaring the proportions of each class? 
What is the effect of summing the squared proportions of classes within 
each region? 
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Gini(i|j, tj) = 1�
X

k

p(k|Ri)
2
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Gini Index

We can now try to find the predictor 𝑗 and the threshold 𝑡6 that 
minimizes the average Gini Index over the two regions, weighted by the 
population of the regions: 

where 𝑁7 is the number of training points inside region 𝑅7 . 
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Class 1 Class 2 Gini(i|j, tj)
R1 0 6 1� (6/62 + 0/62) = 0
R2 5 8 1� [(5/13)2 + (8/13)2] = 80/169

Example

min
j,tj

⇢
N1

N
Gini(1|j, tj) +

N2

N
Gini(2|j, tj)

�
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Information Theory

The last metric for evaluating the quality of a split is motivated by 
metrics of uncertainty in information theory. 

Ideally, our decision tree should split the feature space into regions 
such that each region represents a single class. In practice, the training 
points in each region is distributed over multiple classes, e.g.: 

However, though both imperfect, 𝑅5 is clearly sending a stronger ‘signal’ 
for a single class (Class 2) than 𝑅4. 

24

Class 1 Class 2
R1 1 6
R2 5 6
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Information Theory

One way to quantify the strength of a signal in a particular region is to 
analyze the distribution of classes within the region. We compute the 
entropy of this distribution. 

For a random variable with a discrete distribution, the entropy is 
computed by: 

Higher entropy means the distribution is uniform-like (flat histogram) 
and thus values sampled from it are ‘less predictable’ (all possible values 
are equally probable). 

Lower entropy means the distribution has more defined peaks and valleys 
and thus values sampled from it are ‘more predictable’ (values around 
the peaks are more probable). 
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H(X) = �
X

x2X

p(x) log2 p(x)
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Entropy

Suppose we have 𝐽 number of predictors, 𝑁 number of training points 
and 𝐾 classes. 

Suppose we select the 𝑗th predictor and split a region containing 𝑁
number of training points along the threshold 𝑡6 ∈ ℝ . 

We can assess the quality of this split by measuring the entropy of the 
class distribution in each newly created region, 𝑅5, 𝑅4:

Note: we are actually computing the conditional entropy of the 
distribution of training points amongst the 𝐾 classes given that the 
point is in region 𝑖. 

26

<latexit sha1_base64="BafUbUSQWd+nY3C/1lmGkCe5GfQ="></latexit>

Entropy(i|j, k) = �
X

k

p(k|Ri) log2 p(k|Ri)
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Entropy

We can now try to find the predictor j and the threshold tj that 
minimizes the average entropy over the two regions, weighted 
by the population of the regions: 
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Class 1 Class 2 Entropy(i|j, tj)
R1 0 6 �( 66 log2

6
6 + 0

6 log2
0
6 ) = 0

R2 5 8 �( 5
13 log2

5
13 + 8

13 log2
8
13 ) ⇡ 1.38

Example

min
j,tj

⇢
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

�
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