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Lecture Outline

• Interpreting interactions in logistic regression

• Classification Boundaries

• Regularization in Logistic Regression 

• Bayes Theorem and Misclassification Rates 

• ROC Curves 
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Interactions in Multiple Logistic Regression

Just like in linear regression, interaction terms can be considered in logistic 
regression.  An interaction terms is incorporated into the model the same 
way, and the interpretation is very similar (on the log-odds scale of the 
response of course).

Write down the model for the Heart data for the 2 predictors plus the 
interactions term based on the output on the next slide. 
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Interpreting Multiple Logistic Regression: an Example

The results for the multiple logistic regression model are:
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Some questions

1. Write down the complete model. Break this down into the model to 
predict log-odds of heart disease (HD) based on Age for women and the 
same model for men.  

2. Interpret the results of this model.  What does the coefficient for the 
interaction term represent?
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Classification Boundaries
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Classification boundaries

Recall that we could attempt to purely classify each observation based on 
whether the estimated 𝑃(𝑌 = 1) from the model was greater than 0.5.

Recall, the logistic regression model statement from last class:

ln
𝑃(𝑌 = 1)
𝑃(𝑌 = 0)

= 𝛽! + 𝛽"𝑋" +⋯+ 𝛽#𝑋#

If 𝑃 𝑌 = 1 = 0.5, then the odds is 1, and the log-odds is 0.  Thus the 
classification boundary that separates the estimated probabilities above 0.5 
from below 0.5 is defined when we set: 𝛽! + 𝛽"𝑋" +⋯+ 𝛽#𝑋# = 0.

Thus logistic regression is said to lead to a linear classification boundary.  
There is actually a lot more freedom in logistic regression’s classification 
boundary (the geometry is defined by the parameterization of your 
predictors!)
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Linear Classification Boundary Example

7
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Geometry of 2D Classification in Logistic Regression: an 
Example
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2D Classification in Logistic Regression: an Example

Would a logistic regression model perform well in classifying the 
observations in this example? 

What would be a good logistic regression model to classify these points? 

Based on these predictors, two separate logistic regression model were 
considered that were based on different ordered polynomials of 𝑋", 𝑋$
and their interactions.  The ‘circles’ represent the boundary for 
classification.

How can the classification boundary be calculated for a logistic 
regression?
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Regularization in Logistic Regression 
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Motivation: MLE may not Exist 

The problem of separation arises when the binary responses 
can be separated into all 0s and all 1s as a linear function of 
the predictors.



CS109A, PROTOPAPAS, PILLAI 12

Motivation: MLE may not Exist 

MLE does not exist when the data is perfectly separable.

The likelihood always increases with the magnitude of the 
estimated coefficients.

Need regularization!
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Review: Regularization in Linear Regression

Based on the Likelihood framework, a loss function can be 
determined based on the log-likelihood function. 

We saw in linear regression that maximizing the log-
likelihood is equivalent to minimizing the sum of squares 
error: 
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Review: Regularization in Linear Regression

And a regularization approach was to add a penalty factor to 
this equation. Which for Ridge Regression becomes:

Note: this penalty shrinks the estimates towards zero, and had 
the analogue of using a Normal prior centered at zero in the 
Bayesian paradigm. 
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Recall: Loss function in Logistic Regression

A similar approach can be used in logistic regression. Here, 
maximizing the log-likelihood is equivalent to minimizing the 
following loss function:

where  𝑝! =
"

"#$!(#$%#&'&,)%⋯%#+,+,))

Why is this a good loss function to minimize? Where does this 
come from? 
The log-likelihood for independent  𝑌! ~ Bern(𝑝!).

argmin
%!,%",…,%#

−7
()"

*

𝑦( ln 𝑝( + 1 − 𝑦( ln 1 − 𝑝(
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Regularization in Logistic Regression

A penalty factor can then be added to this loss function and 
results in a new loss function that penalizes large values of the 
parameters: 

The result is just like in linear regression: shrink the parameter 
estimates towards zero. 
In practice, the intercept is usually not part of the penalty factor.
Note: the sklearn package uses a different tuning parameter: 
instead of 𝜆 they use a constant that is essentially 𝐶 = !

"
. 

argmin
%!,%",…,%#

−7
()"

*

𝑦( ln 𝑝( + 1 − 𝑦( ln 1 − 𝑝( + 𝜆7
+)"

#

𝛽+$
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Regularization in Logistic Regression: an Example 
Let’s see how this plays out in an example in logistic 
regression. 
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Regularization in Logistic Regression: tuning 𝜆

Just like in linear regression, the shrinkage factor must be 
chosen. How should we go about doing this? 

Through building multiple training and test sets (hooray, 
cross-validation!), we can select the best shrinkage factor to 
mimic out-of-sample prediction. 
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Regularized Decision Boundaries

19
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Bayes Theorem, Misclassification Rates, 
False Positives and Negatives
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Bayes’ Theorem 

We defined conditional probability as: 
𝑃 𝐵 𝐴 = 𝑃(𝐵 𝑎𝑛𝑑 𝐴)/𝑃(𝐴)

And using the fact that 𝑃 𝐵 𝑎𝑛𝑑 𝐴 = 𝑃 𝐴 𝐵 𝑃(𝐵) we get the 
simplest form of Bayes’ Theorem: 

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)
Another version of Bayes’ Theorem is found by substituting in the 
Law of Total Probability (LOTP) into the denominator: 

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃 𝐴 𝐵 𝑃 𝐵 + 𝑃 𝐴 𝐵# 𝑃(𝐵#)
Where have we seen Bayes’ Theorem before? Why do we care? 
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Diagnostic Testing 
In the diagnostic testing paradigm, one cares about whether 
the results of a test (like a classification test) matches truth 
(the true class that observation belongs to). The simplest 
version of this is trying to detect disease (D+ vs. D−) based on 
a diagnostic test (T+ vs. T−). 
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Diagnostic Testing 

Medical examples include various screening tests: breast 
cancer screening through (i) self-examination and (ii) 
mammography, prostate cancer screening through (iii) PSA 
tests, and Colo-rectal cancer through (iv) colonoscopies. 

These tests are a little controversial because of poor predictive 
probability of the tests. 
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Diagnostic Testing (cont.) 

Bayes’ theorem can be rewritten for diagnostic tests:

𝑃 𝐷 + 𝑇 + =
𝑃 𝑇 + 𝐷 + 𝑃(𝐷+)

𝑃 𝑇 + 𝐷 + 𝑃(𝐷+) + 𝑃 𝑇 + 𝐷 − 𝑃(𝐷−)
These probability quantities can then be defined as: 
• Sensitivity: 𝑃 𝑇 + 𝐷 +
• Specificity: 𝑃 𝑇 − 𝐷 −
• Prevalence: 𝑃(𝐷+)
• Positive Predictive Value: 𝑃(𝐷 + |𝑇+)
• Negative Predictive Value: 𝑃(𝐷 − |𝑇−)
How do positive and negative predictive values relate? Be careful... 
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Diagnostic Testing 

We mentioned that these tests are a little controversial 
because of their poor predictive probability. When will these 
tests have poor positive predictive probability? 

When the disease is not very prevalent, then the number of 
’false positives’ will overwhelm the number of true positive. 
For example, PSA screening for prostate cancer has sensitivity 
of about 90% and specificity of about 97% for some age groups 
(men in their fifties), but prevalence is about 0.1%. 

What is positive predictive probability for this diagnostic test? 
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Why do we care?

As data scientists, why do we care about diagnostic testing 
from the medical world? 
Because classification can be thought of as a diagnostic test. 
Let Yi = k be the event that observation i truly belongs to 
category k, and let +𝑌! = 𝑘 the event that we correctly predict it 
to be in class k. Then Bayes’ rule states that our Positive 
Predictive Value for classification is:

Thus the probability of a predicted outcome truly being in a 
specific group depends on what? The proportion of 
observations in that class! 
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Error in Classification

There are 2 major types of error in classification problems 
based on a binary outcome. They are: 

False positives: incorrectly predicting +𝑌 = 1 when it truly is in 
𝑌 = 0. 
False negative: incorrectly predicting +𝑌 = 0 when it truly is in 
𝑌 = 1. 

The results of a classification algorithm are often summarized 
in two ways: (1) a confusion matrix, sometimes called a 
contingency table, or a 2x2 table (more generally (k x k) table) 
and (2) a receiver operating characteristics (ROC) curve. 
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Confusion matrix

When a classification algorithm (like logistic regression) is used, 
the results can be summarize in a (k x k) table as such: 

The table above was a classification based on a logistic regression 
model to predict AHD based on “3” predictors: X1 = Age, X2 = Sex, 
and X3 = interaction between Age and Sex. 
What are the false positive and false negative rates for this 
classifier?

Predicted no AHD
( %𝑌 = 0)

Predicted AHD
( %𝑌 = 1)

Truly no AHD
(𝑌 = 0) 110 54

Truly AHD
(𝑌 = 1) 53 86
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Bayes’ Classifier Choice 

A classifier’s error rates can be tuned to modify this table. How? 
The choice of the Bayes’ classifier level will modify the 
characteristics of this table. 
If we thought is was more important to predict AHD patients 
correctly (fewer false negatives), what could we do for our Bayes’ 
classifier level? 
We could classify instead based on: 

2𝑃 𝑌 = 1 > 𝜋

and we could choose 𝜋 to be some level other than 0.50. 
Let’s see what the table looks like if 𝜋 were 0.40 or 0.60 instead.  
What should happen to the False Positive and False Negative 
frequencies?
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Other Confusion tables 

Based on 𝜋 = 0.4: 

What has improved? What has worsened? 

Based on 𝜋 = 0.6: 

Which should we choose? Why? 

Predicted no AHD
( %𝑌 = 0)

Predicted AHD
( %𝑌 = 1)

Truly no AHD
(𝑌 = 0) 93 71

Truly AHD
(𝑌 = 1) 38 101

Predicted no AHD
( %𝑌 = 0)

Predicted AHD
( %𝑌 = 1)

Truly no AHD
(𝑌 = 0) 138 26

Truly AHD
(𝑌 = 1) 74 65
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ROC Curves and Area-Under-the-Curve
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ROC Curves 

The Radio Operator Characteristics (ROC) curve illustrates the 
trade-off for all possible thresholds chosen for the two types 
of error (or correct classification). 

The vertical axis displays the true positive predictive value 
and the horizontal axis depicts the true negative predictive 
value. 
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ROC Curve Example 

What is the shape of an ideal ROC curve? 
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ROC Curve Example 



CS109A, PROTOPAPAS, PILLAI 35

AUC for measuring classifier performance 

The overall performance of a classifier, calculated over all 
possible thresholds, is given by the area under the ROC curve 
(AUC). 

An ideal ROC curve will hug the top left corner, so the larger the 
AUC the better the classifier. 

This AUC then can be use to compare various approaches to 
classification: Logistic regression, k-NN, Decision Trees (to 
come), etc.


