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Interaction Terms and Unique Parameterizations
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NYC Taxi vs. Uber

We’d like to compare Taxi and Uber rides in NYC (for example, how much 
the fare costs based on length of trip, time of day, location, etc.).
A public dataset has 1.9 million Taxi and Uber trips. Each trip is 
described by p = 23 useable predictors (and 1 response variable).
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Interaction Terms: A Review 

Recall that an interaction term between predictors     and     
can be incorporated into a regression model by including the 
multiplicative (i.e. cross) term in the model, for example:

Suppose       is a binary predictor indicating whether a NYC ride 
pickup is a taxi or an Uber,  is  the length of the trip, and     is 
the fare for the ride. 
What is the interpretation of     ?   
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Including Interaction Terms in Models 

Recall that to avoid overfitting, we sometimes elect to exclude 
a number of terms in a linear model. 

It is standard practice to always include the main effects in the 
model. That is, we always include the terms involving only one 
predictor,                 , etc. 

Question: Why are the main effects important? 

Question: In what type of model would it make sense to 
include the interaction term without one of the main effects? 
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How would you parameterize these model?
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How Many Interaction Terms? 

This NYC taxi and Uber dataset has 1.9 million Taxi and Uber trips. 
Each trip is described by p = 23 useable predictors (and 1 response 
variable). How many interaction terms are there? 
• Two-way interactions: 
• Three-way interactions: 
• Etc. 
The total number of all possible interaction terms (including main 
effects) is. 

What are some problems with building a model that includes all 
possible interaction terms? 

8
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How Many Interaction Terms? 

In order to wrangle a data set with roughly 2 million observations, we 
could use random samples of 100k observations from the dataset to 
build our models. If we include all possible interaction terms, our model 
will have 8.3 mil parameters. We will not be able to uniquely determine 
8.3 mil parameters with only 100k observations. In this case, we call 
the model unidentifiable. 

To handle this in practice, we can: 
• Increase the number of observation 
• Consider only scientifically important interaction terms 
• Use an appropriate method that account for this issue
• Perform another dimensionality reduction technique like PCA 
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Big Data and High Dimensionality
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What is ‘Big Data’?

In the world of Data Science, the term Big Data gets thrown 
around a lot.  What does Big Data mean?
A rectangular data set has two dimensions: number of 
observations (n) and the number of predictors (p). Both can 
play a part in defining a problem as a Big Data problem.
What are some issues when:
• n is big (and p is small to moderate)?  
• p is big (and n is small to moderate)?
• n and p are both big?
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When n is big
When the sample size is large, this is typically not much of an 
issue from the statistical perspective, just one from the 
computational perspective.
• Algorithms can take forever to finish.  Estimating the 

coefficients of a regression model, especially one that does not 
have closed form (like LASSO), can take a while.  Wait until we 
get to Neural Nets!

• If you are tuning a parameter or choosing between models 
(using CV), this exacerbates the problem.

What can we do to fix this computational issue?
• Perform ‘preliminary’ steps (model selection, tuning, etc.) on a 

subset of the training data set.  10% or less can be justified
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Keep in mind, big n doesn’t solve everything

The era of Big Data (aka, large n) can help us answer lots of 
interesting scientific and application-based questions, but it 
does not fix everything.

Remember the old adage: “crap in = crap out”.  That is to say, if 
the data are not representative of the population, then modeling 
results can be terrible.  Random sampling ensures 
representative data.

Xiao-Li Meng does a wonderful job describing the subtleties 
involved (WARNING: it’s a little technical, but digestible):
https://www.youtube.com/watch?v=8YLdIDOMEZs

https://www.youtube.com/watch?v=8YLdIDOMEZs
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When p is big

When the number of predictors is large (in any form: 
interactions, polynomial terms, etc.), then lots of issues can 
occur.
• Matrices may not be invertible (issue in OLS).
• Multicollinearity is likely to be present
• Models are susceptible to overfitting

This situation is called High Dimensionality, and needs to be 
accounted for when performing data analysis and modeling.

What techniques have we learned to deal with this?
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When Does High Dimensionality Occur?

The problem of high dimensionality can occur when the number of 
parameters exceeds or is close to the number of observations. This 
can occur when we consider lots of interaction terms, like in our 
previous example. But this can also happen when the number of 
main effects is high. 
For example:
• When we are performing polynomial regression with a high 

degree and a large number of predictors.
• When the predictors are genomic markers (and possible 

interactions) in a computational biology problem.
• When the predictors are the counts of all English words 

appearing in a text.
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How Does sklearn handle unidentifiability? 

In a parametric approach: if we have an over-specified model (p > n), the 
parameters are unidentifiable: we only need n – 1  predictors to perfectly 
predict every observation (n – 1 because of the intercept).

So what happens to the ‘extra’ parameter estimates (the extra       )?
• the remaining p – (n – 1) predictors’ coefficients can be estimated to 

be anything.  Thus there are an infinite number of sets of estimates 
that will give us identical predictions.  There is not one unique set of                   
!     !

What would be reasonable ways to handle this situation? How does 
sklearn handle this? When is another situation in which the parameter 
estimates are unidentifiable?  What is the simplest case?
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Perfect Multicollinearity

The p > n situation leads to perfect collinearity of the predictor set.  
But this can also occur with a redundant predictors (ex: putting  
twice      into a model).  Let’s see what sklearn in this simplified 
situation:

How does this generalize into the high-dimensional situation?
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A Framework For Dimensionality Reduction

One way to reduce the dimensions of the feature space is to create a new, 
smaller set of predictors by taking linear combinations of the original 
predictors.
We choose Z1, Z2,…, Zm, where  and where each Zi is a linear combination of 
the original p predictors

for fixed constants      .  Then we can build a linear regression regression 
model using the new predictors

Notice that this model has a smaller number (m+1 < p+1) of parameters.
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A Framework For Dimensionality Reduction (cont.)

A method of dimensionality reduction includes 2 steps:
• Determine an optimal set of new predictors Z1,…, Zm, for m < p.
• Express each observation in the data in terms of these new predictors. 

The transformed data will have m columns rather than p.

Thereafter, we can fit a model using the new predictors. 

The method for determining the set of new predictors (what do we mean 
by an optimal predictors set?) can differ according to application. We will 
explore a way to create new predictors that captures the essential 
variations in the observed predictor set.
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You’re Gonna Have a Bad Time…

20
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a method to identify a 
new set of predictors, as linear combinations of the original 
ones, that captures the `maximum amount' of variance in the 
observed data.
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PCA (cont.)

Principal Components Analysis (PCA) produces a list of p principal 
components Z1,…, Zp such that
• Each Zi is a linear combination of the original predictors, and it's 

vector norm is 1
• The Zi 's are pairwise orthogonal
• The Zi 's are ordered in decreasing order in the amount of 

captured observed variance.
That is, the observed data shows more variance in the direction of 
Z1 than in the direction of Z2. 
To perform dimensionality reduction we select the top m principle 
components of PCA as our new predictors and express our 
observed data in terms of these predictors.
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The Intuition Behind PCA

Top PCA components capture the most of amount of variation 
(interesting features) of the data. 
Each component is a linear combination of the original 
predictors - we visualize them as vectors in the feature space.
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The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our dataset 
onto the space defined by the top m PCA components, these 
components are our new predictors.
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The Math behind PCA

PCA is a well-known result from linear algebra.  Let Z be the n x p 
matrix consisting of columns Z1,…, Zp (the resulting PCA vectors), 
X be the n x p matrix of X1,…, Xp of the original data variables 
(each standardized to have mean zero and variance one, and 
without the intercept), and let W be the p x p matrix whose 
columns are the eigenvectors of the square matrix        , then:
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Implementation of PCA using linear algebra

To implement PCA yourself using this linear algebra result, you can 
perform the following steps:
• Standardize each of your predictors (so they each have mean = 0, var 

= 1).
• Calculate the eigenvectors of the              matrix and create the matrix 

with those columns, W, in order from largest to smallest eigenvalue.
• Use matrix multiplication to determine                      .
Note: this is not efficient from a computational perspective.  This can be 
sped up using Cholesky decomposition.

However, PCA is easy to perform in Python using the 
decomposition.PCA function in the sklearn package.
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PCA example in sklearn

28
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PCA example in sklearn

29

A common plot is to look at the scatterplot of the first two principal 
components, shown below for the Heart data:

What do you notice?
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PCA for Regression (PCR)
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PCA for Regression (PCR)
PCA is easy to use in Python, so how do we then use it for regression 
modeling in a real-life problem?

If we use all p of the new Zj, then we have not improved the dimensionality.  
Instead, we select the first M PCA variables, Z1,...,ZM, to use as predictors in a 
regression model.

The choice of M is important and can vary from application to application.  
It depends on various things, like how collinear the predictors are, how 
truly related they are to the response, etc...

What would be the best way to check for a specified problem?

Cross Validation!!!
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A few notes on using PCA

• PCA is an unsupervised algorithm.  Meaning?  It is done independent of the 
outcome variable.

• Note: the component vectors as predictors might not be ordered from 
best to worst!

• PCA is not so good because:
1. Direct Interpretation of coefficients in PCR is completely lost.  So do not 

do if interpretation is important.
2. Will often not improve predictive ability of a model.

• PCA is great for:
1. Reducing dimensionality in high dimensional settings.
2. Visualizing how predictive your features can be of your response, 

especially in the classification setting.
3. Reducing multicollinearity, and thus may improve the computational 

time of fitting models.
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Interpreting the Results of PCR

• A PCR can be interpreted in terms of 
original predictors…very carefully.

• Each estimated  coefficient in the PCR 
can be distributed across the predictors 
via the associated component vector, w.

• So how can this be transformed back to 
the original variables? 
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• This algorithm can be continued by adding in more and more components 
into the PCR.

• This plot was based on a PCA with non-standardized predictors.  How would it 
look different if they were all standardized (both in PCA and plotted here in 
standardized form of X)? 

As more components enter the PCR…
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The same plot with standardized predictors in PCA
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• PCA seeks to explain the 
data by finding the 
direction which explains 
the greatest variance

• Variance is works well 
because centering is 
inherent to the formula

• Turns out that finding the 
largest eigenvector of the 
sample variance matrix and 
then projecting iteratively 
accomplishes this

Underlying Mechanism

36
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Underlying Mechanism - Projection

37
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Underlying Mechanism - 3D

38
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• Although PCA works by 
iteratively removing the 
eigenvectors with the 
largest variance, in practice, 
we do the exact opposite to 
perform dimensionality 
reduction

• By finding the dimensions 
with the most variance, we 
can do things like keep the 
fewest dimensions that 
retains 90% of the 
“information” (variance)

Underlying Mechanism – Practicality

39
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PCA for Imputation
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Recall some of the simpler 
imputation methods we 
saw last lecture and how 
they sometimes do more 
harm than good.

Here we have a positive 
correlation between two 
predictors,  𝑥1  and  𝑥2 . But 
using mean imputation 
does not capture this 
relationship.

Naive Imputation Methods

41
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1. We want imputation to take advantage of relationships between 
predictors, imputing missing values in one predictor using values from 
the other(s). 

2. When we have many predictors, and observations i and j have similar 
values for most them, but J is missing predictor p, impute using i’s value 
for p. 

Summary: we want our imputations to take into account (1) links 
between variables and (2) global similarity between individual 
observations. This is the idea behind the iterative PCA algorithm for 
imputation.

What Do We Want from Imputation?

42
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Here we have a missing x2 value in one of our observations.

Iterative PCA

43
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The first step is to initialize by imputing the mean (though any 'reasonable' 
value will do).

Iterative PCA - Initialization

44
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Next, we perform PCA on the entire data set and  project onto the 1st 
component.

Iterative PCA - Projection

45
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The projection's value for the missing predictor is now used to update our 
imputation.

Iterative PCA - Update Imputation
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Notice that the 1st PCA component changes less and less with each iteration.
We simply iterate this process until we converge.

Iterative PCA - Iterate
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1. Initialize imputation with reasonable value (e.g., mean)
2. Iterate until convergence:

a. perform PCA on the complete data
b. retain first M components of PCA (in example M=1)
c. project imputation into PCA space
d. update imputation using projection value

Q: How do we select the number of components to use for our projections?
A: Cross-validation!

In practice this method can overfit, especially in a sparse matrix with many 
missing values. So often a regularized PCA approach is used which shrinks the 
singular values of the PCA, making updates less aggressive

Iterative PCA - Algorithm

48
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● We’ve seen an interpretation of PCA as finding the directions in the predictor 
space along which the data varies the most

● An alternative interpretation is that PCA finds a low-dimensional linear 
surface which is closest to the data points

An Alternative Interpretation of PCA
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Matrix Completion is another application of PCA and is suitable for imputing 
data which are missing at random. This approach is commonly used in 
recommender systems which deal in very large sparse matrices.

Consider an n x p matrix of movie ratings by Netflix customers where n is the 
number of customers and p is the number of movies. Such a matrix will certainly 
contain many missing entries.

Imputing these missing values well is equivalent to predicting what customers 
will think of movies they haven’t seen yet.

You can read more about the matrix completion algorithm in your textbook. 
(section 12.3 pg. 510)

Matrix Completion

50

https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf


CS109A, PROTOPAPAS, PILLAI

Exercise Time!

Exercises: PCA 1 & 2
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