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Outline

Part A and B: Assessing the Accuracy of the Coefficient Estimates

Bootstrapping and confidence intervals 

Part C: Evaluating Significance of Predictors 

Does the outcome depend on the predictors?

Hypothesis testing

Part D: How well do we know !𝒇

The confidence intervals of #𝑓
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Lack of Active Imagination

In the lack of active imagination, parallel universes and the likes, we need 
an alternative way of producing fake data set that resemble the parallel 
universes. 

Bootstrapping is the practice of sampling from the observed data (X,Y) in
estimating statistical properties.



CS109A, PROTOPAPAS, PILLAI

Bootstrap

Imagine we have 5 billiard balls in a bucket.
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Bootstrap

We first pick randomly a ball and replicate it. This is called sampling 
with replacement.  
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Bootstrap

We move the replicated ball to another bucket. 
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Bootstrap

We then randomly pick another ball and again we replicate it.
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Bootstrap

As before, we move the replicated ball to the other bucket. 
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Bootstrap

We repeat this process. 
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Bootstrap

We repeat this process. 



CS109A, PROTOPAPAS, PILLAI

Bootstrap

We repeat this process. 
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Bootstrap

Again 
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Bootstrap

We continue until the “other” bucket has the same number of balls as 
the original one.

This new bucket represents a new parallel universe 
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Bootstrap

We repeat the same process and acquire another set of 
bootstrapped observations.
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Bootstrap

We repeat the same process and acquire many bootstrapped 
observations.
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Bootstrap
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Bootstrap
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Bootstrap
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Bootstrap
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Dataset Sample 3
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Bootstrap
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Bootstrapping for Estimating Sampling Error

Bootstrapping is the practice of estimating properties of an estimator by measuring
those properties by, for example, sampling from the observed data.

For example, we can compute $𝛽! and $𝛽# multiple times by randomly sampling from our
data set. We then use the variance of our multiple estimates to approximate the true
variance of $𝛽! and $𝛽#.

Definition
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Confidence intervals for the predictors estimates (cont)
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We can now estimate the mean and standard deviation of the estimates of 
#𝛽!, #𝛽". 

2
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Confidence intervals for the predictors estimates (cont)
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68%
95%

The standard errors give us a sense of our uncertainty over our estimates. 

Typically, we express this uncertainty as a 95% confidence interval, which is 
the range of values such that the true value of 𝛽"is contained in this interval 
with 95% percent probability.

𝑪𝑰#𝜷(𝟗𝟓%) = (1𝜷 − 𝟐𝝈#𝜷, 1𝜷 + 𝟐𝝈#𝜷)

If we assume normality, then: 
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Confidence intervals for the predictors estimates: Standard Errors

We can empirically estimate the standard deviations 𝜎#% which are called the  

standard errors, 𝑆𝐸 #𝛽! , 𝑆𝐸 #𝛽" through bootstrapping.  

Alternatively: 

If we know the variance 𝜎&' of the noise 𝜖, we can compute 𝑆𝐸 #𝛽! , 𝑆𝐸 #𝛽"
analytically using the formulae below (no need to bootstrap):

Where 𝑛 is the number of 
observations.

𝑥̅ is the mean value of the 
predictor. 

𝑆𝐸 #𝛽! = 𝜎&
1
𝑛
+

𝑥̅'

∑( 𝑥( − 𝑥̅ '
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Standard Errors
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More data:  𝑛 ↑ and ∑!(𝑥! − 𝑥̅)" ↑⟹ 𝑆𝐸 ↓

Larger coverage: 𝑣𝑎𝑟(𝑥) or ∑!(𝑥! − 𝑥̅)" ↑⟹ 𝑆𝐸 ↓
Better data: 𝜎#" ↓ ⇒ 𝑆𝐸 ↓

Better model:  ( 2𝑓 − 𝑦!) ↓⟹ 𝜎# ↓⟹ 𝑆𝐸 ↓

Question: What happens to the 5𝛽$,  5𝛽% under these scenarios?

𝑆𝐸 #𝛽! = 𝜎&
1
𝑛
+
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𝜎 𝜖 = @
#𝑓 𝑥 − 𝑦(

'

𝑛 − 2
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Standard Errors

In practice, we do not know the value of 𝜎+ since we do not know the exact distribution of the 
noise 𝜖. 

However, if we make the following assumptions, 

• the errors 𝜖) = 𝑦) − !𝑦) and 𝜖, = 𝑦, − !𝑦, are uncorrelated, for 𝑖 ≠ 𝑗 ,

• each 𝜖) has a mean 0 and variance 𝜎+%,

then, we can empirically estimate 𝜎%, from the data and our regression line: 

Remember: 𝑦( = 𝑓 𝑥( + 𝜖( ⟹ 𝜖( = 𝑦( − 𝑓(𝑥()
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