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From Probability to Maximum Likelihood 
Estimation (MLE)
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Outline

• What is a random variable? 

• Point estimates of random variables. Confidence Intervals, 
Histogram and PDF/PMF

• Known random variables: Uniform,	Binomial.	Normal
• Modeling Data with Probability Distributions

• Likelihood Theory

• Modeling Linear Regression Probabilistically
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CS109A 100m dash 

WHO WILL WIN THE 100M DASH?

Option A
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CS109A 100m dash

Option A THE PROFESSOR

AVERAGE Pace: 13 seconds

Consistency: High

Option DOption B Option C
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CS109A 100m dash

THE HOT SHOT

AVERAGE Pace: 13.0 seconds

Consistency: VERY LOW

Option B

Option DOption C

Option A
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CS109A 100m dash

Option B

Option D

Option CTHE BANGALORE CHAMPION

AVERAGE Pace: 13.1 seconds

Consistency: MEDIUM

Option A
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CS109A 100m dash

Option B

Option D

Option C

THE Researcher

AVERAGE Pace: 14 seconds

Consistency: LOW

Option A
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Race #1 13.12 13.5114.2513.53
13.23 10.79 15.01Race #2 10.57

13.02 10.61 13.63Race #3 12.82

13.22 12.78 12.32Race #5 13.24

Option A Option D

12.87 13.12 13.91Race #4 13.52

🏆

🏆
🏆

🏆
🏆

Option COption B

RACE TIME 
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CS109A 100m dash
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𝑅𝑎𝑐𝑒 𝑃𝑎𝑐𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑐𝑒 + 𝜖

Constant Varying

Option A
My race pace will always vary
a little, despite my efforts!

Let 𝑋 be the race pace for a given 100m dash, then 𝑋 is called a random variable 
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RECAP: Python variables

We have seen variables as something we assign a value to. 
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•Integer <int>

•Float <float>

•List <list>

•Dictionary <dict> 

In [2]: a = 2
In [3]: b = 2.5
In [4]: pavloslist = [1,2,3,4,5]
In [5]: pavlosdict ={‘John':2,'Pavlos’:2,Eric':7}

In [6]: type(a)
Out[6]: int
In [7]: type(b)
Out[7]: float
In [8]: type(pavloslist)
Out[8]: list
In [9]: type(pavlosdict)
Out[9]: dict
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Random Variable
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• A random variable can be thought of as 
an outcome of a random experiment.

• Unlike the python variables defined 
before, the value of a random variable is 
not fixed.

• The output of a random variable could 
be either discrete (integers) or 
continuous (floats).

In [26]: x = RandomVariable()
In [27]: x.random
Out[27]: 0.5632899481539281
In [28]: x.random
Out[28]: 0.630954141651853
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Random Variable
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𝑋 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑐𝑒 + 𝜖

• What are the possible values of 𝑋? 

• What is the maximum value of 𝑋?

• What is the minimum value of 𝑋?

• What is the expected value of 𝑋?

• Are the values of 𝑋 spread out, or 
consistent?

AND MANY MORE QUESTIONS ...

In [5]: pavlos = Sprinter()

In [6]: pavlos.time
Out[6]: 13.431656720548697

In [7]: pavlos.time
Out[7]: 13.42798180661262

In [8]: pavlos.time
Out[8]: 11.78189462795882

In [9]: pavlos.time
Out[9]: 14.77745984741147

Ques%ons about a random variable?
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Simulations
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START finish

RUNNER: PAVLOS PROTOPAPAS 

COUNTRY: CYPRUS

CURRENT TIME: 12.35 s
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START finish

RUNNER: PAVLOS PROTOPAPAS 

COUNTRY: CYPRUS

CURRENT TIME: 12.47 s
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START finish

RUNNER: PAVLOS PROTOPAPAS 

COUNTRY: CYPRUS

CURRENT TIME: 12.75 s
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Random Variable
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𝑋 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑐𝑒 + 𝜖
[13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26, ... ]

Let’s do it. I will run many 
runs for you

• We could run the experiment 
multiple times and record the 
results.

• This will give us a list of possible 
values of the random variable 𝑋. 

• An exhaustive list of all possible 
values is often called the 
population space of the random 
experiment.
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START finish

RUNNER: PAVLOS PROTOPAPAS 

COUNTRY: CYPRUS

CURRENT TIME: DNF

Come on guys! How 
many 
more races do you 
need me to run ? I 
can't do this all day!



CS109A, PROTOPAPAS , PILLA I

Random Variable

20

13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...
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Random Variable

21

13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ]

13.75, 13.65, 12.93, 12.81, [ ]

, ...

12.26

Sample
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Properties of a Random Variable

22

The outcomes of a random variable 

captured over multiple simulations 

is difficult to interpret and 

consequently difficult to compare to 

other random variables.

• ISSUE #1: We do not have estimates 

to compare with other random 

variables.

• ISSUE #2: It is difficult to visualize 

the spread of the outcome.

ISSUES?
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Properties of a Random Variable
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The outcomes of a random variable 

captured over multiple simulations 

is difficult to interpret and 

consequently difficult to compare to 

other random variables.

• ISSUE #1: We do not have estimates 

to compare with other random 

variables.

• ISSUE #2: It is difficult to visualize 

the spread of the outcome.

ISSUES? Description of Random Variables

Point Estimates

Confidence Intervals

Histogram

Probability Density Function 
or Probability Mass FunctionsHi
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Point estimates
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13.75, 13.65, 12.93, 12.81, [ ]12.26

13.75

MAX
Sample
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Point estimates
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13.75, 13.65, 12.93, 12.81, [ ]12.26

12.26

MIN
Sample
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Point estimates
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13.75, 13.65, 12.93, 12.81, [ ]12.26

13.08

mean
Sample
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What we want
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• Point estimates can be defined as 
numbers that give some 
information of the random variable.

• Commonly used point estimates 
include max, min, mean, median, 
mode, variance, interquartile range, 
etc.

• Two major categories describe the 
central tendency & the spread

POINT ESTIMATES

Population Parameters Sample 
Statistics

Mean 𝜇 "𝑋

Variance 𝜎! 𝑠!

Standard 
Deviation 𝜎 𝑠

Remember! Population estimates are in
Greek and sample estimates are written in  
roman style! 
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Random Variables - Point estimates 
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Option BOption A

V/S
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Random Variables Comparison - Point estimates 
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Option BOption A MAX

MIN

MEAN

MEDIAN

MODE

13.31

12.67

13.00

13.01

12.67

14.78

11.31

13.00

13.00

12.25
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Measure of Central Tendency

30
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Central Tendency

• Mean is the same as the ‘average’ that we are used to. If we 
know all the outcomes of the population:

Population mean, 𝜇 = ∑! "!
#

31

• Sample statistics are calculated in a manner which best 
approximates the population parameters.

• Sample mean is calculated like population mean:

Sample mean, �̅� = ∑!"#
$ "!
#
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Measure of Spread

32
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Spread

• Standard deviation is a measure of how spread out the 
data is from the mean. Assuming all of population is 
known:

Population std(𝜎) :
$ "! %& %

#

33More on this at this link

• Sample std has a slight correction term as compared to 
population std:

Sample std(s) : 
$ "! % "̅ %

# %(

Sample std is used as 
an estimate for the 

population std, using 
n-1 gives more 

accurate results. 

https://en.wikipedia.org/wiki/Bessel%27s_correction
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Confidence Interval

34
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Confidence Intervals
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• Point estimates can often be 
misleading and lead to 
imprecise understanding of the 
random variable.

Anscombe's Quartet
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Confidence Intervals
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• Point estimates can often be 
misleading and lead to 
imprecise understanding of the 
random variable.

• Unlike point estimates, a 
confidence interval is a range 
that represents the likely output 
of a random experiment.

• We often set the confidence 
level before examining the data 
and it is expressed as %, e.g.
95% confidence

Nu
m
be

r

95% confidence interval

66% confidence interval
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Confidence Intervals
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💡 Step #1: Sort the original data from lowest to highest

13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...
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Confidence Intervals
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💡 Step #1: Sort the original data from lowest to highest

13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

💡 Step #2: Find the lower confidence range using np.percentile

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...
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Confidence Intervals
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💡 Step #1: Sort the original data from lowest to highest

13.75, 15.21, 13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

💡 Step #2: Find the lower confidence range using np.percentile

np.percentile( 13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ... ,2.5)

13.75, 15.2113.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

= 12.80

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26 , ...13.75, 15.2113.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...
2.5% of data are on the left of this value
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Confidence Intervals
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[ ], ...

💡 Step #3: Find the upper confidence range again using np.percentile
np.percentile( 13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26 ,97.5)= 13.71

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26 , ...13.75, 15.2113.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26 , ...13.75, 15.2113.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

2.5% of data are on the right of this value
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Confidence Intervals
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13.75, 15.21,13.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26 , ...13.75, 15.2113.65, 13.58, 12.93, 14.23, 12.81, 11.50, 13.09, 12.26[ ], ...

95% confidence intervals
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Random Variables - Point estimates 

42

Option BOption A MAX

MIN

MEAN

MEDIAN

MODE

CI

13.31

12.67

13.00

13.01

12.67

12.80, 13.20

14.78

11.31

13.00

13.00

12.25

12.80, 13.20
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Properties of a Random Variable

43

• Point or interval estimates of 

random variables do not guarantee 

a unique description of the output.

• Due to its approximate nature, it 

may lead to confounding of 

different processes.

• A popular example of this is the 

Anscombe's Quartet; a set of four 

datasets with same estimates but 

different distributions.

ESTIMATE ISSUES
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Histogram

44
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Histogram

45

13.75, 13.65, 12.93, 12.81, [ ]12.26

Sample
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Histogram

46

13.75, 13.65, 

12.93, 
12.81, 

12.26

12.81, 13.75, 13.75,

Loading ... |



CS109A, PROTOPAPAS , PILLA I

Histogram

47



CS109A, PROTOPAPAS , PILLA I

Histogram
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• Histogram (from the Greek word 
histos meaning pole & gram 
meaning chart) is a visual 
representation of the sample.

• It is defined by the relative 
frequency on the y-axis and the 
exhaustive outcomes of the 
random variable on the x-axis.

• It can be decorated with point 
estimates for better description.

DISTRIBUTIONS
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Anatomy of a histogram

49

Frequency

Random variable outputs

0.5

0.4

0.3

0.2

0.1

11.1  11.2  11.3  11.4  11.5  11.6  11.7  11.8  11.9  12  12.1  12.2  12.3

This bin describes the probability 
of the variable to be in this range.
The whole histogram describes the 

prob of being in each range
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Anatomy of a histogram

50
Random variable outputs

Frequency

Right skewed

Right tailed
Positive skewed
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Anatomy of a histogram
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Frequency

Random variable outputs

left skewed

left tailed
negative skewed
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Anatomy of a histogram

52
Random variable outputs

Frequency

Bimodal
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Histogram

53

The outcomes of a random variable 

captured over multiple simulations 

is difficult to interpret and 

consequently difficult to compare to 

other random variables.

• ISSUE #1: We do not have estimates 

to compare with other random 

variables.

• ISSUE #2: It is difficult to visualize 

the spread of the outcome.

ISSUES?

mean

95 % CI



54
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Exercise Review

55

In [3]: pavlos = Sprinter(base_speed=13,variance=0.1)

In [4]: pavlos.time
Out[4]: 13.029063370231649

In [5]: pavlos.time
Out[5]: 13.034317928671507
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Exercise Review

56

In [2]: class Sprinter:
...:
...: def __init__(self,base_speed,variance):
...: self.base_speed = base_speed
...: self.variance = variance
...:
...: @property
...: def time(self):
...: return

In [3]: pavlos = Sprinter(base_speed=13,variance=0.1)

In [4]: pavlos.time
Out[4]: 13.029063370231649

In [5]: pavlos.time
Out[5]: 13.034317928671507

np.random.normal(loc= self.base_speed,scale=self.variance)
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Exercise Review

57

np.random.normal(loc= self.base_speed,scale=self.variance)

what is "normal"? what is location? what is scale
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Known Distributions

58
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Histogram as a Probability Density Function (PDF)

59

• Recall that a histogram describes the 

probability of being in a given range 

(relative frequency of the "bins").

• We can describe the probability of being 

a range with a function.

• This function  could be defined for either 

discrete or continuous variables:

• In case of continuous, this is the probability 
density function (PDF) for values in a range.

• In case of discrete, the range is the discrete 

value itself. The function is the probability 
mass function (PMF). Outcome

Re
la

ti
ve

 F
re

qu
en

cy

RELATIVE FREQUENCY
HISTOGRAM
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PDF vs PMF 

60
Discrete Random Variable

X
Random Variable

Continuous Random Variable
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PDF vs PMF 

61
Discrete Random Variable

X
Random Variable

Continuous Random Variable
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Discrete Uniform Distribution

• This distribution occurs when there are a 

finite number of equally likely outcomes 

possible.

PMF: 𝑃 𝑋 = “𝑟𝑒𝑑” = !
"

mean 𝜇 = #$%
&

Variance σ& = "!'!
!&

Outcome

Pr
ob

1 2 3

np.random.randint(low, 
high=None, 
size=None, dtype=int)

62



CS109A, PROTOPAPAS , PILLA I

Bernoulli Distribution

• This distribution can be thought of as a 

model of possible outcomes of an 

experiment that asks a yes-no question.

• E.g., If you toss a coin, will you get a head

or a tail ? 

PMF: 𝑃 𝑋 = 𝑥 = 𝑝( 1 − 𝑝 !'(

where 𝑝 is the probability of success and 

q = 1 − 𝑝 is the probability of failure.

mean 𝜇 = 𝑝
Variance σ& = 𝑝𝑞 10

Outcome

Pr
ob

np.random.binomial(1, p, size=None)

63

𝑝

1 − 𝑝
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Binomial Distribution

64

• A binomial distribution with parameters 

𝑛 and 𝑝 is the distribution of the number 

of 𝑘 successes in a sequence of 𝑛
independent experiments, each asking a 

yes-no questions.

PMF: 𝑃 𝑋 = 𝑥 = 𝑛
𝑘 𝑝)𝑞*')

where 𝑝 is the probability of success and 

q = 1 − 𝑝 is the probability of failure.

mean 𝜇 = 𝑛𝑝
Variance σ& = 𝑛𝑝𝑞

0   1    2    3   4    5    6
Outcome

Pr
ob

np.random.binomial(n, p, size=None)
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PDF vs PMF 

65
Discrete Random Variable

X
Random Variable

Continuous Random Variable
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Uniform continuous distribution
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• This distribution describes an experiment 

where there is an arbitrary outcome that 

lies between certain bounds, defined by 

parameters 𝑎 and 𝑏. 

PDF: 𝑃 𝑋 = 𝑥 = 1
!

%'#
𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

0

mean 𝜇 = #$%
&

Variance σ& = %'# !

!&
a b

Outcome

Prob
1

𝑏 − 𝑎

np.random.uniform(low=0.0, high=1.0,
size=None)
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Normal distribution

67

• A normal (or Gaussian) distribution is one 

of the most used continuous random 

variables. 

• As a result of the central limit theorem,  a 

random variable with an unknown 

distribution could be approximated with 

the normal distribution.

PDF: 𝑃 𝑋 = 𝑥 = !
+ &,

𝑒'
"
!
#$%
&

!

mean 𝐸[𝑋] = 𝜇
Variance 𝐸[ 𝑋 − 𝜇 &] = σ& Outcome

Prob
𝜇

σ

(location) 
(scale)

np.random.normal(loc=0.0, scale=1.0,
size=None)
np.random.randn()
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Central Limit Theorem

68

Why is the normal distribution used so often? 

The Central Limit Theorem: random variables that are averages or sums of 
many other random variables will be approximately normally distributed.

More specifically: if 𝑋%, 𝑋&, …, 𝑋' are independent random variables 
(representing individual observations of data) with mean 𝜇 and standard 
deviation 𝜎 (not necessarily normal themselves), then the sample mean 

-𝑋 =
𝑋% + 𝑋& +⋯+ 𝑋'

𝑛

will have approximate distribution:

;𝑋 ∼ 𝑁 𝜇,
𝜎&

𝑛
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Joint Distributions
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What happens to these probability distributions (PMFs and PDFs) when there 
are multiple random variables involved (aka, multiple observations in a data 
set)? 

Let 𝑓 𝑥%, 𝑥&, … , 𝑥' be the joint distribution of 𝑛 separate random variables.  If 
they all come from the same generative marginal distribution, 𝑓 𝑥( , and are 
independent, what is the resulting distribution?

𝑓 𝑥(, 𝑥), … , 𝑥# = 𝑓 𝑥() ⋅ 𝑓 𝑥) ⋯𝑓(𝑥# =1
*+(

#

𝑓(𝑥*)
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Digestion Time
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Modeling Data with Probability Distributions

71
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The Probability of Data

In a typical probability problem (like in Stat 104 or 110), you would be told 
something like “20% of Harvard College students are collegiate athletes.  What 
is the probability that there are 50 athletes in a random sample of 200 
students from Harvard College?”

𝑃 𝑋 = 50 = 200
50 (0.20))* 0.80 %)* = 0.0149

𝑃 𝑋 ≥ 50 =?
)*

&**
200
𝑥 (0.20)+ 0.80 &**,+ = 0.0494

An alternative question: what is more likely to occur: 50 athletes or 40 athletes 
in a sample of 200 students?  How can we make the determination?

72
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Inference: the inverse of probability

In the last problem, how did we know that the statement “20% of Harvard College 
students are collegiate athletes” is accurate?  Where did this come from?

In most applications, the true population parameter (here, the proportion in all of 
Harvard College) is unknown.  What we get to observe is the data, and we want to 
make a statement about the unknown parameter.  So a more poignant question 
would be:

“There are 50 athletes in a random sample of 200 students from Harvard College.  Is a 
binomial distribution with p = 0.2 or p = 0.25 more reasonable?”

This approach of using the data to make a statement about a parameter (in a 
statistical model) is called inference.  
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Likelihood Theory
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The idea of likelihood

The likelihood approach to inference is based on exactly what was presented 
in the last slide: given observed values of data (summarized by specific 
sample statistics), what values of the model’s parameters are likely?

It simply just flips a PDF or PMF on its head: instead of writing this function 
with the data (𝑋) as the unknown, it uses the same function but uses the 
parameter(s) as the unknown(s).  The likelihood function, ℒ, measures how 
well a model (and its set of parameters) describes the observed data.

For a set of independent and normally distributed random variables, 𝑋( ∼
𝑁(𝜇, 𝜎&):

ℒ(𝜇, 𝜎&|𝑥%, … , 𝑥') =D
(-%

'
1
2𝜋𝜎&

𝑒,
+!,.
/

"
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The log-likelihood

The likelihood function measures how well a model describes observed data. 
So, it makes sense that we want a model (or set of parameters) that 
maximizes this function.

Likelihood functions are typically products of many similar pieces, and 
products are difficult to maximize (both mathematically and numerically).  
Why?

So instead, the log of the likelihood function, called the log-likelihood 
function, ℓ, is used.  For the Normal distribution model:

ℓ 𝜇, 𝜎& 𝑥%, … , 𝑥' = ln D
(-%

'
1
2𝜋𝜎&

𝑒,
+!,.
/

"

= −?
(-%

'

2𝜋𝜎& −?
(-%

'
𝑥( − 𝜇
𝜎

&
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Maximizing the likelihood

In order to choose the best Normal distribution to describe a set of data, we should 
maximize the likelihood that chooses the best set of parameters given the data.

The maximum likelihood estimates for a statistical model are those that maximize 
the likelihood function given the observed data.  

How do we do this mathematically?  How could we do this computationally?

With Math:  _____________________________________________

With Computers:__________________________________________
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Modeling Linear Regression Probabilistically
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The Simple Linear Regression Model 

We’ve defined the linear regression model to predict the i-th observation’s 
response, 𝑌(, from a predictor, 𝑋(, to be: 

𝑌( = 𝛽* + 𝛽%𝑋( + 𝜖(

For any random variable, 𝜖, that has zero mean

𝐸(𝑌() = 𝛽* + 𝛽%𝑋(

The error term, 𝜖(, represents the distance the observation lies from the line in 
the vertical distance (direction of Y).
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The Probabilistic Regression Model 

If we assume that 𝜖 ( ∼ 𝑁(0, 𝜎&)

This regression model can be rewritten as:

𝑌(|𝑋( ∼ 𝑁(𝛽* + 𝛽%𝑋(, 𝜎&)

80

The likelihood of a measurement having value 𝑌( given 𝑋( for a model 𝛽*, 𝛽%

𝐿(𝛽*, 𝛽%, 𝜎&|𝑌(, 𝑋() =
1
2𝜋𝜎&

𝑒,
0!,(2#32$4!)

/
"
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The Probabilistic Regression Model 

This formulation allows us to write out the joint likelihood function for this 
probability model.

81

The likelihood of a measurement having value 𝑌( given 𝑋( for a model 𝛽*, 𝛽%

𝐿(𝛽*, 𝛽%, 𝜎&|𝑌(, 𝑋() =
1
2𝜋𝜎&

𝑒,
0!,(2#32$4!)

/
"

The joint likelihood function for this probability model becomes:

𝐿(𝛽*, 𝛽%, 𝜎&| 𝒀, 𝑿) =D
(-%

'
1
2𝜋𝜎&

𝑒,
0!,(2#32$4!)

/
"
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The Likelihood of Linear Regression  

Which leads to the log-likelihood:

𝑙(𝛽*, 𝛽%, 𝜎&| 𝒀, 𝑿) = ln𝐿(𝛽*, 𝛽%, 𝜎&| 𝒀, 𝑿) = −?
(-%

'

ln 2𝜋𝜎& −?
(-%

'
𝑦( − (𝛽* + 𝛽%𝑥()

𝜎

&

What should we do with this log-likelihood?  
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What does this function look eerily similar to?  What does maximize 
this function lead to with regards to the best estimates of 𝛽!, 𝛽"?

The joint likelihood function for this probability model becomes:

𝐿(𝛽*, 𝛽%, 𝜎&| 𝒀, 𝑿) =D
(-%

'
1
2𝜋𝜎&

𝑒,
0!,(2#32$4!)

/
"
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The Likelihood of Linear Regression  

Instead of maximize the log-likelihood we can minimize the

negative-log-likelihood:

−𝑙(𝛽*, 𝛽%, 𝜎&| 𝒀, 𝑿) =?
(-%

'

ln 2𝜋𝜎& +?
(-%

'
𝑦( − (𝛽* + 𝛽%𝑥()

𝜎

&

Which is equivalent to minimizing

𝑀𝑆𝐸 =
1
𝑛
?
(-%

'
𝑦( − (𝛽* + 𝛽%𝑥()

𝜎

&
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Take home message

By taking a probabilistic approach to linear regression and assuming the 
residuals are normally distributed, we see that maximizing the likelihood for 
this model is equivalent to minimizing mean squared error around the line!

So, if we believe our residuals are normally distributed, then minimizing mean 
square error is a natural choice.

But by choosing this specific probability model, we get much more than 
simply motivation for our loss function.  We get instructions on how to perform 
inferences as well J

We will see this in more details in next lecture!
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Checking the assumptions of this model:

The probabilistic model of linear regression leads to 4 main assumptions 
that can be checked with the data (the first 3 at least):

1. Linearity: relationships are linear and there is no clear non-linear 
pattern around the line (as evidenced by the residuals).

2. Normality: the residuals are normally distributed.

3. Constant Variance: the vertical spread of the residuals is constant 
everywhere along the line.

4. Independence: the observations are independent of each other.

Note: collinearity is not a violation of an assumption, but can certainly 
muck up the model.
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Thank you


