
CS109A Introduction to Data Science
Pavlos Protopapas, Natesh Pillai

Generalization Error and Bias Variance Tradeoff
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Outline

• Q&A from lecture 5: 

• Train/Validation/Test 

• Scaling

• Generalization Error, Bias Variance Tradeoff

• Regularization

o Lasso and Ridge
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In the beginning, we always separate a portion of 
the data from the main dataset, which we never 
touch until the very end when we want to evaluate 
the performance of the final model. Normally, this 
is called train + test split. *

Sometimes we can further split train data into train + 
validation, essentially ending up with train + validation 
(both used to find the best model) + test (which we 
still don’t use until the very end).

And then, we sometimes also use cross-
validation, which has nothing to do with 
either test or validation splits? Because 
cross-validation uses the train data to split 
it into k buckets.

* sometimes they (not CS109A) also call this train + validation split, while meaning train + test
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Previously on CS109A 
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Model Selection 

1. Model selection as a way to avoid overfitting

2. Validation set to select the best model

3. Cross validation to avoid overfitting to the validation set 

Ways of model selection: 

• Exhaustive search 

• Greedy algorithms 

• Fine tuning hyper-parameters

• Regularization
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Test Error and Generalization

We know to evaluate models on both train and test data because models 
can do well on training data but do poorly on new data. 

When models do well on new data is called generalization. 

There are at least three ways a model can have a high test error. 
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Irreducible and Reducible Errors

We distinguished the contributions of noise to the 
generalization error: 

Irreducible error (or aleatoric error) : we can’t do anything to 
decrease error due to noise.

Reducible error (or epistemic error): we can decrease error due to 
overfitting and underfitting by improving the model. 
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The Bias-Variance: Bias  

Reducible error comes from either underfitting or overfitting. There is a 
trade-off between the two sources of errors:

14



CS109A, PROTOPAPAS, PILLAI

Bias vs Variance: Variance of a SIMPLE model 
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2000 models
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Bias vs Variance: Variance of a COMPLEX model 
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2000 models
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Bias vs Variance

Left: 2000 best fit linear models, each fitted on a different 20-points 
training set. 

Right: 2000 best fit models using degree 10 polynomials.
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The Bias-Variance: Bias  

Reducible error comes from either underfitting or overfitting. There is a 
trade-off between the two sources of errors:
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The Bias-Variance Trade Off
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WE WANT TO AVOID THIS

WE  WANT THIS 
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Overfitting

Overfitting occurs when a model corresponds too closely to the 
training set, and as a result, the model fails to fit additional 
data.

So far, we have seen that overfitting can happen when:  

• Too many parameters

• Degree of the polynomial is too large

• Too many interaction terms

Soon, we will see other evidence of overfitting, which will point to 
a way of avoiding overfitting:   Ridge and Lasso regressions.
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