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Zip

Python’s zip() function creates an iterator that will
aggregate elements from two or more iterables.
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Zip(iterableA, iterableB)
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>>> letters = [‘a’,’b’,’c’,’d’]
>>> numbers = [1,2,3,4]

>>> for letter, number in 
zip(letters, numbers):
... print(letter,number)
‘a’ 1
‘b’ 2
‘c’ 3
‘d’ 4



Unpacking operator ( splat)* 

We've seen how to zip something. But how do we unzip
something? This is where the * operator comes in.
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iterableA, iterableB = zip(*pairs)
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>>> pairs = 
[(1,’a’),(2,’b’),(3,’c’)]
>>> numbers, letters = 
zip(*pairs)

>>> print(numbers)
(1,2,3)

>>> print(letters)
(‘a’,’b’,’c’)



Enumerate

• When you use enumerate(), the function 
gives you back two loop variables:
• The count of the current iteration
• The value of the item at the current 

iteration

• The use of two loop variables i.e count 
and value, is an example of argument 
unpacking.

• There are many times when you might 
not want to count from index 0. In that 
case, you can use the start argument to 
change the starting count index.

SYNTAX:for count,value in enumerate(values):
...: Do something
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