
Zip &
Enumerate

35

Zip

Python’s zip() function creates an iterator that will
aggregate elements from two or more iterables.

1 2 3 4 5 6

iterableA iterableB

Zip(iterableA, iterableB)

1 2 34 5 6

36

>>> letters = [‘a’,’b’,’c’,’d’]
>>> numbers = [1,2,3,4]

>>> for letter, number in
zip(letters, numbers):
... print(letter,number)
‘a’ 1
‘b’ 2
‘c’ 3
‘d’ 4

Unpacking operator (splat)*

We've seen how to zip something. But how do we unzip
something? This is where the * operator comes in.

1 2 3 4 5 6

iterableA iterableB

iterableA, iterableB = zip(*pairs)

1 2 34 5 6

pairs

37

>>> pairs =
[(1,’a’),(2,’b’),(3,’c’)]
>>> numbers, letters =
zip(*pairs)

>>> print(numbers)
(1,2,3)

>>> print(letters)
(‘a’,’b’,’c’)

Enumerate

• When you use enumerate(), the function
gives you back two loop variables:
• The count of the current iteration
• The value of the item at the current

iteration

• The use of two loop variables i.e count
and value, is an example of argument
unpacking.

• There are many times when you might
not want to count from index 0. In that
case, you can use the start argument to
change the starting count index.

SYNTAX:for count,value in enumerate(values):
...: Do something

[Hargun,
Pavlos,
Sree,
Joy,
Hayden]

