Dictionaries

Dictionaries in Python — you will use this a lot!

In Python, dictionaries are ordered collection of mutable objects with immutable keys.
Elements within a dictionary have a key & value.

This means that there is an order

associated with the elements of

; dictionaries.
C

d
4= You can perform indexing or
slicing since there are index
numbers present. J

Mutability implies that you can
change/modify elements within a

X dictionary.

Note: The key is immutable, but
the value can be mutable.

Dict = {Key;:Value,

Key,:Value,}

>>> dictA = {'India’':"

Lanka':'Colombo’}

>>> dictB = {'Apples':1

>>> print(dictA)

New Delhi', 'USA':'Washington DC', 'Germany':

'"Pineapple’':4, 'Grapes’:3}

'Berlin', 'Sri

/

{"India': 'New Delhi', 'USA': 'Washington DC', 'Germany': 'Berlin', 'Sri Lanka’'

"Colombo’ }

>>> print(dictB)

{"'Apples': 1, 'Pineapple': 4, 'Grapes': 3}

DictA DictB
Key - Type Value - Type Key - Type Value - Type
India<str> New Delhi<str> Apples<str> 1<int>
USA<str> Washington DC<str> Pineapple<str> 4 <int>

Berlin<str> Grapes <str> 3<int>

Germany<str>

Dictionaries in Python

Important Dict Methods to Remember

Python Code Function

dictA = {‘India’’Delhi’USA’*Washington}, dictA = {name="Sam’,’age=23} Creates a dictionary with the key value pair provided

dictA.get(‘India’, ‘defaultname’), dictA[‘India’] Accesses value at key name provided. If key name not present, gets default
dictA.items() Gets a list of the key-value pairs in the dictionary

dictA.values() Gets a list of the values in the dictionary

dictA.keys() Gets a list of the keys in the dictionary

dictA[‘place of birth’] = ‘Singapore’ Set the value of the key associated with it

del dictA[‘age’] Delete the key-value pair from the dictionary

dictAclear() Clear dictionary of all the key-value pairs

dictA.update(dictB) Merges a dictionary with another dictionary or with an iterable of key-value pairs

Removes a key from it’s dictionary and returns the value, popitem() removes last

dictA.pop(), dictA.popitem() tem

Set & Dict ComprehengiQn

rehension works the same way list comprehension
does. Only difference is using { }.

Set = {expression for item in iterable}

>>> setA = {letter for letter in ‘aeieouuuooo’}
{fa’,%e’,%1%,70%,7u’} Set = {expression for item in iterable if conditional)

Set = {expression1 (if conditional) else expression2 for item in
iterable}

Dict Comprehension works the same way list comprehension
does. Only difference is using {} and includes a key:value.

Dict = {key : expression for item in iterable}

>> dictA = {i: i**2 for I in [1,2,3,4,5]}

{1:1, 2:4, 3:9, 4:16, 5:25} Dict = {key : expression for item in iterable if conditional}

Dict = {key : expression1 (if conditional) else expression2 for

item in iterable}

When not to use Comprehension

>>> sum([i * i for 1 in range(100000000000)])
Memory error

>>> sum(i * i for i in range(100000000000))
33333333328333333333350000

Use generator comprehension when dealing
with big huge amounts of data.

A list comprehension in Python works by loading the
entire output list into memory.

When you use list comprehension for summing 1
billion integers, your computer becomes unresponsive.
This is because Python consumes more memory than
the computer would like.

When the size of a list becomes problematic, it’s often
helpful to use a generator instead of a list
comprehension in Python.

A generator doesn’t create a single, large data
structure in memory, but instead returns an iterable.
Your code can ask for the next value from the iterable
as many times as necessary or until you’ve reached
the end of your sequence, while only storing a single
value at a time.

https://realpython.com/courses/python-generators/

