CS107 / AC207

SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 9

Tuesday, October 5th 2021
Fabian Wermelinger
Harvard University

RECAP OF LAST TIME

- Class methods, static methods and instance methods
- python modules
- python packages and the python package index (PyPI)
- Build a python package and publish on https://test.pypi.org/ (catch up today)

OUTLINE

- Towards automatic differentiation
- The Jacobian and Newton's method
- Numerical computation of derivatives

INTRODUCTION AND MOTIVATION

References for automatic differentiation:

- P. H.W. Hoffmann, A Hitchhiker's Guide to Automatic Differentiation, Springer 2015, doi:10.1007/s11075-015-0067-6 (You can access this paper through the Harvard network.)
- Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic differentiation, SIAM 2008, Vol. 105

INTRODUCTION AND MOTIVATION

Differentiation is one of the most important operations in science.

- Finding extrema of functions and determining zeros of functions are central to optimization.
- Linearization of non-linear equations requires a prediction for a change in a small neighborhood which involves derivatives.
- Numerically solving differential equations forms a cornerstone of modern science and engineering and is intimately linked with predictive science.

INTRODUCTION AND MOTIVATION

Euler equations: a system of partial differential equations (PDEs) to describe compressible fluid motion in the form of conservation laws:

- Conservation of mass ρ
- Conservation of momentum $\rho \mathbf{u}$
- Conservation of energy E

The $\partial / \partial t$ and $\partial / \partial x$ are differential operators that describe the change in time and space of the conserved quantities $\rho, \rho u$ and E.

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u) & =0 \\
\frac{\partial \rho u}{\partial t}+\frac{\partial}{\partial x}\left(\rho u^{2}+p\right) & =0 \\
\frac{\partial E}{\partial t}+\frac{\partial}{\partial x}((E+p) u) & =0
\end{aligned}
$$

INTRODUCTION AND MOTIVATION

The Euler equations in the previous slide are highly non-linear. If we were to linearize the equations around a certain point q, we would need to find a so called Jacobian J of $f(q) \in \mathbb{R}^{3}$, where the input $q=[\rho, \rho u, E]^{\top} \in \mathbb{R}^{3}$ are the conserved variables.
We can then find the best linear approximation to $f(q+\Delta q)$ by projecting the Jacobian in the direction of a small change Δq, i.e., $f(q+\Delta q) \approx f(q)+J(q) \cdot \Delta q$. The Jacobian contains the first derivatives $J_{i j}=\partial f_{i} / \partial q_{j}$ and is a 3×3 matrix for this example.

INTRODUCTION AND MOTIVATION

A very frequent occurrence in science requires the scientist to find the zeros of a function $y=f(x)$. The input to the function is an m dimensional vector $x \in \mathbb{R}^{m}$ and the function returns an n dimensional vector $y \in \mathbb{R}^{n}$. We denote this mathematically as

$$
f(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{n}
$$

This expression is read: the function $f(x)$ maps \mathbb{R}^{m} to \mathbb{R}^{n}.

EXAMPLE 1: NON-LINEAR SYSTEM

Consider the system of non-linear equations:

$$
\begin{array}{r}
x_{1} x_{2}^{3}+\ln \left(x_{3}^{2}\right)=\sin \left(x_{1} x_{2} x_{3}\right) \\
x_{1}+x_{2}+\tan \left(x_{3}\right)=\frac{1}{x_{1} x_{2} x_{3}}
\end{array}
$$

We define the vector

$$
x=\left[x_{1}, x_{2}, x_{3}\right]^{\top}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

where we say $x \in \mathbb{R}^{3}$. Following the notation from above, $m=3$.

EXAMPLE 1: NON-LINEAR SYSTEM

The function of interest is

$$
f(x)=\left[\begin{array}{l}
x_{1} x_{2}^{3}+\ln \left(x_{3}^{2}\right)-\sin \left(x_{1} x_{2} x_{3}\right) \\
x_{1}+x_{2}+\tan \left(x_{3}\right)-\frac{1}{x_{1} x_{2} x_{3}}
\end{array}\right]
$$

Thus $f(x)$ maps an input $x \in \mathbb{R}^{3}$ to \mathbb{R}^{2} and we write $f(x): \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$

EXAMPLE 1: NON-LINEAR SYSTEM

If we plug-in numbers, say $x=[1,2,1]^{\top}$, and were to evaluate the nonlinear system at the point x we find:

$$
f\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
7.09 \\
4.06
\end{array}\right]
$$

NEWTON'S METHOD

We may have cause to find an x that renders $f(x)=0$. This is not so difficult for a linear system, but for a non-linear system it can be a major challenge.

Newton's method is an algorithm with excellent convergence properties that allows us to find the roots x of a non-linear function f that satisfies

$$
f(x)=0
$$

MATHEMATICAL TERMNOLOGY

Spend 10 minutes with your neighbors to discuss and understand the mathematical terminology just introduced.
Finding the roots of a function $f(x)$ has important practical applications. Discuss some real applications where you would need to find roots.

DERIVATION OF NEWTON'S METHOD

The goal is to find $x \in \mathbb{R}^{m}$ such that $f(x)=0$ for $f(x) \in \mathbb{R}^{n}$.

DERIVATION OF NEWTON'S METHOD

The algorithm visually:

Gif taken from Wikipedia

DERIVATION OF NEWTON'S METHOD

Step 1: choose an initial guess
Newton's method is an iterative method. We use the notation $x^{(k)}$ for the guess of the root at the k-th iteration. To start the algorithm you pick an initial guess at $k=0$ for which most certainly $f\left(x^{(0)}\right) \neq 0$.

The method is not guaranteed to converge! Convergence depends on a good initial guess which requires some intuition and experience. When the method does converge, a solution with high accuracy can be found with only few iterations.

DERIVATION OF NEWTON'S METHOD

Step 2: explore the neighborhood

We look at a point just a little beyond $x^{(k)}$.
That is, we define the next iterate as

$$
x^{(k+1)}=x^{(k)}+\Delta x^{(k)},
$$

where $\Delta x^{(k)}=x^{(k+1)}-x^{(k)}$.
Note: we just introduce $\Delta x^{(k)}$ we do not know what its value should be.

DERIVATION OF NEWTON'S METHOD

Step 3: find a relationship between $f\left(x^{(k+1)}\right)$ and $f\left(x^{(k)}\right)$
Since we are looking in the neighborhood of $x^{(k)}$, the main tool we want here is a Taylor series expansion:

$$
f(y)=\sum_{\kappa=0}^{\infty} \frac{f^{(\kappa)}(x)}{\kappa!}(y-x)^{\kappa}
$$

The notation $f^{(\kappa)}(x)$ means the κ-th derivative of f evaluated at x. It is a common mathematical notation and unrelated to $x^{(k)}$.
We substitute $y=x^{(k)}+\Delta x^{(k)}$ and $x=x^{(k)}$ and find:

$$
f\left(x^{(k)}+\Delta x^{(k)}\right)=f\left(x^{(k)}\right)+\left.\frac{\partial f}{\partial x}\right|_{x=x^{(k)}} \Delta x^{(k)}+\text { h.o.t. }
$$

DERIVATION OF NEWTON'S METHOD

Step 4: simplify

As our derivation is based on an iterative correction to $x^{(k)}$, we can argue that we may omit the higher order terms (h.o.t.) in our previous result at the cost of an exact relationship and possibly a few more iterations.

This simplifies to:

$$
f\left(x^{(k)}+\Delta x^{(k)}\right) \approx f\left(x^{(k)}\right)+\left.\frac{\partial f}{\partial x}\right|_{x=x^{(k)}} \Delta x^{(k)}
$$

DERIVATION OF NEWTON'S METHOD

Step 5: insert iteration criterion

We require a root for which $f\left(x^{(k+1)}\right)=0$ which implies that $\Delta x^{(k)}=0$ when converged (note that in the previous step we have sacrificed accuracy for simplicity but I will continue to use the ' $=$ ' sign in the following).

$$
f\left(x^{(k)}\right)+\left.\frac{\partial f}{\partial x}\right|_{x=x^{(k)}} \Delta x^{(k)}=0
$$

Note: this now allows us to solve for the unknown $\Delta x^{(k)}$.

DERIVATION OF NEWTON'S METHOD

Step 6: rearrange and interpret (scalar case)

Although it was stated at the beginning that $x \in \mathbb{R}^{m}$ and the image $f(x) \in \mathbb{R}^{n}$, it was silently assumed that $f(x)$ is a single variate scalar function to keep the Taylor series simple. In that case we can write the following iteration rule:

$$
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}
$$

where $f^{\prime}\left(x^{(k)}\right) \neq 0$ is the first derivative $\partial f / \partial x$ evaluated at the root $x^{(k)}$ of iteration k. To start the iterations we need an initial guess $x^{(0)}$.

DERIVATION OF NEWTON'S METHOD

Step 6: rearrange and interpret (general case)
In general we have $x \in \mathbb{R}^{m}$ and the image $f(x) \in \mathbb{R}^{n}$. We can then no longer simply divide by $f^{\prime}(x)$ because we have a different structure. Similar to the example of linearizing the Euler equations, the first order term in the Taylor series becomes $J\left(x^{(k)}\right) \Delta x^{(k)}$ with $J\left(x^{(k)}\right) \in \mathbb{R}^{n \times m}$ the Jacobian of $f(x)$ evaluated at $x^{(k)}$ (now a $n \times m$ matrix with elements $\partial f_{i} / \partial x_{j}$).

DERIVATION OF NEWTON'S METHOD

Step 6: rearrange and interpret (general case)
In the general form of Newton's method we have to solve a linear system to obtain the correction $\Delta x^{(k)} \in \mathbb{R}^{m}$. The iteration rule now is:

$$
\begin{aligned}
J\left(x^{(k)}\right) \Delta x^{(k)} & =-f\left(x^{(k)}\right) \\
x^{(k+1)} & =x^{(k)}+\Delta x^{(k)}
\end{aligned}
$$

with some initial guess $x^{(0)}$. In every iteration k, we must solve a linear system for the m unknown corrections which we need to advance to $x^{(k+1)}$. The iterations are repeated until $\Delta x^{(k)}<\varepsilon$ where ε is a tolerance below which we consider the algorithm converged.

DERIVATION OF NEWTON'S METHOD

A few notes about what we just did:

- At the heart of Newton's method is the Jacobian J
- In order to use the algorithm, we need J which means we must compute derivatives and evaluate them at a point $x^{(k)}$.
- We can obtain J in different ways:
- compute the derivatives manually
- with a software for symbolic math
- automatic differentiation
- through a numerical approximation like Finite-Differences
- An accurate representation of J is key for good convergence behavior of the method.

EXAMPLE 2: INTERSECTION OF TWO LINES

Given two functions $y_{1}=x$ and $y_{2}=\exp \left(-2(\sin (4 x))^{2}\right)$, find x such that $y_{1}=y_{2}$.
This statement is equivalent to find x such that

$$
f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)=0
$$

EXAMPLE 2: INTERSECTION OF TWO LINES

A real world application is in ray-tracing to generate photo realistic images. Rays intersect with the surface of complex objects and are traced to compute an approximation of pixel color values.

EXAMPLE 2: INTERSECTION OF TWO LINES

Before we start, it is a good idea to visualize our problem:

```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 700)
y = np.exp(-2 * np.sin(4 * x)**2)
fig, ax = plt.subplots()
ax.plot(x, x, linewidth=2.5, label=r'$y_1=x$')
ax.plot(x,
    y,
    linewidth=2.5,
    linestyle='-- ',
    label=r'$y_2=\exp\bigl(-2\bigl(\sin(4x)\bigr)^2\bigr)$')
ax.set_xlim(0, 2)
ax.set_ylim(0, 1.2)
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$y$')
ax.legend()
18 fig.savefig('example2_vis.png', dpi=300, bbox_inches='tight')
```


EXAMPLE 2: INTERSECTION OF TWO LINES

Before we start, it is a good idea to visualize our problem:

There are three zeros and we can not solve this problem by hand. Let us try Newton's method.

EXAMPIE 2: INTERSECTION OF TWO LINES

Let us think about the design of our program:

- We need an initial guess
- We need some termination criterion
- We want to protect from infinite iterations if the algorithm diverges
- We would like to pass the parameter as arguments

Sketch:

EXAMPLE 2: INTERSECTION OF TWO LINES

At this point we need to determine the Jacobian J of $f(x)$.
Given the function

$$
f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)
$$

compute the derivative $d f / d x$:

1. By hand on a piece of paper
2. Check your calculus by using the sympy python package for symbolic math. Write a small . py script or Jupyter notebook and commit the code in your class repository under
lectures/lecture09 on your main or master branch. The online documentation can be found here or a pdf can be downloaded here. You can install the package with python -m pip install [--user] sympy

You may collaborate with your neighbors (~ 15 minutes)

EXAMPLE 2: INTERSECTION OF TWO LINES

We add the functions $f(x)$ and $J(x)$ as anonymous python lambda's (you could also use normal function objects):

```
import numpy as np
f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0 * x)**2) * np.sin(4.0 * x) * np.cos(4.0 * x)
x_k # initial guess
tol # convergence tolerance
max_it # maximum iterations
for k in range(max_it):
    dx_k = -f(x_k)/ J(x_k)
    if abs(dx_k) < tol:
        root = x_k + dx_k
        break
    x_k += dx_k
```

To handle arguments we can use the argparse python module.

EXAMPLE 2: INTERSECTION OF TWO LINES

Packing everything into a module:

```
1 #!/usr/bin/env python3
import numpy as np
f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
j = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0* x)**2) * np.gin(4.0* x) * np.cos(4.0 * x)
def newton(f, J, x_k, tol=1.0e-8, max_it=100):
    root = None
    for k in range(max_it):
        dx_k = -f(x_k) / j(x_k)
        if abs(dx_k) < tol:
            root = x_k + dx_k
            print(f"Found root {root:e} at iteration {k+1}")
            break
        print(f"Iteration {k+1}: Delta x = {dx_k:e}")
        X_k += dx_k
    return root
if ___name___ == "__main___":
    import argparse
    def parse_args():
        parser = argparse.ArgumentParser(description="Newton-Raphson Method")
        parser.add_argument('-g', '--initial_guess', type=float, help="Initial guess", required=True)
        parser.add_argument('-t', '--tolerance', type=float, default=1.0e-8, help="Convergence tolerance")
        parser.add_argument('-i', '--maximum_iterations', type=int, default=100, help="Maximum iterations")
        return parser.parse_args()
    args = parse_args()
    newton(f, J, args.initial_guess, args.tolerance, args.maximum_iterations)
```


EXAMPLE 2: INTERSECTION OF TWO LINES

Recall: the check whether
 \qquad name
 \qquad corresponds to the '
 \qquad main
 \qquad ' top-

 level scope allows us to run our module just like a program```
1 $ chmod 755 newton.py
$./newton.py --help
usage: newton.py [-h] -g INITIAL_GUESS [-t TOLERANCE] [-i MAXIMUM_ITERATIONS]
Newton-Raphson Method
optional arguments:
 -h, --help show this help message and exit
 -g INITIAL_GUESS, --initial_guess INITIAL_GUESS
 Initial guess
 -t TOLERANCE, --tolerance TOLERANCE
 Convergence tolerance
 -i MAXIMUM_ITERATIONS, --maximum_iterations MAXIMUM_ITERATIONS
 Maximum iterations
$./newton.py --initial_guess 0.1
Iteration 1: Delta x = 1.218877e-01
Iteration 2: Delta x = 2.339599e-02
8 Iteration 3: Delta x = 2.066548e-03
19 Iteration 4: Delta x = 1.500080e-05
20 Found root 2.473652e-01 at iteration 5
```

For the initial guess 0.1, the method seems to find a root at $2.473652 \mathrm{e}-01$.

## EXAMPIE 2: INTERSECTION OF TWO LINES

## Validation of the result:



```
1 >>> from newton import (f, J, newton)
2 >>> root = newton(f, J, 0.1)
3 Iteration 1: Delta x = 1.218877e-01
4 Iteration 2: Delta x = 2.339599e-02
5 Iteration 3: Delta x = 2.066548e-03
6 Iteration 4: Delta x = 1.500080e-05
7 \text { Found root 2.473652e-01 at iteration 5}
8>> f(root)
9 5.551115123125783e-17 # about zero
```

Note that the initial guess is crucial:

```
1 >>> newton(f, J, 0.6)
2 \text { Found root 6.692328e-01 at iteration 5}
3 >>> newton(f, J, 0.9)
4 \text { Found root 8.560317e-01 at iteration 4}
```


## EXAMPLE 2: INTERSECTION OF TWO LINES

## Summary:

- Derivatives are foundational in science and engineering.
- We illustrated a situation from optimization where we try to find the roots of a complicated, high-dimensional nonlinear function. The algorithm that we used was Newton's method, which requires evaluations of the Jacobian.
- We saw that the Jacobian also showed up when we linearized the Euler equations around a point $q$.
- The Jacobian requires the evaluation of derivatives for a given function at some point of interest $x$.
- We computed the derivatives by hand in our previous example. What if we can not do that or have other reasons of not doing it?


## THE FINITE-DIFFERENCE METHOD

Suppose we want to avoid relying on the symbolic computation of the derivative. For the single-variate scalar function $f(x)$ we found the following relationship through the Taylor series expansion:

$$
f(x+\varepsilon)=f(x)+\left.\frac{d f}{d x}\right|_{x} \varepsilon+\text { h.o.t. }
$$

where $\varepsilon$ is a small parameter.
If we again drop the higher order terms, we get the following approximation for the derivative:

$$
\left.\frac{d f}{d x}\right|_{x} \approx \frac{f(x+\varepsilon)-f(x)}{\varepsilon}
$$

## THE FINITE-DIFFERENCE METHOD

We have introduced another parameter in order to approximate the derivative numerically with sole knowledge of $f(x)$. We do not know how to choose $\varepsilon$ but it has to be small because our Taylor series Ansatz assumes we are looking in the close neighborhood of point $x$. Let's assume a value $\varepsilon=10^{-2}$ and replace our previous Jacobian in our Newton module:

```
import numpy as np
3 f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
4 J = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of j
```


## THE FINITE-DIFFERENCE METHOD

```
import numpy as np
3 f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
4 J = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of J
```

We now run Newton's method again, with our numerical approximation of $J(x)$ :

```
1 >>> from newton_fd import (f, J, newton)
2 >>> root = newton(f, J, 0.1, eps=1.0e-2)
3 Iteration 1: Delta x = 1.211561e-01
4 Iteration 2: Delta x = 2.482629e-02
5 Iteration 3: Delta x = 1.424802e-03
6 Iteration 4: Delta x = -4.341516e-05
7 Iteration 5: Delta x = 1.539820e-06
8 Iteration 6: Delta x = -5.437925e-08
9 \mp@code { F o u n d ~ r o o t ~ 2 . 4 7 3 6 5 2 e - 0 1 ~ a t ~ i t e r a t i o n ~ 7 }
10 >>> f(root)
11 1.8454707206849719e-10
```

Compared to the previous case, we have lost seven orders of magnitude in accuracy and require two extra iterations. (See the newton_fd.py script on the lecture materials site.)

## THE FINITE-DIFFERENCE METHOD

Since we know the exact form for $J(x)$ we can analyze the numerical error of our Finite-Difference approximation as we vary $\varepsilon$ :

```
1 import numpy as np
f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0 * x)**2) * np.sin(4.0 * x) * np.cos(4.0 * x)
J_fd = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of J
x = np.linspace(0.0, 2.0, 1000) # domain for f
epsilon = np.logspace(-13, 1, 1000) # discretization \epsilon
9 error = np.zeros(len(epsilon)) # array for L2 errors
10 for i, eps in enumerate(epsilon):
11 e = J_fd(x, eps) - J(x) # numerical error for all values in x
12 error[i] = np.linalg.norm(e) # compute L2 error norm
```


## THE FINITE-DIFFERENCE METHOD



## Observations:

- The numerical error for this approximation of $J(x)$ has a minimum around $10^{-6}$
- The minimum error was not obtained at the smallest possible $\varepsilon$ of about $10^{-16}$ for double precision according to the IEEE 754 standard (machine precision).
- Too small $\varepsilon$ amplify the floating point error while $\varepsilon$ too large does not provide a good approximation for the derivative.
- 

> The method reduces the floating point error by one decade if we reduce $\varepsilon$ by one decade (1st-order accurate).

## THE FINITE-DIFFERENCE METHOD

It is not clear how to choose the best $\varepsilon$ in general. Some results from numerical analysis suggest that it should be around $\sqrt{\varepsilon_{\text {machine }}}$ as a rule of thumb for a 1st-order method.

In the example before, the minimum numerical error was $1.438669 \times 10^{-6}$ and corresponds to $\varepsilon=2.860596 \times 10^{-9}$. If we compute the square root of $\varepsilon_{\text {machine }}$ in python we find:

```
1 >>> np.finfo(float).eps
2 2.220446049250313e-16
3 >>> np.sqrt(_)
4 1.4901161193847656e-08
```


## THE FINTTE-DIFFERENCE METHOD (ADDITIONAL)

We have used the Taylor series expansion for $f(x+\varepsilon)$ for our previous method. We can do another Taylor series for $f(x-\varepsilon)$ and subtract the series from the previous one. This trick will eliminate the leading order term and we gain an extra order of accuracy. The method then becomes:

$$
\left.\frac{d f}{d x}\right|_{x} \approx \frac{f(x+\varepsilon)-f(x-\varepsilon)}{2 \varepsilon}
$$

## THE FINITE-DIFFERENCE METHOD (ADDITIONAL)

## Error analysis for this method reveals its superior accuracy:



## THE FINITE-DIFFERENCE METHOD (ADDITIONAL)

If we return to the case where $x \in \mathbb{R}^{m}$ for $m>1$, we can compute the partial derivative with respect to coordinate $x_{j}$ by

$$
\left.\frac{\partial f}{\partial x_{j}}\right|_{x} \approx \frac{f\left(x+\varepsilon e_{j}\right)-f(x)}{\varepsilon}
$$

where $e_{j}$ denotes the unit vector in the direction of $x_{j}$.

## THE CONVERGENCE ORDER OF NEWTON'S METHOD?

Approximate the square root of an arbitrary number $\alpha$ using a few Newton iterations ( $\sim 6-7$ ). Plot the error between the current approximation and the true solution for each iteration in a plot with logarithmic $y$-axis. How much is the error reduced between consecutive iterations?

Write a small python module (newton_sqrt. py) with a function newton_iter that performs one Newton iteration each time it is called. Compute the error as

$$
e=\left|\frac{v-v_{\text {exact }}}{v_{\text {exact }}}\right|
$$

Commit the code in your class repository under lectures/lecture09 on your main or master branch. Name the module newton_sart. py and add a if
__name__ == "__main__": statement at the end of your module.
You may collaborate with your neighbors ( $\sim 15$ minutes)

## TOWARDS AUTOMATIC DIFFERENTIATION

- In the introduction, we motivated the need for computational techniques to compute derivatives.
- We focused on the Jacobian $J$, a $n \times m$ matrix with first derivatives of a mapping $f(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$.
- We have discussed the computation of $J$ with symbolic math which is accurate but may not always be applicable depending on $f(x)$ or may be too costly to evaluate.
- Numerical computation of $J$ may be an alternative method at the cost of accuracy reduction and possible stability issues.
- Automatic differentiation (AD) overcomes both of these deficiencies. It is less costly than symbolic differentiation while evaluating derivatives at machine precision. There are two modes of AD: forward and reverse, both involve the Jacobian $J$. The back-propagation algorithm in machine learning is a special case of the reverse AD mode.


## RECAP

- Towards automatic differentiation
- The Jacobian and Newton's method
- Numerical computation of derivatives

