
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 9
Tuesday, October 5th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Class methods, static methods and instance methods

python modules

python packages and the python package index ()

Build a python package and publish on (catch
up today)

PyPI

https://test.pypi.org/

https://pypi.org/
https://test.pypi.org/

OUTLINE
Towards automatic differentiation

The Jacobian and Newton's method

Numerical computation of derivatives

INTRODUCTION AND MOTIVATION
References for automatic differentiation:

P. H.W. Hoffmann, A Hitchhiker's Guide to Automatic Differentiation, Springer 2015,
(You can access this paper through the Harvard network.)

Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic
differentiation, SIAM 2008, Vol. 105

doi:10.1007/s11075-015-0067-6

https://link.springer.com/article/10.1007/s11075-015-0067-6

INTRODUCTION AND MOTIVATION
Differentiation is one of the most important operations in science.

Finding extrema of functions and determining zeros of functions
are central to optimization.

Linearization of non-linear equations requires a prediction for a
change in a small neighborhood which involves derivatives.

Numerically solving differential equations forms a cornerstone of
modern science and engineering and is intimately linked with
predictive science.

Conservation of mass

Conservation of momentum

Conservation of energy

INTRODUCTION AND MOTIVATION
Euler equations: a system of partial differential equations (PDEs) to

describe compressible �uid motion in the form of conservation laws:

ρ

ρu

E

The and are
differential operators that
describe the change in time and
space of the conserved quantities

, and .

∂/∂t ∂/∂x

ρ ρu E

+ (ρu) = 0
∂ρ

∂t

∂

∂x

+ (ρ + p) = 0
∂ρu

∂t

∂

∂x
u2

+ ((E + p)u) = 0
∂E

∂t

∂

∂x

INTRODUCTION AND MOTIVATION
The Euler equations in the previous slide are highly non-linear. If we
were to linearize the equations around a certain point , we would
need to �nd a so called Jacobian of , where the input

 are the conserved variables.

q
J f(q) ∈ R3

q = [ρ, ρu,E ∈]⊺ R3

We can then �nd the best linear approximation to by
projecting the Jacobian in the direction of a small change , i.e.,

. The Jacobian contains the �rst
derivatives and is a matrix for this example.

f(q + Δq)
Δq

f(q + Δq) ≈ f(q) + J(q) ⋅ Δq

= ∂ /∂Jij fi qj 3 × 3

INTRODUCTION AND MOTIVATION
A very frequent occurrence in science requires the scientist to �nd

the zeros of a function . The input to the function is an -
dimensional vector and the function returns an -

dimensional vector . We denote this mathematically as
.

This expression is read: the function maps to .

y = f(x) m
x ∈ Rm n

y ∈ Rn

f(x) : ↦Rm Rn

f(x) Rm Rn

EXAMPLE 1: NON-LINEAR SYSTEM
Consider the system of non-linear equations:

+ ln() = sin()x1x
3
2 x2

3 x1x2x3

+ + tan() = .x1 x2 x3
1

x1x2x3

We de�ne the vector

where we say . Following the notation from above, .

x = [, , = ,x1 x2 x3]⊺
⎡

⎣
⎢

x1

x2

x3

⎤

⎦
⎥

x ∈ R3 m = 3

EXAMPLE 1: NON-LINEAR SYSTEM
The function of interest is

Thus maps an input to and we write .

f(x) = .
⎡

⎣
⎢

+ ln() − sin()x1x
3
2 x2

3 x1x2x3

+ + tan() −x1 x2 x3
1

x1x2x3

⎤

⎦
⎥

f(x) x ∈ R3 R2 f(x) : ↦R3 R2

EXAMPLE 1: NON-LINEAR SYSTEM
If we plug-in numbers, say , and were to evaluate the non-

linear system at the point we �nd:
x = [1, 2, 1]⊺

x

f = []
⎛

⎝
⎜
⎡

⎣
⎢

1

2

1

⎤

⎦
⎥
⎞

⎠
⎟

7.09

4.06

NEWTON'S METHOD
We may have cause to �nd an that renders . This is not so dif�cult

for a linear system, but for a non-linear system it can be a major challenge.

Newton's method is an algorithm with excellent convergence properties
that allows us to �nd the roots of a non-linear function that satis�es

.

x f(x) = 0

x f
f(x) = 0

MATHEMATICAL TERMINOLOGY
Spend 10 minutes with your neighbors to discuss and understand the

mathematical terminology just introduced.
Finding the roots of a function has important practical applications.

Discuss some real applications where you would need to �nd roots.
f(x)

DERIVATION OF NEWTON'S METHOD
The goal is to �nd such that for .x ∈ Rm f(x) = 0 f(x) ∈ Rn

DERIVATION OF NEWTON'S METHOD
The algorithm visually:

Gif taken from Wikipedia

https://en.wikipedia.org/wiki/Newton%27s_method

DERIVATION OF NEWTON'S METHOD
Step 1: choose an initial guess

Newton's method is an iterative method. We use the notation for
the guess of the root at the -th iteration. To start the algorithm you
pick an initial guess at for which most certainly .

x(k)

k
k = 0 f() ≠ 0x(0)

The method is not guaranteed to converge! Convergence depends on a
good initial guess which requires some intuition and experience. When
the method does converge, a solution with high accuracy can be found

with only few iterations.

DERIVATION OF NEWTON'S METHOD
Step 2: explore the neighborhood

We look at a point just a little beyond .
That is, we de�ne the next iterate as

,

where .

Note: we just introduce we do not know what its value should be.

x(k)

= + Δx(k+1) x(k) x(k)

Δ = −x(k) x(k+1) x(k)

Δx(k)

DERIVATION OF NEWTON'S METHOD
Step 3: �nd a relationship between and

Since we are looking in the neighborhood of , the main tool we want here
is a Taylor series expansion:

The notation means the -th derivative of evaluated at . It is a common mathematical notation and unrelated to .

We substitute and and �nd:

f()x(k+1) f()x(k)

x(k)

f(y) = (y − x .∑
κ=0

∞ (x)f (κ)

κ!
)κ

(x)f (κ) κ f x x(k)

y = + Δx(k) x(k) x = x(k)

f(+ Δ) = f() + Δ + h.o.t.x(k) x(k) x(k) ∂f

∂x
∣
∣
∣
x=x(k)

x(k)

DERIVATION OF NEWTON'S METHOD
Step 4: simplify

As our derivation is based on an iterative correction to , we can argue
that we may omit the higher order terms (h.o.t.) in our previous result at the

cost of an exact relationship and possibly a few more iterations.
This simpli�es to:

x(k)

f(+ Δ) ≈ f() + Δx(k) x(k) x(k) ∂f

∂x

∣
∣
∣
x=x(k)

x(k)

DERIVATION OF NEWTON'S METHOD
Step 5: insert iteration criterion

We require a root for which which implies that
when converged (note that in the previous step we have sacri�ced accuracy

for simplicity but I will continue to use the ' ' sign in the following).

Note: this now allows us to solve for the unknown .

f() = 0x(k+1) Δ = 0x(k)

=

f() + Δ = 0x(k) ∂f

∂x

∣
∣
∣
x=x(k)

x(k)

Δx(k)

DERIVATION OF NEWTON'S METHOD
Step 6: rearrange and interpret (scalar case)

Although it was stated at the beginning that and the image
, it was silently assumed that is a single variate scalar

function to keep the Taylor series simple. In that case we can write the
following iteration rule:

where is the �rst derivative evaluated at the root

 of iteration . To start the iterations we need an initial guess .

x ∈ Rm

f(x) ∈ Rn f(x)

= − ,x(k+1) x(k) f()x(k)

()f ′ x(k)

() ≠ 0f ′ x(k) ∂f/∂x
x(k) k x(0)

DERIVATION OF NEWTON'S METHOD
Step 6: rearrange and interpret (general case)

In general we have and the image . We can then no
longer simply divide by because we have a different structure. Similar to

the example of linearizing the Euler equations, the �rst order term in the
Taylor series becomes with the Jacobian of

 evaluated at (now a matrix with elements).

x ∈ Rm f(x) ∈ Rn

(x)f ′

J()Δx(k) x(k) J() ∈x(k) Rn×m

f(x) x(k) n × m ∂ /∂fi xj

DERIVATION OF NEWTON'S METHOD
Step 6: rearrange and interpret (general case)

In the general form of Newton's method we have to solve a linear system to
obtain the correction . The iteration rule now is:

with some initial guess . In every iteration , we must solve a linear
system for the unknown corrections which we need to advance to .

The iterations are repeated until where is a tolerance below
which we consider the algorithm converged.

Δ ∈x(k) Rm

J()Δx(k) x(k)

x(k+1)

= −f(),x(k)

= + Δ ,x(k) x(k)

x(0) k

m x(k+1)

Δ < εx(k) ε

DERIVATION OF NEWTON'S METHOD
A few notes about what we just did:

At the heart of Newton's method is the Jacobian J

In order to use the algorithm, we need which means we must
compute derivatives and evaluate them at a point .

J
x(k)

We can obtain in different ways:
compute the derivatives manually

with a software for symbolic math

automatic differentiation

through a numerical approximation like Finite-Differences

J

An accurate representation of is key for good convergence
behavior of the method.

J

EXAMPLE 2: INTERSECTION OF TWO LINES
Given two functions and , �nd

such that .

This statement is equivalent to �nd such that

= xy1 = exp(−2(sin(4x))y2)
2

x

=y1 y2

x

f(x) = x − exp(−2(sin(4x)) = 0.)
2

EXAMPLE 2: INTERSECTION OF TWO LINES
A real world application is in to generate photo realistic
images. Rays intersect with the surface of complex objects and are

traced to compute an approximation of pixel color values.

ray-tracing

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

EXAMPLE 2: INTERSECTION OF TWO LINES
Before we start, it is a good idea to visualize our problem:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2 * np.pi, 700)
y = np.exp(-2 * np.sin(4 * x)**2)
fig, ax = plt.subplots()
ax.plot(x, x, linewidth=2.5, label=r'$y_1=x$')
ax.plot(x,
 y,
 linewidth=2.5,
 linestyle='--',
 label=r'$y_2=\exp\bigl(-2\bigl(\sin(4x)\bigr)^2\bigr)$')
ax.set_xlim(0, 2)
ax.set_ylim(0, 1.2)
ax.set_xlabel(r'x')
ax.set_ylabel(r'y')
ax.legend()
fig.savefig('example2_vis.png', dpi=300, bbox_inches='tight')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

EXAMPLE 2: INTERSECTION OF TWO LINES
Before we start, it is a good idea to visualize our problem:

There are three zeros and we can not solve this problem by hand.
Let us try Newton's method.

EXAMPLE 2: INTERSECTION OF TWO LINES
Let us think about the design of our program:

We need an initial guess

We need some termination criterion

We want to protect from in�nite iterations if the algorithm diverges

We would like to pass the parameter as arguments

Sketch:
x_k # initial guess
tol # convergence tolerance
max_it # maximum iterations
for k in range(max_it):
 dx_k = -f(x_k) / dfdx(x_k) # compute corr
 if abs(dx_k) < tol: # check for convergen
 root = x_k + dx_k
 break
 x_k += dx_k # update the iteration variab

1
2
3
4
5
6
7
8
9

EXAMPLE 2: INTERSECTION OF TWO LINES
At this point we need to determine the Jacobian of .

Given the function

compute the derivative :

1. By hand on a piece of paper

2. Check your calculus by using the python package for symbolic math. Write a small .py
script or Jupyter notebook and commit the code in your class repository under
lectures/lecture09 on your main or master branch. The

 or a . You can install the package with
python -m pip install [--user] sympy

You may collaborate with your neighbors (~15 minutes)

J f(x)

f(x) = x − exp(−2(sin(4x)),)
2

df/dx

sympy

online documentation can be found
here pdf can be downloaded here

https://www.sympy.org/en/index.html
https://docs.sympy.org/latest/index.html
https://github.com/sympy/sympy/releases/download/sympy-1.9rc1/sympy-docs-pdf-1.9rc1.pdf

EXAMPLE 2: INTERSECTION OF TWO LINES
We add the functions and as 's (you could

also use normal function objects):
f(x) J(x) anonymous python lambda

import numpy as np

f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0 * x)**2) * np.sin(4.0 * x) * np.cos(4.0 * x)

x_k # initial guess
tol # convergence tolerance
max_it # maximum iterations
for k in range(max_it):
 dx_k = -f(x_k) / J(x_k)
 if abs(dx_k) < tol:
 root = x_k + dx_k
 break
 x_k += dx_k

1
2
3
4
5
6
7
8
9

10
11
12
13
14

To handle arguments we can use the python module.argparse

https://docs.python.org/3/reference/expressions.html#lambda
https://docs.python.org/3/library/argparse.html

EXAMPLE 2: INTERSECTION OF TWO LINES
Packing everything into a module:

#!/usr/bin/env python3
import numpy as np

f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0 * x)**2) * np.sin(4.0 * x) * np.cos(4.0 * x)

def newton(f, J, x_k, tol=1.0e-8, max_it=100):
 root = None
 for k in range(max_it):
 dx_k = -f(x_k) / J(x_k)
 if abs(dx_k) < tol:
 root = x_k + dx_k
 print(f"Found root {root:e} at iteration {k+1}")
 break
 print(f"Iteration {k+1}: Delta x = {dx_k:e}")
 x_k += dx_k
 return root

if __name__ == "__main__":
 import argparse
 def parse_args():
 parser = argparse.ArgumentParser(description="Newton-Raphson Method")
 parser.add_argument('-g', '--initial_guess', type=float, help="Initial guess", required=True)
 parser.add_argument('-t', '--tolerance', type=float, default=1.0e-8, help="Convergence tolerance")
 parser.add_argument('-i', '--maximum_iterations', type=int, default=100, help="Maximum iterations")
 return parser.parse_args()

 args = parse_args()
 newton(f, J, args.initial_guess, args.tolerance, args.maximum_iterations)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

EXAMPLE 2: INTERSECTION OF TWO LINES
Recall: the check whether __name__ corresponds to the '__main__' top-

level scope allows us to run our module just like a program

$ chmod 755 newton.py
$./newton.py --help
usage: newton.py [-h] -g INITIAL_GUESS [-t TOLERANCE] [-i MAXIMUM_ITERATIONS]

Newton-Raphson Method

optional arguments:
 -h, --help show this help message and exit
 -g INITIAL_GUESS, --initial_guess INITIAL_GUESS
 Initial guess
 -t TOLERANCE, --tolerance TOLERANCE
 Convergence tolerance
 -i MAXIMUM_ITERATIONS, --maximum_iterations MAXIMUM_ITERATIONS
 Maximum iterations

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$./newton.py --initial_guess 0.115
Iteration 1: Delta x = 1.218877e-0116
Iteration 2: Delta x = 2.339599e-0217
Iteration 3: Delta x = 2.066548e-0318
Iteration 4: Delta x = 1.500080e-0519
Found root 2.473652e-01 at iteration 520

$./newton.py --initial_guess 0.1
Iteration 1: Delta x = 1.218877e-01
Iteration 2: Delta x = 2.339599e-02
Iteration 3: Delta x = 2.066548e-03
Iteration 4: Delta x = 1.500080e-05
Found root 2.473652e-01 at iteration 5

$ chmod 755 newton.py1
$./newton.py --help2
usage: newton.py [-h] -g INITIAL_GUESS [-t TOLERANCE] [-i MAXIMUM_ITERATIONS]3
 4
Newton-Raphson Method5
 6
optional arguments:7
 -h, --help show this help message and exit8
 -g INITIAL_GUESS, --initial_guess INITIAL_GUESS9
 Initial guess10
 -t TOLERANCE, --tolerance TOLERANCE11
 Convergence tolerance12
 -i MAXIMUM_ITERATIONS, --maximum_iterations MAXIMUM_ITERATIONS13
 Maximum iterations14

15
16
17
18
19
20

$ chmod 755 newton.py
$./newton.py --help
usage: newton.py [-h] -g INITIAL_GUESS [-t TOLERANCE] [-i MAXIMUM_ITERATIONS]

Newton-Raphson Method

optional arguments:
 -h, --help show this help message and exit
 -g INITIAL_GUESS, --initial_guess INITIAL_GUESS
 Initial guess
 -t TOLERANCE, --tolerance TOLERANCE
 Convergence tolerance
 -i MAXIMUM_ITERATIONS, --maximum_iterations MAXIMUM_ITERATIONS
 Maximum iterations
$./newton.py --initial_guess 0.1
Iteration 1: Delta x = 1.218877e-01
Iteration 2: Delta x = 2.339599e-02
Iteration 3: Delta x = 2.066548e-03
Iteration 4: Delta x = 1.500080e-05
Found root 2.473652e-01 at iteration 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

For the initial guess 0.1 , the method seems to �nd a root at 2.473652e-01 .

EXAMPLE 2: INTERSECTION OF TWO LINES
Validation of the result:

>>> from newton import (f, J, newton)
>>> root = newton(f, J, 0.1)
Iteration 1: Delta x = 1.218877e-01
Iteration 2: Delta x = 2.339599e-02
Iteration 3: Delta x = 2.066548e-03
Iteration 4: Delta x = 1.500080e-05
Found root 2.473652e-01 at iteration 5
>>> f(root)
5.551115123125783e-17 # about zero

1
2
3
4
5
6
7
8
9

Note that the initial guess is crucial:
>>> newton(f, J, 0.6)
Found root 6.692328e-01 at iteration 5
>>> newton(f, J, 0.9)
Found root 8.560317e-01 at iteration 4

1
2
3
4

EXAMPLE 2: INTERSECTION OF TWO LINES
Summary:

Derivatives are foundational in science and engineering.

We illustrated a situation from optimization where we try to �nd the roots of a
complicated, high-dimensional nonlinear function. The algorithm that we used
was Newton's method, which requires evaluations of the Jacobian.

We saw that the Jacobian also showed up when we linearized the Euler
equations around a point .

The Jacobian requires the evaluation of derivatives for a given function at
some point of interest .

We computed the derivatives by hand in our previous example. What if we can
not do that or have other reasons of not doing it?

q

x

THE FINITE-DIFFERENCE METHOD
Suppose we want to avoid relying on the symbolic computation of the

derivative. For the single-variate scalar function we found the following
relationship through the Taylor series expansion:

where is a small parameter.

f(x)

f(x + ε) = f(x) + ε + h.o.t.,
df

dx

∣
∣
∣
x

ε

If we again drop the higher order terms, we get the following approximation
for the derivative:

≈
df

dx

∣
∣
∣
x

f(x + ε) − f(x)

ε

THE FINITE-DIFFERENCE METHOD
We have introduced another parameter in order to approximate the

derivative numerically with sole knowledge of . We do not know how
to choose but it has to be small because our Taylor series Ansatz assumes

we are looking in the close neighborhood of point . Let's assume a value
 and replace our previous Jacobian in our Newton module:

f(x)
ε

x
ε = 10−2

import numpy as np

f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of J

1
2
3
4

THE FINITE-DIFFERENCE METHOD

We now run Newton's method again, with our numerical approximation of :

Compared to the previous case, we have lost seven orders of magnitude in
accuracy and require two extra iterations.

(See the newton_fd.py script .)

import numpy as np

f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of J

1
2
3
4

J(x)
>>> from newton_fd import (f, J, newton)
>>> root = newton(f, J, 0.1, eps=1.0e-2)
Iteration 1: Delta x = 1.211561e-01
Iteration 2: Delta x = 2.482629e-02
Iteration 3: Delta x = 1.424802e-03
Iteration 4: Delta x = -4.341516e-05
Iteration 5: Delta x = 1.539820e-06
Iteration 6: Delta x = -5.437925e-08
Found root 2.473652e-01 at iteration 7
>>> f(root)
1.8454707206849719e-10

1
2
3
4
5
6
7
8
9

10
11

on the lecture materials site

https://harvard-iacs.github.io/2021-CS107/lectures/lecture9

THE FINITE-DIFFERENCE METHOD
Since we know the exact form for we can analyze the numerical error of our

Finite-Difference approximation as we vary :
J(x)

ε
import numpy as np

f = lambda x: x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x))
J = lambda x: 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0 * x)**2) * np.sin(4.0 * x) * np.cos(4.0 * x)
J_fd = lambda x, eps: (f(x + eps) - f(x)) / eps # Finite-Difference approximation of J

x = np.linspace(0.0, 2.0, 1000) # domain for f
epsilon = np.logspace(-13, 1, 1000) # discretization \epsilon
error = np.zeros(len(epsilon)) # array for L2 errors
for i, eps in enumerate(epsilon):
 e = J_fd(x, eps) - J(x) # numerical error for all values in x
 error[i] = np.linalg.norm(e) # compute L2 error norm

1
2
3
4
5
6
7
8
9
10
11
12

Observations:

The numerical error for this
approximation of has a minimum
around

THE FINITE-DIFFERENCE METHOD

J(x)
10−6

The minimum error was not obtained at
the smallest possible of about
for double precision according to the
IEEE 754 standard (machine precision).

ε 10−16

Too small amplify the �oating point
error while too large does not provide
a good approximation for the derivative.

ε
ε

The method reduces the �oating point
error by one decade if we reduce by
one decade (1st-order accurate).

ε

THE FINITE-DIFFERENCE METHOD
It is not clear how to choose the best in general. Some results

from numerical analysis suggest that it should be around
 as a rule of thumb for a 1st-order method.

In the example before, the minimum numerical error was
 and corresponds to . If we

compute the square root of in python we �nd:

ε

εmachine
− −−−−−

√

1.438669 × 10−6 ε = 2.860596 × 10−9

εmachine
>>> np.finfo(float).eps
2.220446049250313e-16
>>> np.sqrt(_)
1.4901161193847656e-08

1
2
3
4

THE FINITE-DIFFERENCE METHOD (ADDITIONAL)
We have used the Taylor series expansion for for our previous
method. We can do another Taylor series for and subtract the

series from the previous one. This trick will eliminate the leading order term
and we gain an extra order of accuracy. The method then becomes:

f(x + ε)
f(x − ε)

≈
df

dx

∣
∣
∣
x

f(x + ε) − f(x − ε)

2ε

THE FINITE-DIFFERENCE METHOD (ADDITIONAL)
Error analysis for this method reveals its superior accuracy:

THE FINITE-DIFFERENCE METHOD (ADDITIONAL)
If we return to the case where for , we can compute the

partial derivative with respect to coordinate by

where denotes the unit vector in the direction of .

x ∈ Rm m > 1
xj

≈ ,
∂f

∂xj

∣

∣
∣
x

f(x + ε) − f(x)ej

ε

ej xj

THE CONVERGENCE ORDER OF NEWTON'S METHOD?
Approximate the square root of an arbitrary number using a few Newton

iterations (~6-7). Plot the error between the current approximation and the true
solution for each iteration in a plot with logarithmic -axis. How much is the

error reduced between consecutive iterations?

Write a small python module (newton_sqrt.py) with a function newton_iter
that performs one Newton iteration each time it is called. Compute the error as

Commit the code in your class repository under lectures/lecture09 on your
main or master branch. Name the module newton_sqrt.py and add a if

__name__ == "__main__": statement at the end of your module.

You may collaborate with your neighbors (~15 minutes)

α

y

e = .
∣
∣
∣
v − vexact

vexact

∣
∣
∣

TOWARDS AUTOMATIC DIFFERENTIATION
In the introduction, we motivated the need for computational techniques
to compute derivatives.

We focused on the Jacobian , a matrix with �rst derivatives of a
mapping .

J n × m
f(x) : ↦Rm Rn

We have discussed the computation of with symbolic math which is
accurate but may not always be applicable depending on or may be
too costly to evaluate.

J
f(x)

Numerical computation of may be an alternative method at the cost of
accuracy reduction and possible stability issues.

J

Automatic differentiation (AD) overcomes both of these de�ciencies. It is
less costly than symbolic differentiation while evaluating derivatives at
machine precision. There are two modes of AD: forward and reverse, both
involve the Jacobian . The back-propagation algorithm in machine
learning is a special case of the reverse AD mode.

J

RECAP
Towards automatic differentiation

The Jacobian and Newton's method

Numerical computation of derivatives

