
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 8
Thursday, September 30th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
The concept for consistency in the python language:

The python data model
Special class methods (also called "dunder" methods)

A custom sequence: French deck of cards
Software Licenses

OUTLINE
Class methods, static methods and instance methods
python modules
python packages and the python package index ()PyPI

https://pypi.org/

CLASS, STATIC AND INSTANCE METHODS

CLASS, STATIC AND INSTANCE METHODS
At this point you should feel comfortable with user-de�ned classes, special
class methods and the python data model. You should develop an intuition

for the consistency of the python programming language once you have
understood these key concepts.

CLASS, STATIC AND INSTANCE METHODS
Recall the decorator design pattern discussed in Lecture 5:

A decorator wraps hidden code around a function argument and
returns a new decorated function object.
python makes use of decorators to further specialize methods in a
user-de�ned class.
These decorators are available since python 2.2 (new-style
classes, see previous lecture).
There are two such decorators ():

@classmethod : transforms a method into a class method.
@staticmethod : transforms a method into a static method.

PEP318

https://www.python.org/dev/peps/pep-0318/

CLASS, STATIC AND INSTANCE METHODS
Let us revisit the Complex class from Lecture 6:

class Complex:
 def __init__(self, real, imag):
 """Default initialization of a complex number"""
 self.real = real
 self.imag = imag

 @classmethod
 def make_complex(cls, real, imag):
 """Factory method for a complex number"""
 return cls(real, imag)

 def __repr__(self):
 """String representation"""
 return f"{type(self).__name__}({self.real}, {self.imag})"

 def __eq__(self, other):
 """Equality of two complex numbers"""
 return (self.real == other.real) and (self.imag == other.imag)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

CLASS, STATIC AND INSTANCE METHODS
Let us revisit the Complex class from Lecture 6:

make_complex is a special class method; a result from the @classmethod decorator.
Note the difference in the function signature:

Regular methods take self as �rst argument (reference to instance of class).
Class methods take cls as �rst argument (reference to class type).

 def __init__(self, real, imag):

 @classmethod
 def make_complex(cls, real, imag):
 """Factory method for a complex number"""
 return cls(real, imag)

class Complex:1
2

 """Default initialization of a complex number"""3
 self.real = real4
 self.imag = imag5
 6

7
8
9

10

The name cls is again a convention just as self is chosen by convention.
The return value cls(real, imag) is the same as Complex(real, imag) . The
@classmethod decorator strips away the reference to the instance of the class and
returns a reference to the Complex class type instead.

CLASS, STATIC AND INSTANCE METHODS
Example usage of our decorated class method:

The instances are all equal but they are separate objects in memory:

>>> z1 = Complex(1, 2) # calls __init__
>>> z2 = Complex.make_complex(1, 2) # create an instance from the Complex type directly
>>> z3 = z2.make_complex(1, 2) # create an instance via another instance
>>> z1 == z2 and z2 == z3 # the three instances are all equal
True

1
2
3
4
5

>>> id(z1); id(z2); id(z3)
140022962355792
140022964138048
140022964039344

1
2
3
4

CLASS, STATIC AND INSTANCE METHODS
Takeaway:

A @classmethod has access to what is de�ned in the class itself, but no access
to the state of a particular instance of the class. (Note that self is a reference
to state, this state is initialized only when __init__ is called and may
change over time. The cls reference does not have access to such state.)

The main use case for @classmethod is to provide alternate ways of
constructing an object of your class:

The original client only needed the Cartesian form to create complex numbers.
A new client requires complex numbers to be constructed from Polar coordinates
(radius and angle). This new class feature is implemented with a @classmethod .r φ

CLASS, STATIC AND INSTANCE METHODS
Construct complex numbers from Cartesian and Polar coordinates:

import numpy as np

 @classmethod
 def from_polar(cls, r, phi):
 """Construct a complex number from Polar coordinates"""
 return cls(r * np.cos(phi), r * np.sin(phi))

1
 2
class Complex:3
 def __init__(self, real, imag):4
 """Default initialization of a complex number"""5
 self.real = real6
 self.imag = imag7
 8

9
10
11
12

 13
 def __repr__(self):14
 """String representation"""15
 return f"{type(self).__name__}({self.real}, {self.imag})"16
 17
 def __eq__(self, other):18
 """Equality of two complex numbers"""19
 return (self.real == other.real) and (self.imag == other.imag)20

CLASS, STATIC AND INSTANCE METHODS
Construct complex numbers from Cartesian and Polar coordinates:

import numpy as np

 @classmethod
 def from_polar(cls, r, phi):
 """Construct a complex number from Polar coordinates"""
 return cls(r * np.cos(phi), r * np.sin(phi))

1
 2
class Complex:3
 def __init__(self, real, imag):4
 """Default initialization of a complex number"""5
 self.real = real6
 self.imag = imag7
 8

9
10
11
12

>>> z1 = Complex(np.cos(np.pi / 4), np.sin(np.pi / 4))
>>> z2 = Complex.from_polar(1, np.pi / 4)
>>> z1 == z2
True

1
2
3
4

CLASS, STATIC AND INSTANCE METHODS
The @staticmethod decorator is similar but strips away the �rst

argument completely:

class MyClass:
 def __init__(self):
 """Default initialization of MyClass with reference to an instance"""
 print(self)

 @classmethod
 def class_method(cls):
 """Class method with a reference to MyClass"""
 print(cls)

 @staticmethod
 def static_method(): # no first argument here!
 """Static methods are just normal functions in the scope of the class"""
 pass

1
2
3
4
5
6
7
8
9

10
11
12
13
14

CLASS, STATIC AND INSTANCE METHODS
class MyClass:
 def __init__(self):
 """Default initialization of MyClass with reference to an instance"""
 print(self)

 @classmethod
 def class_method(cls):
 """Class method with a reference to MyClass"""
 print(cls)

 @staticmethod
 def static_method(): # no first argument here!
 """Static methods are just normal functions in the scope of the class"""
 pass

1
2
3
4
5
6
7
8
9

10
11
12
13
14

>>> c = MyClass()
<__main__.MyClass object at 0x7f06d0ce1b20>
>>> MyClass.class_method()
<class '__main__.MyClass'>
>>> type(MyClass.static_method)
<class 'function'>

1
2
3
4
5
6

CLASS, STATIC AND INSTANCE METHODS

Static methods are just normal functions inside the class scope
(MyClass in this example).
You can call them directly from the class type like
MyClass.static_method() or from an instance like this
c.static_method() .
Static methods in python are the same as C++ methods declared
with the static keyword.

>>> c = MyClass()
<__main__.MyClass object at 0x7f06d0ce1b20>
>>> MyClass.class_method()
<class '__main__.MyClass'>
>>> type(MyClass.static_method)
<class 'function'>

1
2
3
4
5
6

Can you use static methods to modify state?

CLASS, STATIC AND INSTANCE METHODS
Let's look at it from another perspective (Fluent Python):

class Demo:
 def instance_method(*args):
 return args

 @classmethod
 def class_method(*args):
 return args

 @staticmethod
 def static_method(*args):
 return args

1
2
3
4
5
6
7
8
9

10
11

>>> d = Demo()
>>> dummy_args = ('A', 'B', 'C')
>>> d.instance_method(*dummy_args)
(<__main__.Demo object at 0x7fec186bab80>, 'A', 'B', 'C') # fist arg: reference self
>>> d.class_method(*dummy_args)
(<class '__main__.Demo'>, 'A', 'B', 'C') # first arg: reference to cls
>>> d.static_method(*dummy_args)
('A', 'B', 'C') # static methods: no implicit first argument like other methods do!

1
2
3
4
5
6
7
8

CLASS VARIABLES AND INSTANCE VARIABLES
Static methods are used for global class operations that do not
depend on state (an instance of the class carries state).

Just as there are static and instance methods for a class, there are
also static variables (class variables) and instance variables.

Class variables are global to the class itself (just like static
methods), whereas instance variables are local to the class instance
(they represent state and may hold different values for different
instances of the class).

CLASS VARIABLES AND INSTANCE VARIABLES
Recall the French deck class from the previous lecture:

from collections import namedtuple

Card = namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 """French deck of 52 playing cards"""
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 """Initialize ordered deck of cards"""
 self._cards = [
 Card(rank, suit) for suit in self.suits for rank in self.ranks
]

 # skipping other methods shown in previous lecture

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

CLASS VARIABLES AND INSTANCE VARIABLES
Recall the French deck class from the previous lecture:

Note that class variables (global to the class type itself) do not have a self.
prepended, because self is a reference to an instance of the class.

ranks and suits are global (class) properties. The card deck will always consist of 52 cards.

self._cards is a state that is local to the instance because the deck might be shuf�ed differently

between two instances, hence their state is different.

 # the following are class variables, there is no `self.` in front!
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 # this is an instance variable, remember: `self` is a reference to an instance
 self._cards = [
 Card(rank, suit) for suit in self.suits for rank in self.ranks
]

from collections import namedtuple1
 2
Card = namedtuple('Card', ['rank', 'suit'])3
 4
class FrenchDeck:5
 """French deck of 52 playing cards"""6

7
8
9

 10
 def __init__(self):11
 """Initialize ordered deck of cards"""12

13
14
15
16

CLASS VARIABLES AND INSTANCE VARIABLES
Class variable and instance variable example:

>>> class Demo:
... class_variable = 1 # a class variable (global to the type Demo)
>>> demo = Demo() # create an instance of Demo
>>> demo.class_variable = 2 # this shadows Demo.class_variable
>>> demo.class_variable # the value 2 is now local to the instance!
2
>>> demo.__class__.class_variable # but the global class variable is still untouched
1

1
2
3
4
5
6
7
8

CLASS VARIABLES AND INSTANCE VARIABLES
Class variable and instance variable example:

Same example on

>>> class Demo:
... class_variable = 1 # a class variable (global to the type Demo)
>>> demo = Demo() # create an instance of Demo
>>> demo.class_variable = 2 # this shadows Demo.class_variable (duck-typing)
>>> demo.class_variable # the value 2 is now local to the instance!
2
>>> demo.__class__.class_variable # but the global class variable is still untouched
1
>>> demo.__class__.class_variable = 3 # change the class variable globally
>>> # Note that this is the same statement: Demo.class_variable = 3
>>> new_demo = Demo()
>>> new_demo.class_variable
3

1
2
3
4
5
6
7
8
9

10
11
12
13

pythontutor

Note: the reason the code in line 4 shadows the class variable is because of
 in python . The duck typing rules create a new self.class_variable

attribute for the instance, you can see that in the pythontutor example above.

duck
typing

https://pythontutor.com/visualize.html#code=class%20Demo%3A%0A%20%20%20%20class_variable%20%3D%201%0A%0Ademo%20%3D%20Demo%28%29%0Ademo.class_variable%20%3D%202%0Aprint%28demo.class_variable%29%0Aprint%28demo.__class__.class_variable%29%0Ademo.__class__.class_variable%20%3D%203%0Anew_demo%20%3D%20Demo%28%29%0Aprint%28new_demo.class_variable%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://en.wikipedia.org/wiki/Duck_typing

CLASS VARIABLES AND INSTANCE VARIABLES
Class variable and instance variable example:

We can further investigate this duck typing phenomenon with the and
 built-in functions.

dir() : lists the names of the class attributes and recursively of its base classes:

dir()
vars()

>>> dir(demo)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'class_variable']
>>> dir(new_demo)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'class_variable']

1
2
3
4
5
6
7
8
9
10

vars() : lists the contents of the __dict__ attribute (local to instance):
>>> vars(demo) # affected by the duck-typing phenomenon (see line 4 in previous slide)
{'class_variable': 2}
>>> vars(new_demo) # we did not duck-type anything on this instance
{}

1
2
3
4

https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#vars

CLASS, STATIC AND INSTANCE METHODS
Summary:

@classmethod is primarily used as a factory to create new class instances in
different ways other than how you de�ne it in __init__() . In the @classmethod
you perform the desired transformation �rst and then create a new instance by
calling __init__ with the result of your data transformation.

@classmethod does not need to return an instance of cls all the time, it is just
often used this way.

Optional reading: The factory pattern is further described in Chapter 3 of
 by E. Gamma, R. Helm, R.

Johnson and J. Vlissides, Addison Wesley Professional, 1995.

Design
Patterns: Elements of Reusable Object-Oriented Software

@staticmethod are regular functions that are contained within the class scope.
You can either call them via an instance self.static_method() (assuming self
is an instance of MyClass) or via the class type directly
MyClass.static_method() .

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

python MODULES

python MODULES
We are now at a point where we can take our python knowledge one step further.
You learned about the basic python language features such as de�ning functions,
writing user-de�ned types (classes) all aligned with the consistency enabled by the
python data model.

This knowledge allows you develop large software projects already but when you
are starting to scale up your code, structure is important.

Just like when you are cooking for a large party, you want your in
the kitchen (python modules and packages) and sharp knifes (your dev
environment, tools, editor or IDE).

mise en place

python modules contain subsets of your code project.
python packages are a collection of modules. This collection is often hierarchical in

the same way as your Linux �lesystem is and they can form components of your
software projects.

https://en.wikipedia.org/wiki/Mise_en_place

python MODULES
A python module most of the time is a simple python �le with
code inside, e.g. my_module.py . You could execute a module with
python my_module.py .
The more common use case is to import a module in your code
where you need the functionality provided by that module:

Note: some_function is inside the namespace of my_module .

import my_module
retval = my_module.some_function() # use a function implemented in my_module

1
2

You could have done this to import into the current namespace (but
you know it is bad practice!):

from my_module import *
retval = some_function() # use a function imported from my_module

1
2

python MODULES
Good practice:

Import only the functionality you actually need:

Importing into the current namespace does not prevent from name clashes

from my_module import some_function
retval = some_function() # use a function imported from my_module

1
2

It is usually a better idea to keep the namespace of the module. We are lazy
typists—use the as keyword to make your life easier:

import my_module as mm
retval = mm.some_function() # use a function implemented in my_module

1
2

You may have seen this many times with more widely used packages: (these
are again conventions that the python community sticks with)

import numpy as np # numerical python package (linear algebra, regression, etc.)
import pandas as pd # data analysis package
import matplotlib.pyplot as plt # powerful plotting package

1
2
3

Other useful python packages: (scienti�c library), (symbolic
math), (performance)

scipy sympy
numba

https://www.scipy.org/
https://www.sympy.org/en/index.html
https://numba.pydata.org/

python MODULES
Where does python look for modules:

python searches some system dependent locations for modules:

'' : current directory
/home/fabs/.local/lib/python3.9/site-packages : version dependent user directory for

packages on Linux. Everything you install with python -m pip install --user goes there. To
�nd out the user base of your python installation run python -m site --user-base .
The others are system directories. Anything you install via your package manager or by sudo
python -m pip install goes there.

>>> import sys
>>> print(sys.path)
['', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload',
'/home/fabs/.local/lib/python3.9/site-packages', '/usr/lib/python3.9/site-packages']

1
2
3
4

Use the PYTHONPATH environment variable to extend the search path to your own
locations. This is also very useful for development: point the PYTHONPATH to the
module/package you are developing in order to skip installing it into the default search
path all the time! PYTHONPATH behaves the same as PATH , you know how that works.
If a module can not be found, you will get a ModuleNotFoundError .

python MODULES
When and in what order should you import modules:

If you need to import other modules in your module, you should
import after your module's documentation.

The order of imported modules should be as follows:
1.
2. Third-party modules: numpy , pandas , pytorch , etc.
3. Your own modules

Standard library modules

https://docs.python.org/3/library/index.html

python MODULES
Example: simple module in current directory – module_1.py

"""
Docstring for module_1
"""

import numpy as np

the __all__ attribute will be honored when somebody executes
from module_1 import *
it will import only what you specify in the __all__ list
__all__ = ['foo']

pi = np.pi # \pi in module scope

def foo():
 print(f"module_1.foo(): pi = {pi:.6f}")

def bar():
 print(f"module_1.bar(): pi = {pi:.6f}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

python MODULES
Example: simple module in current directory – module_1.py

import numpy as np

__all__ = ['foo']

pi = np.pi # \pi in module scope

def foo():
 print(f"module_1.foo(): pi = {pi:f}")

def bar():
 print(f"module_1.bar(): pi = {pi:f}")

1
2
3
4
5
6
7
8
9

10
11

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__']
>>> from module_1 import *
>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'foo']
>>> foo()
module_1.foo(): pi = 3.141593

1
2
3
4
5
6
7
8
9

python PACKAGES

python PACKAGES
Modules are a great way to organize your code into logical units.
This one-level organization is usually not deep enough for larger
projects.

python packages allow you to organize your project
hierarchically, just like you would organize your code in your
project directory on your �le system (this is not a coincidence).

python PACKAGES
Example package hierarchy:

cs107_package
├── __init__.py
├── subpkg_1 # sub-package
│ ├── __init__.py
│ ├── module_1.py
│ └── module_2.py
└── subpkg_2 # sub-package
 ├── __init__.py
 ├── module_3.py
 ├── module_4.py
 └── module_5.py

1
2
3
4
5
6
7
8
9

10
11

python PACKAGES
Example package hierarchy:

The root of the python package
You could also have modules on this level (there are none in this
example).

cs107_package
├── __init__.py

1
2

├── subpkg_1 # sub-package3
│ ├── __init__.py4
│ ├── module_1.py5
│ └── module_2.py6
└── subpkg_2 # sub-package7
 ├── __init__.py8
 ├── module_3.py9
 ├── module_4.py10
 └── module_5.py11

python PACKAGES
Example package hierarchy:

A sub-package within your package. It again contains a number of
modules.
You could have another sub-packages inside here.

├── subpkg_1 # sub-package
│ ├── __init__.py
│ ├── module_1.py
│ └── module_2.py

cs107_package1
├── __init__.py2

3
4
5
6

└── subpkg_2 # sub-package7
 ├── __init__.py8
 ├── module_3.py9
 ├── module_4.py10
 └── module_5.py11

python PACKAGES
The __init__.py file:

The __init__.py is used for package-level initialization either
when your package is imported or a module within the package is
imported.
You write normal python code in that �le which is then executed
when the package is imported (once).
You can use the __all__ list inside __init__.py to de�ne what
should be imported when someone does from cs107_package
import * .
Often the �le is empty. Since python 3.3 you do not need to have
the �le if it is empty.

python PACKAGES
How to import nested packages:

You import a package or a nested sub-package just like a module:

This can be tedious! Use the __init__.py �le to make the life
your customer enjoyable.

>>> import cs107_package.subpkg_1.module_1
>>> cs107_package.subpkg_1.module_1.foo() # call a function inside that module, phew!

1
2

Let's assume we have this code in our

modules:
cs107_package/subpkg_1/module_1.py :

cs107_package/subpkg_1/module_2.py :

cs107_package/subpkg_2/module_3.py :

python PACKAGES
How to import nested packages:

of course you can have classes in your modules
class Foo:
 pass

def foo():
 print("cs107_package.subpkg_1.module_1.foo()")

1
2
3
4
5
6

note the '..': relative import in packages
from ..subpkg_2 import module_3 as mod3

def bar():
 mod3.baz()
 print("cs107_package.subpkg_1.module_2.bar()")

1
2
3
4
5
6

def baz():
 print("cs107_package.subpkg_2.module_3.baz()")

1
2

You could then write your __init__.py �les

like this:
cs107_package/__init__.py :

cs107_package/subpkg_1/__init__.py :

cs107_package/subpkg_2/__init__.py :

note the '.': relative import in packages
from .subpkg_1 import (foo, bar)
from .subpkg_2 import baz

__all__ = ['foo', 'bar', 'baz']

1
2
3
4
5

from .module_1 import foo
from .module_2 import bar

__all__ = ['foo', 'bar']

1
2
3
4

from .module_3 import baz

__all__ = ['baz']

1
2
3

python PACKAGES
How to import nested packages:

With this structure de�ned in out __init__.py �les, we can use our package

in a more natural way we are used to from other packages we work with:
>>> import cs107_package as pkg
>>> pkg.bar()
cs107_package.subpkg_2.module_3.baz()
cs107_package.subpkg_1.module_2.bar()

1
2
3
4

Compare to:

We can use the __init__.py �les to de�ne what we want to export
from our code and what should remain hidden in the package. The

top-level __init__.py of contains 429 lines of code.

>>> import numpy as np
>>> dir(np)
a lot of output...

1
2
3

numpy 1.21.2

https://github.com/numpy/numpy/blob/v1.21.2/numpy/__init__.py

python PACKAGES
Let us enter the python interpreter, and investigate the __name__ attribute:

The top-level environment in python is called '__main__' .
When we import a module, its name is set to the module �lename without suf�x.

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__']
>>> __name__
'__main__'
>>> import module_1 as mod1
>>> mod1.__name__
'module_1'

1
2
3
4
5
6
7

When we pass the module through the python interpreter directly, the
module __name__ attribute will be set to '__main__' by the interpreter. The
difference to the example above is that we do not import the module into another
namespace. It allows us to add functionality to modules when run by the
interpreter. This is why you may have seen code like this at the end of a
module:

if __name__ == "__main__":
 main() # function to be run when module is passed to the interpreter

1
2

python PACKAGES
We can do the same with packages
Because a package is a hierarchy of �les and directories, we must implement this
functionality in the __main__.py �le.
This �le is then passed to the interpreter whenever we pass the -m option.
Assume this is our __main__.py �le in our test package:

We can then do this:

This is exactly what happens when you use the pip package, for example.

import datetime as dt
print(f"Hello from cs107_package! Today is: {dt.datetime.now()}")

1
2

$ python -m cs107_package
Hello from cs107_package! Today is: 2021-09-21 19:45:15.069913

1
2

$ python -m pip # runs the __main__.py file in the pip package1

More reading on python modules and packages can be found in the
.python tutorial

https://docs.python.org/3/tutorial/modules.html

INSTALL AND DISTRIBUTE python PACKAGES

INSTALL AND DISTRIBUTE python PACKAGES
You now know what python modules and packages are for.
You are still missing the tools to properly install and distribute
packages.
Most python packages are available through the

. It is simply a remote server to fetch the software from.
Python Package

Index (PyPI)
By default, python -m pip install <package> obtains the package
from PyPI.

Because PyPI is a production platform you should use the
 server when playing around with pip . Use it like this:

Simple package without dependencies:

If you need to resolve dependencies:

PyPI
testing

$ python -m pip install --index-url https://test.pypi.org/simple/ your-package1

$ python -m pip install --index-url https://test.pypi.org/simple/ \
 --extra-index-url https://pypi.org/simple/ your-package

1
2

https://pypi.org/
https://test.pypi.org/

INSTALL AND DISTRIBUTE python PACKAGES
There are many ways in python to create packages and distribute them. The main

documentation you should consult is:
Installing packages:
Packaging projects:

The main tool to install packages in python is pip . The classical way is
through but pip can handle these cases as well and

should be preferred. There are two parts to pip :

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/packaging-projects/

distutils/setuptools

1. pip itself is a frontend for installing python packages.
2. It uses a backend to accomplish this task.

The backend is modular, it can be setuptools , for example, or anything else
that conforms to .PEP517

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/packaging-projects/
https://docs.python.org/3/library/distutils.html
https://www.python.org/dev/peps/pep-0517/

INSTALL AND DISTRIBUTE python PACKAGES
The basics steps to create a release that is publishable on PyPI:

1. Add a pyproject.toml �le to your project ()
2. Install build : python -m pip install build ()
3. Build your next package release: python -m build .
4. Upload to PyPI: twine upload dist/* (use)

Steps 1 and 2 need to be done only once. To create a new release,
this is suf�cient (steps 3 and 4):

(can be installed via pip)

PEP518
a PEP517 package builder

https://test.pypi.org/

$ rm dist/* && python -m build && twine upload dist/*1

twine

The dist/ directory contains the built distributions. There are two distinctions:
1. Source distributions: contains source code only
2. Binary distributions: called wheels

https://www.python.org/dev/peps/pep-0518/
https://pypa-build.readthedocs.io/en/latest/
https://test.pypi.org/
https://pypi.org/project/twine/
https://pythonwheels.com/

INSTALL AND DISTRIBUTE python PACKAGES
Assume we have this project structure: �le:

The cs107_package is our python package from the previous discussion.

python_project
├── LICENSE
├── pyproject.toml
├── README.md
├── setup.cfg
└── src
 └── cs107_package
 ├── __init__.py
 ├── __main__.py
 ├── subpkg_1
 │ ├── __init__.py
 │ ├── module_1.py
 │ └── module_2.py
 └── subpkg_2
 ├── __init__.py
 ├── module_3.py
 ├── module_4.py
 └── module_5.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

INSTALL AND DISTRIBUTE python PACKAGES
Create a pyproject.toml �le:

This �le is used to specify the minimum build system requirements
It is de�ned in
For our example the pyproject.toml �le looks like this:

PEP518

[build-system]
requires = [
 "setuptools>=42",
 "wheel"
]
build-backend = "setuptools.build_meta" # use setuptools for building

1
2
3
4
5
6

https://www.python.org/dev/peps/pep-0518/

INSTALL AND DISTRIBUTE python PACKAGES
For setuptools we need to create a setup.cfg �le:

See

[metadata]
name = cs107_package
version = 0.0.2
author = Fabian Wermelinger
author_email = fabianw@seas.harvard.edu
description = A small example package
long_description = file: README.md
long_description_content_type = text/markdown
url = https://harvard-iacs.github.io/2021-CS107/
classifiers =
 Intended Audience :: Developers
 Programming Language :: Python :: 3
 Topic :: Software Development :: Libraries :: Python Modules

[options]
package_dir =
 = src
packages = find:
python_requires = >=3.6

[options.packages.find]
where = src

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

https://packaging.python.org/tutorials/packaging-projects/#con�guring-metadata

https://packaging.python.org/tutorials/packaging-projects/#configuring-metadata

INSTALL AND DISTRIBUTE python PACKAGES
Building and distributing the project is now easy:

The package is now available at
Note that we published on the testing server
Once you have published a release (version) you can not overwrite it if you
found a mistake. You must create a new release for this.
You can install the package with:

$ python -m build # omitting output
$ ls -1 dist/
cs107_package-0.0.2-py3-none-any.whl
cs107_package-0.0.2.tar.gz
$ twine upload --repository testpypi dist/*

1
2
3
4
5

https://test.pypi.org/project/cs107-package/

$ python -m pip install -i https://test.pypi.org/simple/ cs107-package1

https://test.pypi.org/project/cs107-package/

RECAP
Class methods, static methods and instance methods
python modules
python packages and the python package index ()PyPI

https://pypi.org/

