
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 7
Tuesday, September 28th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Object Oriented Programming: data encapsulation, inheritance,
polymorphism
Classes: base classes and derived classes
Inheritance and Polymorphism: class methods, interfaces, method
resolution order

OUTLINE
The concept for consistency in the python language:

The python data model
Special class methods (also called "dunder" methods)

A custom sequence: French deck of cards
Software Licenses

FEW COMMENTS ON DUCK TYPING
When using , you are specifying an implicit interface.
Duck typing can speed up the short-term development process as
sometimes you do not have a clear picture of a current design.
Explicit software design (interface is de�ned before
implementation work starts) is more stable especially in large
projects. It is more dif�cult because it requires thinking further
into the future compared to an implicit duck typing approach

When you have an implicit interface through duck typing, make
sure to write extensive tests.

duck typing

https://en.wikipedia.org/wiki/Duck_typing

THE python DATA MODEL
The python data model formalizes the interface of the building

blocks of the language itself.

What are the "building blocks of the language itself"? Examples include:

Obtain the length (number of elements) in a sequence.
Index an element in a sequence, e.g., s[0] (" s " is just a name for a sequence,
e.g. a list , tuple , etc.)
Add two objects together, e.g. a + b (any arithmetic operation in fact). The
python interpreter must call some function in place of the " + " operator, e.g.
add(a, b) . The python data model de�nes how this should be done.
Serialization and deserialization of objects; is used to create binary
representations of the current state of your data (e.g. a checkpoint or restart
�le for a physics simulation). In python this is called

.
"pickling" and

"unpickling"

https://docs.python.org/3/library/pickle.html

THE python DATA MODEL
Many people who work with python value its consistency, which is

enabled through the python data model.

What does "consistency" mean in a programming language?

After a while of working with the language, you develop an intuition that allows
you to correctly guess the behavior of a feature that is new to you.
This consistency is partly achieved by the use of functions, some of them
you have already met.
Example: to get the length of a sequence in python , you would write len(s)
where s can be any type of a sequence: list , tuple or your user-de�ned class
for example. The interface is consistently de�ned through the built-in len() .

built-in

In contrast, this interface is not consistent in C++ . You get the length of a
std::vector through the .size() method, another library might use
.length() or .len() for its container type.

https://docs.python.org/3/library/functions.html

THE python DATA MODEL
You may have heard the term "pythonic". When you solve a problem

in your python code such that you exploit and maintain the
consistency principles implied by the python data model, then your

approach is pythonic.

Pythonic Not pythonic

Example: iteration over a sequence in python

for item in iterable:
 # pythonic for-loop
 print(item)

1
2
3

for i,item in enumerate(iterable):
 # if you need the iteration index i, y
 # should use the enumerate() built-in
 print(item, i)

1
2
3
4

for i in range(len(iterable)):
 # C-style code, also inefficient
 print(iterable[i])

1
2
3

SPECIAL METHODS (A.K.A. DUNDER METHODS)
There are a few (about 80, more than half of them are arithmetic,

bitwise and comparison operators) special methods which are the
backbone of the python data model. All of them take the form

__methodname__ , where the leading and trailing double underscores
have special meaning in python . Developers would call such a

method "under under methodname under under" which is tedious
and therefore the term "dunder methodname" has been coined.

See the introduction to Chapter 1 in Fluent Python: Clear, Concise, and Effective
Programming by Luciano Ramalho (O'Reilly Media, 2015)

DUNDER: STRING REPRESENTATION OF OBJECTS
We start with a special method that is required by any python object. These

two methods allow for the string representation of objects .

Why do we need them?
__repr__(self) : is used to obtain a string by calling which can be used
with the built-in to reproduce the instance of the object. This dunder
method is required by all objects and often useful for debugging.
__str__(self) : is used to obtain a pretty printable string for the object. You
have called this dunder method many times already, i.e., whenever you call

 the python data model resolves a call to __str__() . This dunder
method is not strictly required. The data model will fallback to __repr__() if it
is not implemented.

repr()
eval()

print()

https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#print

python 2.x (two are different) python 3.x (all the same)

DUNDER: STRING REPRESENTATION OF OBJECTS
Why did my code work even if I did not implement __repr__(self) ? Because

every object in python implicitly inherits from a base class called " object ".

class MyClass:
 # in python 2.x
 # classic-style class, has no bases. Y
 # should have stopped using code like
 # a long time ago.

class MyClass(object):
 # in python 2.2 onwards
 # new-style class, `object` is base

1
2
3
4
5
6
7
8
9

in python 3.x
class MyClass:
 # new-style class, `object` is base

class MyClass():
 # new-style class, `object` is base

class MyClass(object):
 # new-style class, `object` is base

1
2
3
4
5
6
7
8
9

If you write python 3 code that must be compatible with python 2 (for the time
being), you must explicitly inherit from object , i.e., " class MyClass(object): "

DUNDER: STRING REPRESENTATION OF OBJECTS
You now see how consistency is enabled in python : special (dunder)
methods are used to implement class behavior at the low-level.
In user-level code (everything at the high level that uses objects) you are
supposed to use the appropriate built-in functions. E.g., len() , print() , + , - ,
* , / , and so on.

It is not pythonic to call dunder methods directly in user-level code.
Compare:

length = s.__len__() wrong!

length = len(s) correct!

Because of optimization, len() is also faster if used with built-in types!

DUNDER EXAMPLES: STRING REPRESENTATION

Verify that we inherit from object :

class MyClass:
 """
 Test class that implements __repr__() and __str__(). Note that we
 implicitly inherit from the object base class.
 """
 def __init__(self, value):
 """Instance construction"""
 self.state = value

1
2
3
4
5
6
7
8

>>> print(MyClass.__bases__)
(<class 'object'>,)

1
2

What happens if we try to print an instance?

Seems to work and looks like this is the default we inherit from object .

>>> c = MyClass(0)
>>> print(c)
<__main__.MyClass object at 0x7f8467a4bd30> # string representation inherited from `objec

1
2
3

DUNDER EXAMPLES: STRING REPRESENTATION
class MyClass:
 """
 Test class that implements __repr__() and __str__(). Note that we
 implicitly inherit from the object base class.
 """
 def __init__(self, value):
 """Instance construction"""
 self.state = value

 def __repr__(self):
 """String representation, reproducible with eval()"""
 class_name = type(self).__name__ #
 instance_state = self.state
 return f"{class_name}({instance_state})"

1
2
3
4
5
6
7
8
9

10
11
12 what does type() do?
13
14

What happens now if we print an instance?
>>> c = MyClass(0)
>>> print(c)
MyClass(0)
>>> repr(c)
'MyClass(0)'

1
2
3
4
5

https://docs.python.org/3/library/functions.html#type

DUNDER EXAMPLES: STRING REPRESENTATION
class MyClass:
 """
 Test class that implements __repr__() and __str__(). Note that we
 implicitly inherit from the object base class.
 """
 def __init__(self, value):
 """Instance construction"""
 self.state = value

 def __repr__(self):
 """String representation, reproducible with eval()"""
 class_name = type(self).__name__
 instance_state = self.state
 return f"{class_name}({instance_state})"

 def __str__(self):
 """String representation for user-level pretty print"""
 class_name = type(self).__name__
 instance_state = self.state
 return f"An instance of {class_name} with self.state={instance_state}"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Now we get this:

DUNDER EXAMPLES: STRING REPRESENTATION
class MyClass:
 """
 Test class that implements __repr__() and __str__(). Note that we
 implicitly inherit from the object base class.
 """
 def __init__(self, value):
 """Instance construction"""
 self.state = value

 def __repr__(self):
 """String representation, reproducible with eval()"""
 class_name = type(self).__name__
 instance_state = self.state
 return f"{class_name}({instance_state})"

 def __str__(self):
 """String representation for user-level pretty print"""
 class_name = type(self).__name__
 instance_state = self.state
 return f"An instance of {class_name} with self.state={instance_state}"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

:

Note:
__repr__() is for low-level purpose:

debugging and development.
__str__() is for user-level purpose:

create a string representation that
is informative for the user.

The return value of repr() should ideally
work with the eval() built-in

>>> c_repr = eval(repr(c)) # reproduce c
>>> repr(c_repr)
'MyClass(0)'

1
2
3

>>> c = MyClass(0)
>>> print(c) # user-level string repr.
An instance of MyClass with self.state=0
>>> repr(c) # low-level string repr.
'MyClass(0)'

>>> c = MyClass(0)1
>>> print(c)2
MyClass(0)3
>>> repr(c)4
'MyClass(0)'5

6
7
8
9

10

Observations
The print() built-in looks for __str__() and
falls back to __repr__() if the former does not
exist. (Proof for what I said at the beginning.)
The repr() built-in only looks for __repr__()
which has to exist. (Recall: we always inherit
from object implicitly in python 3.x)

Why is the return value of repr(c) quoted?

https://docs.python.org/3/reference/datamodel.html#object.__repr__

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
There are various dunder methods for arithmetic operations
If you want to add objects together you have to implement the
__add__ method. This method will then be called instead of the +
operator.

A class for a thing that can __add__ things:
class Thing:
 """Simple class for a 'thing'"""
 def __init__(self, thing):
 self.state = thing

 def __str__(self):
 return f"{self.state}"

 def __add__(self, other):
 """This method implements addition '+'"""
 print(self.state)
 return Thing(f"{str(self)} + {str(other)}") # What is happening here?

1
2
3
4
5
6
7
8
9

10
11
12

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
A class for a thing that can __add__ things:

We can now do the following:

class Thing:
 """Simple class for a 'thing'"""
 def __init__(self, thing):
 self.state = thing

 def __str__(self):
 return f"{self.state}"

 def __add__(self, other):
 """This method implements addition '+'"""
 print(self.state)
 return Thing(f"{str(self)} + {str(other)}") # What is happening here?

1
2
3
4
5
6
7
8
9

10
11
12

>>> A = Thing('A')
>>> B = Thing('B')
>>> C = Thing('C')
>>> D = A + B + C
A
A + B
>>> print(D)
A + B + C

1
2
3
4
5
6
7
8

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
We can now do the following:

In which order does python evaluate the '+' operators?
Left to right or right to left?

>>> A = Thing('A')
>>> B = Thing('B')
>>> C = Thing('C')
>>> D = A + B + C
A
A + B
>>> print(D)
A + B + C

1
2
3
4
5
6
7
8

The statement D = A + B + C is equivalent to
>>> D = A.__add__(B).__add__(C) # NEVER WRITE CODE LIKE THIS ON THE USER-LEVEL!1

Make sure you understand what is happening here. Study line 12 in the class de�nition

of Thing .

>>> D = A + (B + C) # same as A.__add__(B.__add__(C))
B
A
>>> print(D)
A + B + C

1
2
3
4
5

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
python also supports augmented assignment operators, these
dunder methods are prepended with an " i ".
An augmented assignment is: A += B
This is identical to: A = A + B

How would you implement this operator?
class Thing:
 def __iadd__(self, other):
 """This method implements augmented addition assignment '+='"""
 pass # How do we implement this operator?

1
2
3
4

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER

 self.state = f"{str(self)} + {str(other)}"
 return self

class Thing:1
 """Simple class for a 'thing'"""2
 def __init__(self, thing):3
 self.state = thing4
 5
 def __str__(self):6
 return f"{self.state}"7
 8
 def __add__(self, other):9
 """This method implements addition '+'"""10
 print(self.state)11
 return Thing(f"{str(self)} + {str(other)}")12
 13
 def __iadd__(self, other):14
 """This method implements augmented addition assignment '+='"""15
 print(self.state)16

17
18

class Thing:
 """Simple class for a 'thing'"""
 def __init__(self, thing):
 self.state = thing

 def __str__(self):
 return f"{self.state}"

 def __add__(self, other):
 """This method implements addition '+'"""
 print(self.state)
 return Thing(f"{str(self)} + {str(other)}")

 def __iadd__(self, other):
 """This method implements augmented addition assignment '+='"""
 print(self.state)
 self.state = f"{str(self)} + {str(other)}"
 return self

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Make sure you understand what we did in __iadd__ . What is the implication of
return self ?

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER

Now we can do the following:

class Thing:
 def __add__(self, other):
 """This method implements addition '+'"""
 print(self.state)
 return Thing(f"{str(self)} + {str(other)}")

 def __iadd__(self, other):
 """This method implements augmented addition assignment '+='"""
 print(self.state)
 self.state = f"{str(self)} + {str(other)}"
 return self

1
2
3
4
5
6
7
8
9

10
11

>>> A = Thing('A')
>>> B = Thing('B')
>>> C = Thing('C')
>>> A += B
A
>>> A += C
A + B
>>> print(A)
A + B + C

1
2
3
4
5
6
7
8
9

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER

Compare the difference:
Addition resolves to (A = A + B):

Augmented addition resolves to (A += B):

class Thing:
 def __add__(self, other):
 """This method implements addition '+'"""
 print(self.state)
 return Thing(f"{str(self)} + {str(other)}")

 def __iadd__(self, other):
 """This method implements augmented addition assignment '+='"""
 print(self.state)
 self.state = f"{str(self)} + {str(other)}"
 return self

1
2
3
4
5
6
7
8
9

10
11

>>> A = A.__add__(B)1

>>> A = A.__iadd__(B) # re-assigns self if __iadd__ returns self1

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
We are now able to understand what happened in Lecture 5
when we studied the "pass by assignment" mechanics for
variables passed to functions.

At the beginning of that lecture we were experimenting with a
list (instead of a Thing).

Let's revisit this example with our Thing class.

We were discussing this example on
pythontutor.

https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20x.append%287%29%20%20%23%20member%20function%20of%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20g%28x%29%3A%0A%20%20%20%20x%20%2B%3D%20%5B7%5D%20%20%23%20translates%20to%20an%20operation%20on%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20h%28x%29%3A%0A%20%20%20%20x%20%3D%20x%20%2B%20%5B7%5D%20%20%23%20assign%20something%20new%20to%20x%20%28it%20is%20now%20local%20to%20the%20function%29%0A%20%20%20%20return%20x%0A%20%0Aa%20%3D%20%5B1,%203,%205%5D%0Ab%20%3D%20f%28a%29%0Ac%20%3D%20g%28a%29%0Ad%20%3D%20h%28a%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
def mutate(x):
 y = Thing('B')
 x += y # calls __iadd__
 return x

def rebind(x):
 y = Thing('C')
 x = x + y # calls __add__ which returns new object that is re-bound to x
 return x

A = Thing('A')
B = mutate(A) # after this function call A and B are the same object
C = rebind(A) # after this function call A and C are two different objects

1
2
3
4
5
6
7
8
9

10
11
12
13

DUNDER EXAMPLES: ADDING "THINGS" TOGETHER
Example on

Objects

Print output (drag lower right corner to resize)

Frames

Python 3.6

 line that just executed
 next line to execute

1 class Thing:
2 """Simple class for a 'thing'"""
3 def __init__(self, thing):
4 self.state = thing
5
6 def __str__(self):
7 return f"{self.state}"
8
9 def __add__(self, other):
10 """This method implements additio
11 print(self.state)
12 return Thing(f"{str(self)} + {str
13
14 def __iadd__(self, other):
15 """This method implements augment
16 print(self.state)
17 self.state = f"{str(self)} + {str
18 return self
19
20

pythontutor

https://pythontutor.com/visualize.html#code=class%20Thing%3A%0A%20%20%20%20%22%22%22Simple%20class%20for%20a%20'thing'%22%22%22%0A%20%20%20%20def%20__init__%28self,%20thing%29%3A%0A%20%20%20%20%20%20%20%20self.state%20%3D%20thing%0A%0A%20%20%20%20def%20__str__%28self%29%3A%0A%20%20%20%20%20%20%20%20return%20f%22%7Bself.state%7D%22%0A%0A%20%20%20%20def%20__add__%28self,%20other%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22This%20method%20implements%20addition%20'%2B'%22%22%22%0A%20%20%20%20%20%20%20%20print%28self.state%29%0A%20%20%20%20%20%20%20%20return%20Thing%28f%22%7Bstr%28self%29%7D%20%2B%20%7Bstr%28other%29%7D%22%29%0A%0A%20%20%20%20def%20__iadd__%28self,%20other%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22This%20method%20implements%20augmented%20addition%20assignment%20'%2B%3D'%22%22%22%0A%20%20%20%20%20%20%20%20print%28self.state%29%0A%20%20%20%20%20%20%20%20self.state%20%3D%20f%22%7Bstr%28self%29%7D%20%2B%20%7Bstr%28other%29%7D%22%0A%20%20%20%20%20%20%20%20return%20self%0A%0A%0Adef%20mutate%28x%29%3A%0A%20%20%20%20y%20%3D%20Thing%28'B'%29%0A%20%20%20%20x%20%2B%3D%20y%20%20%23%20calls%20__iadd__%3A%20study%20line%2018%0A%20%20%20%20return%20x%0A%0A%0Adef%20rebind%28x%29%3A%0A%20%20%20%20y%20%3D%20Thing%28'C'%29%0A%20%20%20%20x%20%3D%20x%20%2B%20y%20%20%23%20calls%20__add__%3A%20study%20line%2012%0A%20%20%20%20return%20x%0A%0A%0AA%20%3D%20Thing%28'A'%29%0AB%20%3D%20mutate%28A%29%20%20%23%20after%20this%20function%20call%20A%20and%20B%20are%20the%20same%20object%0AC%20%3D%20rebind%28A%29%20%20%23%20after%20this%20function%20call%20A%20and%20C%20are%20two%20different%20objects%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

THE python DATA MODEL
The power of python stems from its data model, inheritance,
composition and delegation.

User-de�ned classes that follow these principles can reuse other
python that implement a certain functionality.

For example: if a user-de�ned class behaves like a sequence, all
utility functions that apply to a list or tuple would also apply to
the user-de�ned sequence.

SEQUENCE: list OR tuple
Both list and tuple are sequences.
A sequence has a number of elements and therefore a length.
You can index a sequence to get a speci�c element.
The difference between list and tuple is that the latter is
immutable (you can not change the values in a tuple).
>>> s = ('e0', 'e1', 'e2', 'e3')
>>> len(s) # length of sequence `s`
4
>>> s[0] # retrieve the first element in `s`
'e0'
>>> s[0] = 'f0' # if s was a list, this would work
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

1
2
3
4
5
6
7
8
9

SEQUENCE: namedtuple
The tuple is a useful data type. If your code allows, prefer a tuple over
a list because it is faster (but immutable).

You can make a tuple behave like a struct in C using namedtuple 's
You can use to print a list of valid attributes of python objects.dir()
from collections import namedtuple

Point = namedtuple('Point', 'x y z')
p = Point(0, 1, 2)

1
2
3
4

>>> p[0] # like a normal python tuple
0
>>> p.y # by field name like a C-struct
1
>>> len(p)
3
>>> dir(p)
['__add__', '__class__', '__class_getitem__', '__contains__', '__delattr__', '__dir__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__',
'__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__',
'__sizeof__', '__slots__', '__str__', '__subclasshook__', '_asdict', '_field_defaults',
'_make', '_replace', 'count', 'index', 'x', 'y', 'z']

1
2
3
4
5
6
7
8
9

10
11
12
13

https://docs.python.org/3/library/functions.html#dir

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
In this example we are going to put together what we have learned
so far and see the python data model in action for a real
application.
We are implementing a French deck of playing cards which
behaves like a sequence.
The minimum requirements for a sequence are the __len__() and
__getitem__() dunder methods.

The following is Example 1-1 in Fluent Python: Clear, Concise, and Effective Programming by
Luciano Ramalho (O'Reilly Media, 2015)

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We model a playing card using a namedtuple :

Which allows us to create cards like that:

from collections import namedtuple

Card = namedtuple('Card', ['rank', 'suit'])

1
2
3

>>> beer_card = Card('7', 'diamonds')
>>> beer_card
Card(rank='7', suit='diamonds')

1
2
3

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
A basic deck of cards might look like this:

from collections import namedtuple

Card = namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 """French deck of 52 playing cards"""
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 """Initialize ordered deck of cards with list-comprehension"""
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __str__(self):
 """Pretty print card deck"""
 map_utf8 = {'clubs': '♣', 'diamonds': '♦', 'hearts': '♥', 'spades': '♠'}
 cpl = 13 # number of cards per printed line
 pretty = []
 for line in range((len(self._cards) + cpl - 1) // cpl):
 for card in self._cards[line * cpl : (line + 1) * cpl]:
 pretty.append(f" {card.rank:>2}{map_utf8[card.suit]}")
 pretty.append('\n')
 return ''.join(pretty).rstrip()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We can create an ordered set of cards and print the deck using print() :

But if we want to get the length of our deck or index a speci�c card we
get an error:

>>> deck = FrenchDeck()
>>> print(deck)
 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠
 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥

1
2
3
4
5
6

>>> len(deck)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: object of type 'FrenchDeck' has no len()
>>> deck[12]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'FrenchDeck' object is not subscriptable

1
2
3
4
5
6
7
8

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We now know how to �x these errors:

 def __len__(self):
 """Return length of deck"""
 return len(self._cards)

 def __getitem__(self, index):
 """Return card at index"""
 return self._cards[index]

class FrenchDeck:1
 """French deck of 52 playing cards"""2
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')3
 suits = 'spades diamonds clubs hearts'.split()4
 5
 def __init__(self):6
 """Initialize ordered deck of cards with list-comprehension"""7
 self._cards = [Card(rank, suit) for suit in self.suits8
 for rank in self.ranks]9
 10

11
12
13

 14
15
16
17

That was easy:
>>> len(deck)
52
>>> deck[12]
Card(rank='A', suit='spades')

1
2
3
4

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
Adding the __len__() and __getitem__() dunder methods implements
the basic functionality for a sequence.

What does that mean: the __len__() and __getitem__() methods make
our sequence iterable. We can therefore use the in operator to test if a
card is in the deck:

for -loops will also work out of the box:

Because __getitem__() delegates the [] operator to the list used for
self._cards , we can even use slicing:

>>> Card(rank='A', suit='hearts') in deck
True
>>> Card(rank='A', suit='joker') in deck
False

1
2
3
4

>>> for card in deck: # in-operator used with for-loops
... print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
stripped output...

1
2
3
4
5

>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'), Card(rank='4', suit='spades')]

1
2

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We added very few lines of code to our FrenchDeck but get an
impressive amount of functionality for free (python data model).
It does not stop here. Because our custom sequence is iterable, we can
also use functions from the . If you want to
draw random cards, don't look further:

python standard library

>>> from random import choice
>>> choice(deck)
Card(rank='Q', suit='hearts')
>>> choice(deck)
Card(rank='2', suit='diamonds')

1
2
3
4
5

How about shuf�ing the deck of cards:

How can we �x this?

>>> from random import shuffle
>>> shuffle(deck)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.9/random.py", line 362, in shuffle
 x[i], x[j] = x[j], x[i]
TypeError: 'FrenchDeck' object does not support item assignment

1
2
3
4
5
6
7

https://docs.python.org/3/library/index.html

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We implement __setitem__(self, index, card) :

 def __setitem__(self, index, card):
 """Set a card at index"""
 self._cards[index] = card # this method does not return a value

class FrenchDeck:1
 """French deck of 52 playing cards"""2
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')3
 suits = 'spades diamonds clubs hearts'.split()4
 5
 def __init__(self):6
 """Initialize ordered deck of cards with list-comprehension"""7
 self._cards = [Card(rank, suit) for suit in self.suits8
 for rank in self.ranks]9
 10
 def __len__(self):11
 """Return length of deck"""12
 return len(self._cards)13
 14
 def __getitem__(self, index):15
 """Return card at index"""16
 return self._cards[index]17
 18

19
20
21

A CUSTOM SEQUENCE: FRENCH DECK OF CARDS
We implement __setitem__(self, index, card) :

...and shuf�e again:

class FrenchDeck:
 """French deck of 52 playing cards"""
 ranks = [str(rank) for rank in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __setitem__(self, index, card):
 """Set a card at index"""
 self._cards[index] = card # this method does not return a value

1
2
3
4
5
6
7
8

>>> shuffle(deck); print(deck)
 6♥ K♦ 3♥ Q♣ Q♦ 9♥ J♦ Q♥ 10♠ J♠ 9♠ A♥ 10♦
 8♣ 8♦ 10♥ 6♣ 5♦ 6♦ 3♣ 3♠ 7♠ 4♥ 9♦ K♣ 8♥
 A♠ A♦ 2♠ 7♣ 7♥ 2♣ 6♠ K♥ 8♠ 3♦ 10♣ 9♣ 5♥
 Q♠ 4♠ 4♦ 2♦ 5♠ 5♣ J♣ 2♥ 7♦ A♣ 4♣ K♠ J♥
>>> shuffle(deck); print(deck)
 10♣ 4♦ 2♣ Q♠ J♠ K♣ J♦ 5♣ A♠ K♦ K♠ Q♥ 9♥
 A♦ 7♠ 5♥ 7♦ Q♦ 3♥ 2♦ A♣ 6♦ 7♣ 4♠ A♥ 5♠
 3♠ 9♦ J♥ 6♣ 9♠ Q♣ 10♦ 8♠ J♣ 8♥ 7♥ 4♥ K♥
 4♣ 2♠ 3♦ 10♥ 9♣ 6♥ 3♣ 8♣ 5♦ 8♦ 2♥ 10♠ 6♠

1
2
3
4
5
6
7
8
9

10

You can download the FrenchDeck code here

https://harvard-iacs.github.io/2021-CS107/lectures/lecture7/

SOFTWARE LICENSES

Copyright Copyleft

SOFTWARE LICENSES
Every software project should be licensed.

An open source license protects contributors and users.

If you publish your code in the public domain without a license, a third
party would be free to take your code and build a business on top of it
(possibly asking users to pay for it), without reimbursing you or at least
giving you credit for your intellectual work.

There are many different licenses available. A good starting point is
.

There are copyright and copyleft licenses.
https://choosealicense.com/

https://choosealicense.com/

SOFTWARE LICENSES: COPYLEFT
Copyleft is a general method for making a program (or other work)

free (in the sense of freedom, not “zero price”), and requiring all
modi�ed and extended versions of the program to be free as well.

A copyleft program is copyrighted, with additional distribution terms,
which are a legal instrument that gives everyone the rights to use, modify,
and redistribute the program's code or any program derived from it but
only if the distribution terms are unchanged.
An example of a copyleft license is the
(GNU GPLv3)
If you have a code under the GNU GPLv3, all libraries you use in that code
must also be copyleft.
All contributions and modi�cations must preserve copyright and license
notices.

GNU General Public License v3.0

https://choosealicense.com/licenses/gpl-3.0/

SOFTWARE LICENSES: COPYLEFT
The bash shell is an example of a program under the GPL license.
It was licensed under GNU GPLv2 until version 3.2 .
...and the reason why MacOSX was stuck with bash 3.2 for so long (it was
released in 2007).
With MacOSX Catalina (2019), the shell has been changed from bash to
zsh which uses the .MIT license
The MIT license is much more permissive than the GNU GPLv3 and allows
companies to make modi�cations to open source code that may not
necessarily be shared with the public.

Licensing your code gives you legal rights on how someone else is
allowed to use your work. It is a very import part of a software project.

https://choosealicense.com/licenses/mit/

SOFTWARE LICENSES: GITHUB CONTROVERSIES
 has been acquired by .

Microsoft tries to push open source but naturally, there is also commercial interest.
One critique is that GitHub does not force you to select a license when you create a
new repository.

GitHub Microsoft in 2018

Another recent controversy is : an AI based pair-programmer that
may be integrated in tools such as to give you suggestions as you code.

GitHub's copilot
Visual Studio

The problem with copilot is that is uses data (software projects) from GitHub to
train its model. Many of those projects are licensed appropriately. Since the
copilot injects code (which it learned from other licensed projects) into other
software projects there is concern that this process violates legal rights of the
original authors.

(Optional reading): .The Free Software Foundation (FSF) point of view

https://github.com/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://copilot.github.com/
https://visualstudio.microsoft.com/
https://www.fsf.org/blogs/licensing/fsf-funded-call-for-white-papers-on-philosophical-and-legal-questions-around-copilot

SOFTWARE LICENSES
The open source initiative: Licenses and Standards

An extensive list of available licenses for free and open or
collaborative software:

https://opensource.org/licenses

https://spdx.org/licenses/

https://opensource.org/licenses
https://spdx.org/licenses/

RECAP
The concept for consistency in the python language:

The python data model—the foundation of consistency
Special class methods—also called "dunder" methods

A custom sequence: French deck of cards— python data model in
action
Software Licenses

One of the beauties in python is its consistency implied by the data model.
Dunder methods are an important part to enable this consistency which will help

you develop an intuition for how a python object that is new to you should behave.

