
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 6
Thursday, September 23rd 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Python basics (a review)
Nested environments
Closures, Decorators (today)

Decorator = outer function + closure (that wraps code around the captured function f)

def timer(f):
 def inner(*args, **kwargs):
 t0 = time.time()
 retval = f(*args, **kwargs) # here we call the captured function
 elapsed = time.time() - t0
 print(f"{f.__name__}: elapsed time {elapsed:e} seconds")
 return retval
 return inner

1
2
3
4
5
6
7
8

RECAP OF LAST TIME
Last note on name references to objects in memory:

The implied truth is: as far as possible, everything is a reference.

If you want to overrule this implied truth, you have to create copies of your variables explicitly:
import copy as cp

a = [1, 2, 3]
b = cp.copy(a) # shallow copy
c = cp.deepcopy(a) # deep copy

difference between shallow and deep copy is for compound types
d = [1, 2, [3, 4, 5]]
e = cp.copy(d)
f = cp.deepcopy(d)

1
2
3
4
5
6
7
8
9

10

RECAP OF LAST TIME
Last note on name references to objects in memory:

If you want to overrule this implied truth, you have to
:

ObjectsFrames
Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 7
Rendered by Python Tutor
Customize visualization

1 import copy as cp
2
3 a = [1, 2, 3]
4 b = cp.copy(a) # shallow copy
5 c = cp.deepcopy(a) # deep copy
6
7 # difference between shallow and deep cop
8 d = [1, 2, [3, 4, 5]]
9 e = cp.copy(d)
10 f = cp.deepcopy(d)

create copies of your variables explicitly
(pythontutor)

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=import%20copy%20as%20cp%0A%0Aa%20%3D%20%5B1,%202,%203%5D%0Ab%20%3D%20cp.copy%28a%29%20%20%23%20shallow%20copy%0Ac%20%3D%20cp.deepcopy%28a%29%20%20%23%20deep%20copy%0A%0A%23%20difference%20between%20shallow%20and%20deep%20copy%20is%20for%20compound%20types%0Ad%20%3D%20%5B1,%202,%20%5B3,%204,%205%5D%5D%0Ae%20%3D%20cp.copy%28d%29%0Af%20%3D%20cp.deepcopy%28d%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

OUTLINE
Towards Object Oriented Programming (OOP) in python

Object Oriented Programming
Classes
Inheritance and Polymorphism

GENERAL python GUIDELINES
Now that you are starting to write python code, you should be aware

of some important guidelines and resources:

Become familiar with the Python Enhancement Proposals called
for short
One of those proposals is a (PEP8).
Some projects are very strict about code formatting. It is good
practice to write consistently formatted code.
The (PEP20) and some (the latter is
optional)

PEP

python coding style guide

Zen of python vim kōans

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://blog.sanctum.geek.nz/vim-koans/

CODE FORMATTING
It might be a good idea to have some background of PEP8.
By no means you should know it by heart!

When you code, your mental awareness should be focused on
writing correct code.

You can use tools to do the formatting for you consistently.

For python code a good tool is called (yet another python
formatter). When you work with C or C++ is a fantastic

tool for code formatting.

yapf
clang-format

https://github.com/google/yapf
https://clang.llvm.org/docs/ClangFormat.html

CODE FORMATTING
Example: yapf code formatting (see)

python -m pip install [--user] yapf

yapf looks for style �les inside a source code directory (e.g. your git project) or a global
con�guration de�ned in your $HOME , see the section for all details. If it can't
�nd any customizations it will default to PEP8.
There are four base presets: (you can guess that they are named as such because they are used in those institutions)

1. pep8 (default)
2. google (based off of the)
3. yapf (for use with Google open source projects)
4. facebook

Example .style.yapf �le in the root of your git project:

You can process many *.py �les using a bash script (e.g. in a project directory that is
dedicated to maintenance). You can also integrate yapf in your editor (e.g. vim , possibly
emacs) to automagically format your code as you type (remember: your focus is on correct code

not worrying about formatting code).

the demo here

formatting style

Google python style guide

[style]
based_on_style = pep8
spaces_before_comment = 4
split_before_logical_operator = True
use_tabs = False # this question is similar to whether vim or emacs is superior. It is a personal one

1
2
3
4
5

https://harvard-iacs.github.io/2021-CS107/lectures/lecture6/
https://github.com/google/yapf#formatting-style
https://github.com/google/styleguide/blob/gh-pages/pyguide.md

OBJECT ORIENTED PROGRAMMING

MOTIVATION

We would like to �nd a way to represent complex, structured data
in the context of our programming language
If you want to model a particle, you would want to associate every
particle with a position x , y , z and possibly a velocity u , v , w for
each of the three spatial coordinates.

Programs = Algorithms + Data Structures
Niklaus Wirth

In C you could then de�ne a compound data structure that
describes a particle like this:

struct Particle {
 double x, y, z; // particle position
 double u, v, w; // particle velocity
};

1
2
3
4

https://en.wikipedia.org/wiki/Niklaus_Wirth

MOTIVATION

In C you could then de�ne a compound data structure that
describes a particle like this:

In reality you will have many particles to deal with (think atoms for
example). In addition to the Particle data structure, you would
need an algorithm that, for example, describes the interaction
between particles.

The algorithm and data structure together would allow you to
formulate a program to simulate this system of particles.

Programs = Algorithms + Data Structures
Niklaus Wirth

struct Particle {
 double x, y, z; // particle position
 double u, v, w; // particle velocity
};

1
2
3
4

https://en.wikipedia.org/wiki/Niklaus_Wirth

MOTIVATION
Loosely speaking, we could say that we have de�ned a conceptual

object to describe a physical particle and we have called this
"object" Particle . Any program we formulate with this

abstraction will be oriented towards this object because it holds the
data we need in order to describe something. We speak of Object

Oriented Programming (OOP).

struct Particle {
 double x, y, z; // particle position
 double u, v, w; // particle velocity
};

1
2
3
4

OBJECT ORIENTED PROGRAMMING
The C language is not an object oriented language!
Although we can encapsulate data in compound objects , we can not form an
abstraction of the data because the data in a struct is always accessible by anyone and we
must initialize it explicitly.
OOP goes further than that. We actually want to protect the data from being accessible
by anyone.
Instead, OOP offers an interface to perform certain operations with the data that is
private to the object.
An interface is de�ned through methods or member functions (synonyms) which are
accessible by anyone (but not the data directly).
This way, the actual implementation of how you perform the transformation of the data is
hidden from the user of your object.
If somebody else were to use your code (i.e. the objects you declare), the interface
de�nes the Application Programming Interface (API) of your library.
OOP further consists of concepts such as inheritance (inherit data and interfaces from
other objects) and polymorphism (make objects with the same parent behave differently).
The Greek word "poly" means "many". ευχαριστώ πολύ (efcharistó polý)

OBJECT ORIENTED PROGRAMMING
A programming language may consist of three parts that can be

exploited to write programs:

1. Expressions and statements: are the smallest and foundational
elements to build a program (building blocks). You �nd them in any
programming language.

2. Means of combination: structures to form complex computations.
Functions are an example. Most programming languages offer such
structures.

3. Means of abstraction: methods to hide the data and provide an
abstraction of it via operations de�ned through an interface. C and
python can only partially ful�ll this, C++ can provide it in full.

CREATING OBJECTS IN python
The basic type in python that we can use to compound data of
possibly different types is the tuple :

def four():
 return 0x4

t = (1, 2.0, '3', four)
for item in t:
 print(type(item))

1
2
3
4
5
6

<class 'int'>
<class 'float'>
<class 'str'>
<class 'function'>

Can we do that with a list too?
What is the difference between a tuple and a list ?

CREATING OBJECTS IN python
Let's use the tuple to model a complex number:

def Complex(r, i):
 """
 Construct a complex number
 Arguments:
 r: real part
 i: imaginary part
 """
 return (r, i)

interface with complex numbers
def real(c):
 """Get the real part of a complex number c"""
 return c[0]

def imag(c):
 """Get the imaginary part of a complex number c"
 return c[1]

def string(c):
 """Represent a complex number c as a string"""
 return f"{c[0]:e} + i{c[1]:e}"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

We can use our complex object like this:
>>> z = Complex(1, 2)
>>> print(real(z), imag(z), string(z))
1 2 1.000000e+00 + i2.000000e+00

1
2
3

But data is not private at all:
>>> z[0]; z[1]
1
2

1
2
3

It means that we can easily bypass the
interface and do things on our own! No
proper data encapsulation.
Furthermore, a tuple is immutable:

>>> z[0] = 3

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item...

1

2

3

4

Not being able to assign other values to a
complex number is not useful at all.

CREATING OBJECTS IN python
Let's try a closure instead: (recall: a closure captures the names from the enclosing scope)

def Complex(r, i):
 """
 Construct a complex number
 Arguments:
 r: real part
 i: imaginary part
 """
 def implementation(method):
 if method.lower() == 'real':
 return r
 elif method.lower() == 'imag':
 return i
 elif method.lower() == 'string':
 return f"{r:e} + i{i:e}"

 return implementation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

We can use our complex object like this:
>>> z = Complex(1, 2)
>>> print(z('real'), z('imag'), z('string'))
1 2 1.000000e+00 + i2.000000e+00

1
2
3

This is better because the implementation
closure de�nes all the methods we can apply to the
data of the Complex object.
The implementation de�nes the interface for this
example.
We need to extend it such that we can set new
values. These methods are called setters. The ones
we already implemented are called getters.

CREATING OBJECTS IN python
Let's try a closure instead with setters:

def Complex(r, i):
 """
 Construct a complex number
 Arguments:
 r: real part
 i: imaginary part
 """
 def implementation(method, z=None):
 nonlocal r, i
 if method.lower() == 'set_z':
 assert z is not None
 r, i = z
 elif method.lower() == 'real':
 return r
 elif method.lower() == 'imag':
 return i
 elif method.lower() == 'string':
 return f"{r:e} + i{i:e}"

 return implementation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

We can use our complex object like this:
>>> z = Complex(1, 2)
>>> print(z('real'), z('imag'), z('string'))
1 2 1.000000e+00 + i2.000000e+00
>>> z('set_z', (3, 4))
>>> print(z('real'), z('imag'), z('string'))
3 4 3.000000e+00 + i4.000000e+00

1
2
3
4
5
6

Now with support for setting new values through
the set_z method.
There are still many operations missing. How
would we multiply two complex numbers?
The nonlocal keyword is used to reset a name
(variable) that was bound in a different scope.
You are studying the nonlocal keyword in more
detail in a homework problem. (See also

)PEP3104

https://www.python.org/dev/peps/pep-3104/

CLASSES

CLASSES
We have created our own object system before.
We �gured that there are still limitations. For example, when
working with complex numbers we would like to be able to do the
following:

>>> z0 = Complex(1, 2)
>>> z1 = Complex(3, 4)
>>> z2 = z0 + z1
>>> print(z2('string'))
4.000000e+00 + i6.000000e+00
>>> z3 = z0 * z1
>>> print(z3('string'))
-5.000000e+00 + i1.000000e+01

1
2
3
4
5
6
7
8

python already implements a type system for user de�ned types
which provides support for such operations.

User de�ned types are called classes in OOP.

CLASSES
Let us return to the complex number type:

The bare minimum (data only, no methods/interface):
class Complex():
 """Complex number type"""
 def __init__(self, real, imag):
 self.real = real # real part
 self.imag = imag # imaginary part

1
2
3
4
5

__init__ : is a special method automatically run when you execute code like this:

For our purposes we call it the constructor of the class (see for a lower
level discussion).

>>> z = Complex(1, 2) # calls the constructor of the class1

this thread

self : is a reference to the instance of the object. Note that unlike to the
equivalent this pointer in C++ , self is passed explicitly to any class method in
python (as the �rst argument). It is therefore not a keyword. You can name it
anything you want, " self " is the universally accepted convention.

.
A good read

by the creator of python about the explicit nature of self

https://stackoverflow.com/questions/6578487/init-as-a-constructor
http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html

CLASSES
Let us return to the complex number type:

ObjectsFrames
Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 6
Rendered by Python Tutor
Customize visualization

1 class Complex():
2 """Complex number type"""
3 def __init__(self, real, imag):
4 self.real = real # real part
5 self.imag = imag # imaginary part
6
7 z = Complex(1, 2)

pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=class%20Complex%28%29%3A%0A%20%20%20%20%22%22%22Complex%20number%20type%22%22%22%0A%20%20%20%20def%20__init__%28self,%20real,%20imag%29%3A%0A%20%20%20%20%20%20%20%20self.real%20%3D%20real%20%20%23%20real%20part%0A%20%20%20%20%20%20%20%20self.imag%20%3D%20imag%20%20%23%20imaginary%20part%0A%0Az%20%3D%20Complex%281,%202%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

CLASSES
An instance of a class is an allocated object:

Printing the class type:
>>> print(Complex)
<class '__main__.Complex'>

1
2

Printing an instance of the class:

An instance of a class is an object that occupies memory. The
 is its memory address.

>>> z = Complex(1, 2)
>>> print(z)
<__main__.Complex object at 0x7f669070c2e0>

1
2
3

hex
number
Printing the type of an instance:

>>> print(type(z))
<class '__main__.Complex'>

1
2

https://en.wikipedia.org/wiki/Hexadecimal

CLASSES
Accessing class attributes:

.

You can access class attributes by the " . " operator:

Because python does not prevent access to data, we can print all attributes of a
class instance using the vars built-in:

which returns a python dictionary with the attribute name and its current value.
A list of the python . Up to here we have seen:

: return the type of an object

: return the __dict__ attribute for any object that implements it (we will discuss what this

means in more detail later).

Private variables do not exist in python

>>> print(z.real); print(z.imag)
1
2

1
2
3

>>> vars(z)
{'real': 1, 'imag': 2}

1
2

built-in functions
type
vars

https://docs.python.org/3/tutorial/classes.html?highlight=name%20mangling#private-variables
https://docs.python.org/3/library/functions.html#built-in-functions
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#vars

INHERITANCE AND POLYMORPHISM

STOP AND BREATHE
We have covered the main conception of object oriented
programming and looked at how data encapsulation works in
python .
At this point you should know how to create simple classes in your
python code.

We have not talked about inheritance and polymorphism yet.
Recall:

Inheritance: inherit data and interfaces from parent class(es).
Polymorphism: make objects with the same parent class(es)
behave differently.

STOP AND BREATHE
We have not talked about inheritance and polymorphism yet. Recall:

Inheritance: inherit data and interfaces from parent class(es).
Polymorphism: make objects with the same parent class(es)
behave differently.

A less abstract example: Both, a cat and a dog are animals. Because
they are both animals, they share some common features that we
describe by data (e.g. name, age, fur color, they speak, and so on). The
two speak different languages, however. Cats meow and dogs bark.

SUPER- AND SUBCLASSES
Modeling cats and dogs: Base class (superclass)

Our intention is to use the Animal class to derive speci�c animals from it. It
is called a base class or superclass.
Because the Animal class is generic, we do not know what sounds an
animal instance of this class will speak. (It raises a NotImplementedError .)

class Animal():
 """Base class for animals"""
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def speak(self): # class method, note how `self` is passed as argument
 """Sounds animals can make"""
 raise NotImplementedError

1
2
3
4
5
6
7
8
9

We can create an instance by calling the class with the arguments speci�ed
in the __init__ method:

>>> animal = Animal("Generic animal", 5)
>>> print(vars(animal))
{'name': 'Generic animal', 'age': 5}

1
2
3

SUPER- AND SUBCLASSES
Modeling cats and dogs: Base class (superclass)

We can create an instance by calling the class with the arguments speci�ed
in the __init__ method:

But if we want to let it speak, the behavior is not de�ned:

class Animal():
 """Base class for animals"""
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def speak(self): # class method, note how `self` is passed as argument
 """Sounds animals can make"""
 raise NotImplementedError

1
2
3
4
5
6
7
8
9

>>> animal = Animal("Generic animal", 5)
>>> print(vars(animal))
{'name': 'Generic animal', 'age': 5}

1
2
3

>>> animal.speak()
Traceback (most recent call last):
 File "/home/fabs/harvard/CS107/lecture06/code/06.py", line 33, in <module>
 animal.speak()
 File "/home/fabs/harvard/CS107/lecture06/code/06.py", line 11, in speak
 raise NotImplementedError
NotImplementedError

1
2
3
4
5
6
7

SUPER- AND SUBCLASSES
Modeling cats and dogs: Derived class (subclass)

We can create speci�c animals by inheritance from the base class:
class Dog(Animal): # Dog is a derived class, it inherits from Animal
 """Dog is a derived Animal class"""
 def speak(self):
 """Special sounds dogs make"""
 return "Woof"

class Cat(Animal): # Cat is a derived class, it inherits from Animal
 """Cat is a derived Animal class"""
 def __init__(self, name, age):
 self.name = f"A very special cat: {name}" # cats have a special name string

 def speak(self):
 """Special sounds cats make"""
 return "Meow"

1
2
3
4
5
6
7
8
9

10
11
12
13
14

We can use a derived class in the same way as we did with a base class:
>>> dog = Dog("Snoopy", 6)
>>> cat = Cat("Kitty", 4)
>>> print(vars(dog)); print(vars(cat))
{'name': 'Snoopy', 'age': 6}
{'name': 'A very special cat: Kitty'}

1
2
3
4
5

SUPER- AND SUBCLASSES
Modeling cats and dogs: Derived class (subclass)

We can use a derived class in the same way as we did with a base class:

Notice something strange for Kitty?

>>> dog = Dog("Snoopy", 6)
>>> cat = Cat("Kitty", 4)
>>> print(vars(dog)); print(vars(cat))
{'name': 'Snoopy', 'age': 6}
{'name': 'A very special cat: Kitty'}

1
2
3
4
5

We have written a special constructor
for the Cat class (this is a common scenario), but we did not inherit the age
attribute from the base class! (no data inheritance)
The speak methods sure work:

>>> print(dog.speak()); print(cat.speak())
Woof
Meow

1
2
3

But the age attribute for cats is broken:
>>> print(cat.age)
Traceback (most recent call last):
 File "/home/fabs/harvard/CS107/lecture06/code/06.py", line 40, in <module>
 print(cat.age)
AttributeError: 'Cat' object has no attribute 'age'

1
2
3
4
5

SUPER- AND SUBCLASSES
Modeling cats and dogs: Derived class (subclass)

The speak methods sure work:

But the age attribute for cats is broken:

It seems that inheritance did not work properly for the derived Cat
class. We will talk more about this later.

>>> print(dog.speak()); print(cat.speak())
Woof
Meow

1
2
3

>>> print(cat.age)
Traceback (most recent call last):
 File "/home/fabs/harvard/CS107/lecture06/code/06.py", line 40, in <module>
 print(cat.age)
AttributeError: 'Cat' object has no attribute 'age'

1
2
3
4
5

SUPER- AND SUBCLASSES
Modeling cats and dogs: Calling member functions (methods)

The speak methods sure work:

Let us focus �rst on how calling class methods (member functions)
works in python .

Recall: we have this for dogs:

>>> print(dog.speak()); print(cat.speak())
Woof
Meow

1
2
3

class Dog(Animal):
 """Dog is a derived Animal class"""
 def speak(self): # takes one argument `self`
 """Special sounds dogs make"""
 return "Woof"

1
2
3
4
5

>>> dog = Dog("Snoopy", 6)
>>> print(dog.speak())
Woof

1
2
3

SUPER- AND SUBCLASSES
Modeling cats and dogs: Calling member functions (methods)

We are calling the member function speak() without passing any
arguments! Why is python not complaining?

>>> dog = Dog("Snoopy", 6)
>>> print(dog.speak())
Woof

1
2
3

Remember: self is a reference to the object in memory. Since dog is an
instance of the Dog class, the instance dog and self are the same
reference. If we were to add the following method to Dog :

then we get:

def my_id(self):
 print(id(self))

1
2

>>> print(id(dog)); dog.my_id()
140320390688928
140320390688928

1
2
3

SUPER- AND SUBCLASSES
Modeling cats and dogs: Calling member functions (methods)

An instance of a class has its methods bound to self and python knows about
it. The �rst argument of class methods is therefore not needed when you call them.

>>> print(dog.speak); print(Dog.speak)
<bound method Dog.speak of <__main__.Dog object at 0x7f9d32bdc0a0>> # dog is an instance of Dog
<function Dog.speak at 0x7f9d32ad3160> # Dog is a class type

1
2
3

We can use member functions either way: when bound to an instance of the
class or by passing an instance to Dog.speak . In the latter case, python does
not have a valid self reference, so we must pass the instance as the �rst
argument:

>>> print(dog.speak()); print(Dog.speak(dog))
Woof
Woof

1
2
3

You see:
>>> Dog.speak()
Traceback (most recent call last):
 File "/home/fabs/harvard/CS107/lecture06/code/06.py", line 42, in <module>
 Dog.speak()
TypeError: speak() missing 1 required positional argument: 'self'

1
2
3
4
5

SUPER- AND SUBCLASSES
Modeling cats and dogs: Calling member functions (methods)

Let us summarize:

dog is an instance of the Dog class. It is a reference to an object in memory.
dog.speak is a bound member function. It is bound to the instance dog . In this
case, the name self is a reference to dog .
Dog is a class type. Member function de�nitions within this class always have at
least one argument. The �rst argument is a reference to an instance of the class
and is conventionally called self .
Dog.speak is just a regular function. This function has one argument which is an
explicit reference to an instance of the class Dog .
You can use the isinstance() built-in to check if a name is an instance of a
particular class. See .the documentation here

Step through code on pythontutor

https://docs.python.org/3/library/functions.html#isinstance
https://pythontutor.com/visualize.html#code=class%20Animal%28%29%3A%0A%20%20%20%20%22%22%22Base%20class%20for%20animals%22%22%22%0A%20%20%20%20def%20__init__%28self,%20name,%20age%29%3A%0A%20%20%20%20%20%20%20%20self.name%20%3D%20name%0A%20%20%20%20%20%20%20%20self.age%20%3D%20age%0A%0A%20%20%20%20%23%20class%20method,%20note%20how%20%60self%60%20is%20passed%20as%20argument%0A%20%20%20%20def%20speak%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22Sounds%20animals%20can%20make%22%22%22%0A%20%20%20%20%20%20%20%20raise%20NotImplementedError%0A%0A%0Aclass%20Dog%28Animal%29%3A%20%20%23%20Dog%20is%20a%20derived%20class,%20it%20inherits%20from%20Animal%0A%20%20%20%20%22%22%22Dog%20is%20a%20derived%20Animal%20class%22%22%22%0A%20%20%20%20def%20speak%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22Special%20sounds%20dogs%20make%22%22%22%0A%20%20%20%20%20%20%20%20return%20%22Woof%22%0A%0A%0Aclass%20Cat%28Animal%29%3A%20%20%23%20Cat%20is%20a%20derived%20class,%20it%20inherits%20from%20Animal%0A%20%20%20%20%22%22%22Cat%20is%20a%20derived%20Animal%20class%22%22%22%0A%20%20%20%20def%20__init__%28self,%20name,%20age%29%3A%0A%20%20%20%20%20%20%20%20self.name%20%3D%20f%22A%20very%20special%20cat%3A%20%7Bname%7D%22%20%20%23%20cats%20have%20a%20special%20name%20string%0A%0A%20%20%20%20def%20speak%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22Special%20sounds%20cats%20make%22%22%22%0A%20%20%20%20%20%20%20%20return%20%22Meow%22%0A%0A%0Adog%20%3D%20Dog%28%22Snoopy%22,%206%29%0Acat%20%3D%20Cat%28%22Kitty%22,%204%29%0Aprint%28dog.speak%28%29%29%0Aprint%28cat.speak%28%29%29%0A%0Aif%20isinstance%28dog,%20Animal%29%3A%0A%20%20%20%20print%28f%22dog%20%28%7Bid%28dog%29%7D%29%20is%20an%20instance%20of%20Animal%22%29%0Aif%20isinstance%28cat,%20Animal%29%3A%0A%20%20%20%20print%28f%22cat%20%28%7Bid%28cat%29%7D%29%20is%20an%20instance%20of%20Animal%22%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

SUPER- AND SUBCLASSES
Superclass initialization

We know that when we inherit from a base class we inherit its data and
interface.
If we recall the derived class Cat from earlier, we would expect when we
create an instance of Cat that:

1. The base class gets initialized.
2. Additional initialization of the derived class takes place.

If we do not de�ne another __init__ method in the derived class, then
__init__ of the base class is called automatically.
If we do de�ne another __init__ method in the derived class (because we need
to perform other initialization there), then the superclass initialization is not
performed automatically anymore (what happened to Cat earlier).
In that case we have to use the super() to access the
superclass explicitly.

built-in function

https://docs.python.org/3/library/functions.html#super

SUPER- AND SUBCLASSES
Rule for polymorphism in python

If a method exists in the base class as well as in the derived class (both with the same name), then
if an instance of the derived class calls the method, python will execute the implementation of
the method in the derived class and vice versa for a base class instance. The super() built-in
can be used to call methods in the parent class. The actual method call is determined by the

Method Resolution Order (MRO) speci�ed in the __mro__ attribute of the class type.
See also .https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

SUPER- AND SUBCLASSES
Rule for polymorphism in python : Example

class Base():
 """Base class"""
 def __init__(self, a):
 self.a = a # some data required in the base class

 def explain(self):
 print(f"Executing from base class: data=`{self.a}`")

1
2
3
4
5
6
7

 8
class Derived(Base):9
 """Derived class"""10
 def __init__(self, a, b):11
 super().__init__(a) # properly initialize the base class12
 self.b = b # some data specific to the derived class13
 14
 def explain(self):15
 # 1. Call the base class method first16
 super().explain()17
 # 2. Then do special work required for the derived class18
 print(f"Executing from derived class: data=`{self.b}`")19

class Derived(Base):
 """Derived class"""
 def __init__(self, a, b):
 super().__init__(a) # properly initialize the base class
 self.b = b # some data specific to the derived class

class Base():1
 """Base class"""2
 def __init__(self, a):3
 self.a = a # some data required in the base class4
 5
 def explain(self):6
 print(f"Executing from base class: data=`{self.a}`")7
 8

9
10
11
12
13

 14
 def explain(self):15
 # 1. Call the base class method first16
 super().explain()17
 # 2. Then do special work required for the derived class18
 print(f"Executing from derived class: data=`{self.b}`")19

class Derived(Base):
 """Derived class"""
 def __init__(self, a, b):
 super().__init__(a) # properly initialize the base class
 self.b = b # some data specific to the derived class

 def explain(self):
 # 1. Call the base class method first
 super().explain()
 # 2. Then do special work required for the derived class
 print(f"Executing from derived class: data=`{self.b}`")

class Base():1
 """Base class"""2
 def __init__(self, a):3
 self.a = a # some data required in the base class4
 5
 def explain(self):6
 print(f"Executing from base class: data=`{self.a}`")7
 8

9
10
11
12
13
14
15
16
17
18
19

class Base():
 """Base class"""
 def __init__(self, a):
 self.a = a # some data required in the base class

 def explain(self):
 print(f"Executing from base class: data=`{self.a}`")

class Derived(Base):
 """Derived class"""
 def __init__(self, a, b):
 super().__init__(a) # properly initialize the base class
 self.b = b # some data specific to the derived class

 def explain(self):
 # 1. Call the base class method first
 super().explain()
 # 2. Then do special work required for the derived class
 print(f"Executing from derived class: data=`{self.b}`")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

SUPER- AND SUBCLASSES
Rule for polymorphism in python : Example

When you call super() it will follow this resolution order to �nd the matching
method in the parent classes:

class Base():
 """Base class"""
 def __init__(self, a):
 self.a = a # some data required in the base class

 def explain(self):
 print(f"Executing from base class: data=`{self.a}`")

class Derived(Base):
 """Derived class"""
 def __init__(self, a, b):
 super().__init__(a) # properly initialize the base class
 self.b = b # some data specific to the derived class

 def explain(self):
 # 1. Call the base class method first
 super().explain()
 # 2. Then do special work required for the derived class
 print(f"Executing from derived class: data=`{self.b}`")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

>>> print(Base.__mro__)
(<class '__main__.Base'>, <class 'object'>)
>>> print(Derived.__mro__)
(<class '__main__.Derived'>, <class '__main__.Base'>, <class 'object'>)

1
2
3
4

Lets see how this works for the explain() method of an instance from the Derived
class type:

>>> a = "base class data" # some data we pass for initializing the base class
>>> b = "derived class data" # some data we pass for initializing the derived class
>>> derived = Derived(a, b) # here we create an instance of the derived class
>>> derived.explain() # and we call the explain() method to 'simulate' some work being done
Executing from base class: data=`base class data`
Executing from derived class: data=`derived class data`

1
2
3
4
5
6

SUPER- AND SUBCLASSES
Rule for polymorphism in python : Example

In the Cat class from earlier, we did not initialize the base class like this!

 super().__init__(a) # properly initialize the base class

class Derived(Base):1
 """Derived class"""2
 def __init__(self, a, b):3

4
 self.b = b # some data specific to the derived class5
 6
 def explain(self):7
 # 1. Call the base class method first8
 super().explain()9
 # 2. Then do special work required for the derived class10
 print(f"Executing from derived class: data=`{self.b}`")11

If you don't do this, we will not enter the base class __init__ method and
consequently we will not assign self.a = a . This causes an error whenever we try
to access self.a later on, e.g. when we call the explain() method.

This agreement to de�ne class methods and attributes on the �y as execution �ow
encounters them, is called .duck typing

https://en.wikipedia.org/wiki/Duck_typing

FEW COMMENTS ON DUCK TYPING
When using duck typing, you are specifying an implicit interface.
Duck typing can speed up the short-term development process as
sometimes you do not have a clear picture of a current design.
Explicit software design (interface is de�ned before
implementation work starts) is more stable especially in large
projects. It is more dif�cult because it requires thinking further
into the future compared to an implicit duck typing approach

When you have an implicit interface through duck typing, make
sure to write extensive tests.

RECAP
Object Oriented Programming: data encapsulation, inheritance,
polymorphism
Classes: base classes and derived classes
Inheritance and Polymorphism: class methods, interfaces, method
resolution order

