
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 5
Tuesday, September 21st 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
More git basics
Remote repositories
Branching in git (today)

You should now have a basic understanding of the core design of
git and understand some of its internals as well as know how to

use its interface to exploit VCS.

OUTLINE
Python basics (a review)
Nested environments
Closures
Decorators

PYTHON BASICS

python types
Basic data structures including lists,
dictionaries and tuples.
How to write user de�ned functions
including variable numbers of arguments
using *args and **kwargs for positional
and keyword arguments.

Writing for -loops and know how to use
enumerate and zip in the loop header.

Proper syntax for opening �les using the
with syntax.

Some basic exception handling
Know a little of numpy and matplotlib

PYTHON BASICS
It is assumed that you are familiar with the very basics of python and

especially its syntax. If you need a refreshment on these basics, a good
reference to work through is: .

The supplementary notebooks given at
 are another option to review.

Topics include:

https://learnxinyminutes.com/docs/python/
https://harvard-iacs.github.io/2021-

CS107/lectures/lecture5/

https://learnxinyminutes.com/docs/python/
https://harvard-iacs.github.io/2021-CS107/lectures/lecture5/

PYTHON BASICS
python 2.7 is no longer supported since January 1st, 2020

If you are still using python 2.7 please upgrade
We are using python 3 in this class
Here are a few notes on porting code from python 2 to python 3 :
https://docs.python.org/3/howto/pyporting.html

https://docs.python.org/3/howto/pyporting.html

PYTHON BASICS
Preliminaries: pythontutor

There is a cool tool you should know about. It helps us to visualize
python code such that we can better understand what is going on

under the hood. You can �nd it at . To
visualize your code interactively, you can start here:

.

https://pythontutor.com/

https://pythontutor.com/visualize.html#mode=edit

https://pythontutor.com/
https://pythontutor.com/visualize.html#mode=edit

PYTHON BASICS: REFERENCE VARIABLES
A variable in python is called a name.
Example: the assignment a = 1 declares the name a to hold an
integer value of 1 .

>>> a = 1
>>> type(a)
<class 'int'>

1
2
3

The term "variable" seems more intuitive and you can call " a " a
variable too.

PYTHON BASICS: REFERENCE VARIABLES
Important take-away for today:

Variables in python are references to objects in memory.

If you heard this the �rst time now, you should make sure you
remember it.
It is perfectly valid in python that multiple references point to the same
object.
From the python 3.9.7 Language Reference, Section 3.1:

Reference:

Every object has an identity, a type and a value. An object’s identity never
changes once it has been created; you may think of it as the object’s
address in memory. The ‘ is ’ operator compares the identity of two
objects; the id() function returns an integer representing its identity.

https://docs.python.org/3/reference/datamodel.html#objects-values-and-types

https://docs.python.org/3/reference/datamodel.html#objects-values-and-types

PYTHON BASICS: REFERENCE VARIABLES
Let us investigate the following code:

a = [1, 3, 5] # list definition
b = a
print(f"a = {a} and has id {id(a)}")
print(f"b = {b} and has id {id(b)}")
print(f"Is b a? {b is a}")

append data at the end of the list
a.append(7)
print(f"a = {a}")
print(f"b = {b}")

1
2
3
4
5
6
7
8
9

10

PYTHON BASICS: REFERENCE VARIABLES
Let's have a look in :

Note that b points to the same object in memory
The memory address of what a and b points to is identical

Objects

Print output (drag lower right corner to resize)

Frames

Python 3.6

1 a = [1, 3, 5] # list definition
2 b = a
3 print(f"a = {a} and has id {id(a)}")
4 print(f"b = {b} and has id {id(b)}")
5 print(f"Is b a? {b is a}")
6
7 # append data at the end of the list
8 a.append(7)
9 print(f"a = {a}")
10 print(f"b = {b}")

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 8
Rendered by Python Tutor
Customize visualization

pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=a%20%3D%20%5B1,%203,%205%5D%20%20%23%20list%20definition%0Ab%20%3D%20a%0Aprint%28f%22a%20%3D%20%7Ba%7D%20and%20has%20id%20%7Bid%28a%29%7D%22%29%0Aprint%28f%22b%20%3D%20%7Bb%7D%20and%20has%20id%20%7Bid%28b%29%7D%22%29%0Aprint%28f%22Is%20b%20a%3F%20%7Bb%20is%20a%7D%22%29%0A%20%0A%23%20append%20data%20at%20the%20end%20of%20the%20list%0Aa.append%287%29%0Aprint%28f%22a%20%3D%20%7Ba%7D%22%29%0Aprint%28f%22b%20%3D%20%7Bb%7D%22%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: REFERENCE VARIABLES
A corresponding illustration from Fluent Python: Clear, Concise, and
Effective Programming by Luciano Ramalho (O'Reilly Media, 2015):

PYTHON BASICS: REFERENCE VARIABLES
But be careful when working with functions. Variables inside functions

may become new objects depending on the operators you use:

def f(x):
 x.append(7) # member function of object x
 return x

def g(x):
 x += [7] # translates to an operation on object x
 return x

def h(x):
 x = x + [7] # assign something new to x (it is now local to the function)
 return x

a = [1, 3, 5]
b = f(a)
c = g(a)
d = h(a)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

PYTHON BASICS: REFERENCE VARIABLES
See what is going on in :

ObjectsFrames
Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 19
Rendered by Python Tutor

1 def f(x):
2 x.append(7) # member function of obj
3 return x
4
5 def g(x):
6 x += [7] # translates to an operatio
7 return x
8
9 def h(x):
10 x = x + [7] # assign something new t
11 return x
12
13 a = [1, 3, 5]
14 b = f(a)
15 c = g(a)
16 d = h(a)

pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20x.append%287%29%20%20%23%20member%20function%20of%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20g%28x%29%3A%0A%20%20%20%20x%20%2B%3D%20%5B7%5D%20%20%23%20translates%20to%20an%20operation%20on%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20h%28x%29%3A%0A%20%20%20%20x%20%3D%20x%20%2B%20%5B7%5D%20%20%23%20assign%20something%20new%20to%20x%20%28it%20is%20now%20local%20to%20the%20function%29%0A%20%20%20%20return%20x%0A%20%0Aa%20%3D%20%5B1,%203,%205%5D%0Ab%20%3D%20f%28a%29%0Ac%20%3D%20g%28a%29%0Ad%20%3D%20h%28a%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: TYPES
Every variable in python has a type (e.g. float , string , int , etc.)
python is a strongly typed language
python is also dynamically typed:

Types are assigned at runtime rather than compile time (for example as in C)
This implies a performance penalty (slower execution) as type interpretation is not for free
But it makes your life (a bit) easier when writing code since you do not need to worry (too
much) about it.
When the program starts, it is unde�ned what that variable will point to (same for
uninitialized variables in C)

In python : In C :

a = 1 # interpreted as an integer (int)
a = 1.1 # a is now a float of value 1.1
 # (a different type!)

1
2
3

int a = 1; // defined as an integer (int)
a = 1.1; // a is still an integer,
 // its value will be 1

1
2
3

PYTHON BASICS: TYPES
From Fluent Python: Clear, Concise, and Effective Programming by

Luciano Ramalho (O'Reilly Media, 2015), Chapter 11:

STRONG VERSUS WEAK TYPING
If the language rarely performs implicit conversion of types, it is considered strongly

typed; if it often does, it is weakly typed. Java , C/C++ and python are strongly typed.
php , JavaScript and perl are weakly typed.

STATIC VERSUS DYNAMIC TYPING
If type-checking is performed at compile time, the language is statically typed; if it

happens at runtime, it is dynamically typed. Static typing requires type declarations
(some modern languages use type inference to avoid some of that). Fortran and
Lisp are the two oldest programming languages still alive. They use static and

dynamic typing, respectively.

ASIDE ON COMPILERS
We came across the word "compile". For our purposes, the meaning of "compiling code" is to
transform human-readable code (written by you) into machine-readable form (instructions

that the CPU knows how to execute).

Compiler technology is really amazing!
Compiler developers and standardization committees of programming languages (e.g.
C++) are often not best friends.

The part of a compiler that tries to make syntactic sense of the source code involves a
parser generator. A popular parser generator is called yacc . Can you guess where it was
developed?
C/C++ are compiled languages, you must build the code �rst before you can run it.
python has tools for just-in-time (JIT) compilation. See the project.numba

Some complementary references for this topic:
https://gcc.gnu.org/
https://llvm.org/
https://cs.lmu.edu/~ray/notes/introcompilers/

https://numba.pydata.org/
https://gcc.gnu.org/
https://llvm.org/
https://cs.lmu.edu/~ray/notes/introcompilers/

PYTHON BASICS: FRAMES
You may have noticed the two columns in the examples we were

discussing before. So far we have been talking about objects which are instances
in memory that can have one or more references to it.

The evaluation of any expression requires knowledge of the context in which the
expression is being evaluated. This context is called a frame. Recall the

 where we entered a new frame every time
we were executing a function call.

pythontutor

pythontutor example from before

An environment is a sequence of frames, with each frame or context having a
bunch of labels, or bindings, associating variables with values. The �rst frame

in an environment is called global frame, which contains the bindings for
imports, built-ins, etc.

https://pythontutor.com/
https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20x.append%287%29%20%20%23%20member%20function%20of%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20g%28x%29%3A%0A%20%20%20%20x%20%2B%3D%20%5B7%5D%20%20%23%20translates%20to%20an%20operation%20on%20object%20x%0A%20%20%20%20return%20x%0A%20%0Adef%20h%28x%29%3A%0A%20%20%20%20x%20%3D%20x%20%2B%20%5B7%5D%20%20%23%20assign%20something%20new%20to%20x%20%28it%20is%20now%20local%20to%20the%20function%29%0A%20%20%20%20return%20x%0A%20%0Aa%20%3D%20%5B1,%203,%205%5D%0Ab%20%3D%20f%28a%29%0Ac%20%3D%20g%28a%29%0Ad%20%3D%20h%28a%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: FRAMES
Example to study frames in python :

def f(x):
 return [i**2 for i in x]

a = [2, 3, 4]
c1 = [i**2.0 for i in a] # list comprehension, very pythonic
c2 = f(a)
print(c1)
print(c2)

1
2
3
4
5
6
7
8

PYTHON BASICS: FRAMES
Example to study frames in python : analyze in

Objects

Print output (drag lower right corner to resize)

Frames

Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 21
Rendered by Python Tutor
Customize visualization

1 def f(x):
2 return [i**2 for i in x]
3
4 a = [2, 3, 4]
5 c1 = [i**2.0 for i in a] # list comprehens
6 c2 = f(a)
7 print(c1)
8 print(c2)

pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20%20%20return%20%5Bi**2%20for%20i%20in%20x%5D%0A%0Aa%20%3D%20%5B2,%203,%204%5D%0Ac1%20%3D%20%5Bi**2.0%20for%20i%20in%20a%5D%20%23%20list%20comprehension,%20very%20pythonic%0Ac2%20%3D%20f%28a%29%0Aprint%28c1%29%0Aprint%28c2%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
Functions are �rst class objects in python . If this term is fuzzy to you

please review the supplementary notes for .

Let's look at another code example:

this lecture

s = 'The lost world...' # a string1
len_of_s = len(s) # len() is a built-in function for the length of an iterable2
my_len = len # What are we doing here? (assign a function to a name)3
my_len_of_s = my_len(s)4

len_of_s = len(s) # len() is a built-in function for the length of an iterable
s = 'The lost world...' # a string1

2
my_len = len # What are we doing here? (assign a function to a name)3
my_len_of_s = my_len(s)4
my_len = len # What are we doing here? (assign a function to a name)
my_len_of_s = my_len(s)

s = 'The lost world...' # a string1
len_of_s = len(s) # len() is a built-in function for the length of an iterable2

3
4

https://harvard-iacs.github.io/2021-CS107/lectures/lecture5/

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
Let's look at another code example:

ObjectsFrames
Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 4
Rendered by Python Tutor
Customize visualization

1 s = 'The lost world...' # a string
2 len_of_s = len(s) # len() is a built
3 my_len = len # What are we doin
4 my_len_of_s = my_len(s)

s = 'The lost world...' # a string
len_of_s = len(s) # len() is a built-in function for the length of an iterable
my_len = len # What are we doing here? (assign a function to a name)
my_len_of_s = my_len(s)

1
2
3
4

Click here for example on pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=s%20%3D%20'The%20lost%20world...'%20%23%20a%20string%0Alen_of_s%20%3D%20len%28s%29%20%20%20%20%20%20%20%23%20len%28%29%20is%20a%20built-in%20function%20for%20the%20length%20of%20an%20iterable%0Amy_len%20%3D%20len%20%20%20%20%20%20%20%20%20%20%20%20%23%20What%20are%20we%20doing%20here%3F%20%28this%20line%20is%20related%20to%20first%20class%20objects%29%0Amy_len_of_s%20%3D%20my_len%28s%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
By now we are aware that whenever we execute a user de�ned

function we are pushed onto a new frame and execute the
statements in the function body in that new frame.

We have also �gured out that function arguments are passed by
reference initially (the argument is a copy of the reference but they
point to the same object in memory). The correct terminology in

python is " ".pass by assignment

https://docs.python.org/3/faq/programming.html#how-do-i-write-a-function-with-output-parameters-call-by-reference

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
There are two types of objects in python :

1. mutable: You can mutate the state of the object. If you rebind a
mutable object in a function, the outer scope (outside the function)
will not be aware of it.

2. immutable: You can not mutate such an object (they are constant)
nor can you rebind it inside a function body.

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
Example: list is mutable, tuple is immutable

def mutate(x):
 x[0] = 1 # mutate first element
 return x

def rebind(x):
 x = x[:] # rebind by assignment (overwrite old reference)
 return x

l = [4, 3, 2] # list: mutable object
t = (4, 3, 2) # tuple: immutable object

list (mutable)
l0 = mutate(l)
l1 = rebind(l) # rebind a mutable object creates a new object

tuple (immutable)
t0 = mutate(t) # error: can not mutate immutable!
t1 = rebind(t) # rebind an immutable object maintains the reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

PYTHON BASICS: FUNCTIONS AND ENVIRONMENTS
Example: list is mutable, tuple is immutable

ObjectsFrames
Python 3.6

 line that just executed

1 def mutate(x):
2 x[0] = 1 # mutate first element
3 return x
4
5 def rebind(x):
6 x = x[:] # rebind by assignment (ove
7 return x
8
9 l = [4, 3, 2] # list: mutable object
10 t = (4, 3, 2) # tuple: immutable object
11
12 # list (mutable)
13 l0 = mutate(l)
14 l1 = rebind(l) # rebind a mutable object
15
16 # tuple (immutable)
17 # t0 = mutate(t) # error: can not mutate
18 t1 = rebind(t) # rebind an immutable obj

Pay attention to this example!

https://pythontutor.com/visualize.html#code=def%20mutate%28x%29%3A%0A%20%20%20%20x%5B0%5D%20%3D%201%20%20%23%20mutate%20first%20element%0A%20%20%20%20return%20x%0A%0Adef%20rebind%28x%29%3A%0A%20%20%20%20x%20%3D%20x%5B%3A%5D%20%20%23%20rebind%20by%20assignment%20%28overwrite%20old%20reference%29%0A%20%20%20%20return%20x%0A%0Al%20%3D%20%5B4,%203,%202%5D%20%20%23%20list%3A%20%20mutable%20object%0At%20%3D%20%284,%203,%202%29%20%20%23%20tuple%3A%20immutable%20object%0A%0A%23%20list%20%28mutable%29%0Al0%20%3D%20mutate%28l%29%0Al1%20%3D%20rebind%28l%29%20%20%23%20rebind%20a%20mutable%20object%20creates%20a%20new%20object%0A%0A%23%20tuple%20%28immutable%29%0A%23%20t0%20%3D%20mutate%28t%29%20%23%20error%3A%20can%20not%20mutate%20immutable!%0At1%20%3D%20rebind%28t%29%20%20%23%20rebind%20an%20immutable%20object%20maintains%20the%20reference%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

PYTHON BASICS: EXECUTION MODEL
A code block is executed in an execution frame. A frame contains some

administrative information (used for debugging) and determines where and how
execution continues after the code block’s execution has completed. A Python

program is constructed from code blocks. A block is a piece of Python code that is
executed as a unit. Code blocks are among the following:

modules
function bodies
class de�nitions
commands typed interactively
a script �le (what you pass to python as an argument)
See python execution model for the remaining

https://docs.python.org/3/reference/executionmodel.html

PYTHON BASICS: NAME (VARIABLE) BINDING
Names (or variables) refer to objects. Names are introduced by name binding

operations. The following constructs bind names:

Formal parameters to functions
import statements
class and function de�nitions (these bind the class or function name in the
de�ning block)
Targets that are identi�ers if occurring in an assignment (what we did in the
function body of rebind(x) before)
for -loop headers
after the as keyword in a with statement or the expect clause

The import statement of the form from ... import * binds all names de�ned
in the imported module, except those beginning with an underscore. This form may

only be used at the module level.

PYTHON BASICS: NAME (VARIABLE) LOOKUP
A scope de�nes the visibility of a name within a block. If a local variable is de�ned

in a block, its scope includes that block. If the de�nition occurs in a function block,
the scope extends to any blocks contained within the de�ning one, unless a contained

block introduces a different binding for the name (what we did in the rebind(x)
function before).

When a name is used in a code block, it is resolved using the nearest enclosing
scope. The set of all such scopes visible to a code block is called the block’s

environment.

PYTHON BASICS: NAME (VARIABLE) LOOKUP
Example: nested function blocks

def block0():
 a = 1 # define a variable in the block0 scope (function body)

 def block1():
 b = 2 # another variable not visible to block0 scope

 def block2():
 print(a) # nearest scope is block0
 print(b) # nearest scope is block1

 block2() # calling inside block1()

 block1() # calling inside block0()

block0() # calling inside global scope

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 a = 1 # define a variable in the block0 scope (function body)

 def block1():
 b = 2 # another variable not visible to block0 scope

 def block2():
 print(a) # nearest scope is block0
 print(b) # nearest scope is block1

 block2() # calling inside block1()

 block1() # calling inside block0()

def block0():1
2
3
4
5
6
7
8
9

10
11
12
13

 14
 15
block0() # calling inside global scope16

 b = 2 # another variable not visible to block0 scope

 def block2():
 print(a) # nearest scope is block0
 print(b) # nearest scope is block1

 block2() # calling inside block1()

def block0():1
 a = 1 # define a variable in the block0 scope (function body)2
 3
 def block1():4

5
6
7
8
9

10
11

 12
 block1() # calling inside block0()13
 14
 15
block0() # calling inside global scope16

 print(a) # nearest scope is block0
 print(b) # nearest scope is block1

def block0():1
 a = 1 # define a variable in the block0 scope (function body)2
 3
 def block1():4
 b = 2 # another variable not visible to block0 scope5
 6
 def block2():7

8
9

 10
 block2() # calling inside block1()11
 12
 block1() # calling inside block0()13
 14
 15
block0() # calling inside global scope16

PYTHON BASICS: NAME (VARIABLE) LOOKUP
Example: nested function blocks

Objects

Print output (drag lower right corner to resize)

Frames

Python 3.6

 line that just executed
 next line to execute

1 def block0():
2 a = 1 # define a variable in the blo
3
4 def block1():
5 b = 2 # another variable not vis
6
7 def block2():
8 print(a) # nearest scope is
9 print(b) # nearest scope is
10
11 block2() # calling inside block1
12
13 block1() # calling inside block0()
14
15
16 block0() # calling inside global scope

pythontutor

https://pythontutor.com/visualize.html#code=def%20block0%28%29%3A%0A%20%20%20%20a%20%3D%201%20%20%23%20define%20a%20variable%20in%20the%20block0%20scope%20%28function%20body%29%0A%0A%20%20%20%20def%20block1%28%29%3A%0A%20%20%20%20%20%20%20%20b%20%3D%202%20%20%23%20another%20variable%20not%20visible%20to%20block0%20scope%0A%0A%20%20%20%20%20%20%20%20def%20block2%28%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28a%29%20%20%23%20nearest%20scope%20is%20block0%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28b%29%20%20%23%20nearest%20scope%20is%20block1%0A%0A%20%20%20%20%20%20%20%20block2%28%29%20%20%23%20calling%20inside%20block1%28%29%0A%0A%20%20%20%20block1%28%29%20%20%23%20calling%20inside%20block0%28%29%0A%0A%0Ablock0%28%29%20%20%23%20calling%20inside%20global%20scope%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

NESTED ENVIRONMENTS

NESTED ENVIRONMENTS
The previous example showed that you can nest the de�nitions of
functions (something you can not do in C for example).
When you do this, the inner function de�nitions are not even
evaluated until the outer function is called.
We also found that these inner functions have automatic access to
the name bindings (or variables) in the scope of the outer function.

NESTED ENVIRONMENTS
Example: nested function that is partially completed

Output when we run this program:

def set_partial_value(partial):
 """Return a function to be called later with captured `partial` argument"""
 def set_final_value(final):
 """Combine the `partial` name from the outer scope with the `final` name"""
 return ' '.join((partial, final))
 return set_final_value # we return a function here

recall: functions in python are first class objects
i_am = set_partial_value('Hi, my name is')
print(type(i_am))

we can call the function i_am like any other function
print(i_am('Alice'))
print(i_am('Bob'))

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<class 'function'>
Hi, my name is Alice
Hi, my name is Bob

NESTED ENVIRONMENTS
Example: nested function that is partially completed

In the set_partial_value function, both, partial and set_final_value (a
function) will be de�ned.
In python functions are �rst class objects and are treated like variables (or names)
Inside set_final_value you have access to partial which is de�ned in the scope
of the outer function.

def set_partial_value(partial):
 """Return a function to be called later with captured `partial` argument"""
 def set_final_value(final):
 """Combine the `partial` name from the outer scope with the `final` name"""
 return ' '.join((partial, final))
 return set_final_value # we return a function here

recall: functions in python are first class objects
i_am = set_partial_value('Hi, my name is')
print(type(i_am))

we can call the function i_am like any other function
print(i_am('Alice'))
print(i_am('Bob'))

1
2
3
4
5
6
7
8
9

10
11
12
13
14

NESTED ENVIRONMENTS
Example: nested function that is partially completed

An explanation in words: in line 9 we call the function
set_partial_value('Hi, my name is') and bind its return value

to the name i_am . The returned value is the inner function de�ned
inside set_partial_value which has access to the 'Hi, my name
is' argument that we have passed to the outer function call in

line 9 . Because functions are �rst class objects in python we can
now use the name i_am (note that here "name" is likely more

intuitive than "variable") just like any other function. The call to
i_am will �nalize the tuple that we could only de�ne partially

when we de�ned the outer function set_partial_value .

NESTED ENVIRONMENTS
The reason this works is that in addition to the environment in

which a user-de�ned function is running, that function has access to
a second environment: the environment in which the function was

de�ned. Here the inner function set_final_value has access to the
environment spanned by set_partial_value , which is its parent

environment.

This enables two properties:
1. Names inside the inner functions (or the outer ones for that matter) do not

interfere with names in the global scope. Inside the inner and outer functions,
the names that are nearest to them are the ones that matter.

2. An inner function can access the environment of its enclosing (outer) function.

CLOSURES

CLOSURES
Since the inner functions can capture names from an outer

function's environment, the inner function is sometimes called a
closure.

Once partial is captured by the inner function, it cannot be
changed anymore.
This inability to access data directly is called data encapsulation and
is one of the foundations in Object Oriented Programming (OOP),
next to inheritance and polymorphism.

def set_partial_value(partial):
 def set_final_value(final):
 return ' '.join((partial, final))
 return set_final_value

1
2
3
4

CLOSURES
The concept of closures in python is useful to augment functions.
Because functions are �rst class objects, passing them around as

arguments to other functions and capturing them in a closure turns
out to be useful. For example, you can augment a function with call

information or wrap a timer around them.

CLOSURES
Example: wrap a timer around a function f to obtain pro�ling information

The function inner accepts a variable list of positional and keyword arguments.
It wraps the arbitrary function f in between an execution timer.
We assume an unknown argument list for f , abstracted by *args (positional
arguments) and **kwargs (keyword arguments). See section 4. Functions in

 to refresh these.

import time

def timer(f):
 """Augment arbitrary function f with profiling information"""
 def inner(*args, **kwargs):
 t0 = time.time()
 retval = f(*args, **kwargs) # here we call the captured function
 elapsed = time.time() - t0
 print(f"{f.__name__}: elapsed time {elapsed:e} seconds")
 return retval
 return inner

1
2
3
4
5
6
7
8
9

10
11

https://learnxinyminutes.com/docs/python/

https://learnxinyminutes.com/docs/python/

CLOSURES
Example: wrap a timer around a function f to obtain pro�ling information

Test with a sleep function:

Output

import time

def sleep(x): # one positional argument x
 """Sleep for x seconds"""
 time.sleep(x)

timed_sleep = timer(sleep) # augment sleep with the timer from previous slide
timed_sleep(2) # sleep for 2 seconds

1
2
3
4
5
6
7
8

sleep: elapsed time 2.002061e+00 seconds1

DECORATORS
(also called wrappers)

Optional reading: Decorators in Chapter 4 of
 by E. Gamma, R. Helm, R. Johnson and J. Vlissides, Addison Wesley Professional, 1995.

Design Patterns: Elements of Reusable Object-Oriented
Software

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

DECORATORS
Let's recap what we did before:

We wrote a function called timer to augment or decorate any function of
interest, we called this arbitrary function f in our code.
Our intention was to wrap an execution timer around the function f .
Such a wrapper may be useful if you need to pro�le your function calls to
�nd bottlenecks in your code. There are many more useful decorations.
We performed the following steps after we wrote the timer function:

1. Write a function f for a problem you are working on.
2. To make use of the decorations in timer , we had to call the timer function

with our target function f as an argument.
3. We received a new (decorated) function which we called subsequently in our

code.

DECORATORS
Decorator = outer function + closure (that wraps code around the captured function f)

def timer(f):
 def inner(*args, **kwargs):
 t0 = time.time()
 retval = f(*args, **kwargs) # here we call the captured function
 elapsed = time.time() - t0
 print(f"{f.__name__}: elapsed time {elapsed:e} seconds")
 return retval
 return inner

1
2
3
4
5
6
7
8

Usage:

a function that performs useful work (with required and optional arguments)
def target(a, b, method='linear', log=True):
 pass

decorated_target = timer(target) # decorate it
return_value = decorated_target(a, b) # use in code (assume a and b are defined)

1
2
3
4
5
6

DECORATORS
Because the decorator pattern is so useful, python provides a special

syntax for it to reduce code bloat and make code more readable.

What we did so far (not pythonic):

def target():
 pass

decorated_target = decorator(target)

1
2
3
4

The correct (pythonic) way:

@decorator
def target():
 pass

1
2
3

DECORATORS
Our sleep function decorated with the timer function correctly done:

Output:

import time

@timer # the timer decorator was defined previously (code not repeated here)
def sleep(x):
 """Sleep for x seconds"""
 time.sleep(x)

sleep(2) # sleep for 2 seconds

1
2
3
4
5
6
7
8

sleep: elapsed time 2.002102e+00 seconds1

Be sure you understand the decorator pattern
It can be useful at many places in your code
The @timer syntax is often called "syntactic sugar". It hides all of what we have done in the
previous discussion in one line of code.
Note that we can also use the decorated function by the name we give it when we de�ne it.

DECORATORS
Be aware that a decorator is run right after you de�ned the decorated

function and not at the time you call the decorated function. Therefore, if
you have decorated code in a module, the code of the decorating function

will be executed at the time you import the module.

def decorator(f):
 print(f'{f.__name__}: start decoration')
 def closure(*args, **kwargs):
 print(f'running closure for {f.__name__}')
 f(*args, **kwargs)
 print(f'{f.__name__}: end decoration')
 return closure

@decorator
def my_func():
 print('inside function body of my_func')

print('RUNNING my_func NOW:')
my_func()

1
2
3
4
5
6
7
8
9

10
11
12
13
14

DECORATORS

Output:

def decorator(f):
 print(f'{f.__name__}: start decoration')
 def closure(*args, **kwargs):
 print(f'running closure for {f.__name__}')
 return f(*args, **kwargs)
 print(f'{f.__name__}: end decoration')
 return closure

@decorator
def my_func():
 print('inside function body of my_func')

print('RUNNING my_func NOW:')
my_func()

1
2
3
4
5
6
7
8
9

10
11
12
13
14

my_func: start decoration
my_func: end decoration
RUNNING my_func NOW:
running closure for my_func
inside function body of my_func

1
2
3
4
5

DECORATORS
Step-by-step on

Objects

Print output (drag lower right corner to resize)

Frames

Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 17
Rendered by Python Tutor

1 def decorator(f):
2 print(f'{f.__name__}: start decoratio
3 def closure(*args, **kwargs):
4 print(f'running closure for {f.__
5 return f(*args, **kwargs)
6 print(f'{f.__name__}: end decoration
7 return closure
8
9 @decorator
10 def my_func():
11 print('inside function body of my_fun
12
13 print('RUNNING my_func NOW:')
14 my_func()

pythontutor

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=def%20decorator%28f%29%3A%0A%20%20%20%20print%28f'%7Bf.__name__%7D%3A%20start%20decoration'%29%0A%20%20%20%20def%20closure%28*args,%20**kwargs%29%3A%0A%20%20%20%20%20%20%20%20print%28f'running%20closure%20for%20%7Bf.__name__%7D'%29%0A%20%20%20%20%20%20%20%20return%20f%28*args,%20**kwargs%29%0A%20%20%20%20print%28f'%7Bf.__name__%7D%3A%20end%20decoration'%29%0A%20%20%20%20return%20closure%0A%0A%40decorator%0Adef%20my_func%28%29%3A%0A%20%20%20%20print%28'inside%20function%20body%20of%20my_func'%29%0A%0Aprint%28'RUNNING%20my_func%20NOW%3A'%29%0Amy_func%28%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

RECAP
Python basics (references to objects, frames, environments,
functions,)
Nested environments
Closures
Decorators

REFERENCES
I highly recommend to spend a few minutes on these references:

https://pythontutor.com/

python programming FAQ
Learn python in X minutes

https://pythontutor.com/
https://docs.python.org/3/faq/programming.html
https://learnxinyminutes.com/docs/python/

