
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 4
Thursday, September 16th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Introduction to version control systems
Centralized and distributed approaches
Bare essentials of git
git rebase demo (rebasing is important to restore tidiness after
you've been messy) [today]

OUTLINE
More git basics
Remote repositories
Branching in git

Content and some �gures are based on the free book written by Scott Chacon and Ben Straub.Pro Git

https://git-scm.com/book/en/v2

MORE git BASICS

BASIC git COMMANDS YOU MUST INTERNALIZE

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git add git commit git push

git fetchgit merge

git pull

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git add git commit git push

git fetchgit merge

git pull

git add : add new or modi�ed �les to the index
(staging area in the .git/index �le)

Remark: you could use " git add . " to add any new or modi�ed �les in one go.

This is bad practice because it may add �les to the index that you did not intend
to. Your colleagues will not be happy about this. Only lazy people do this.

BASIC git COMMANDS YOU MUST INTERNALIZE

git commit : commit the staged changes to the repo
Remark: It is good practice to create small, well-arranged commits. You can
always rebase if you think two (or more) small commits belong to one commit.

git push : push commits to the upstream repository
Remark: The upstream repository never has a working directory checked out.
It only consists of the contents inside the .git directory. It can be on a remote

location or locally (e.g. for backup purposes). See the --bare option of git
help init .

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git add git commit git push

git fetchgit merge

git pull

git fetch : fetch new commits from the upstream
repository (e.g. from your collaborators)

Remark: This will only update your local .git repository, not your working

directory.

BASIC git COMMANDS YOU MUST INTERNALIZE

git merge : update your working directory by
merging new commits from your local repository
(joining histories)

Remark: By default this merges the branch you are currently on. You can merge
any other branches you like, we will see this in a few slides from now.

git pull : fetch commits from the upstream
repository and merge them with the current working
directory

Remark: This saves you some time as most often you want this behavior, rather
than executing git fetch followed by git merge .

UNDERSTAND THE STATUS OF YOUR FILES

From untracked to staged:

UNDERSTAND THE STATUS OF YOUR FILES

$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file

nothing added to commit but untracked files present (use "git add" to

1
2
3
4
5
6
7
8
9

10
$ git add file11
$ git status12
On branch master13
 14
No commits yet15
 16
Changes to be committed:17
 (use "git rm --cached <file>..." to unstage)18
 new file: file19

$ git add file

$ git status1
On branch master2
 3
No commits yet4
 5
Untracked files:6
 (use "git add <file>..." to include in what will be committed)7
 file8
 9
nothing added to commit but untracked files present (use "git add" to10

11
$ git status12
On branch master13
 14
No commits yet15
 16
Changes to be committed:17
 (use "git rm --cached <file>..." to unstage)18
 new file: file19

$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: file

$ git status1
On branch master2
 3
No commits yet4
 5
Untracked files:6
 (use "git add <file>..." to include in what will be committed)7
 file8
 9
nothing added to commit but untracked files present (use "git add" to10
$ git add file11

12
13
14
15
16
17
18
19

$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file

nothing added to commit but untracked files present (use "git add" to
$ git add file
$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

From staged to unmodi�ed: record the snapshot

UNDERSTAND THE STATUS OF YOUR FILES

$ git commit -m "Added untracked file"
[master (root-commit) 68581f7] Added untracked file
 1 file changed, 1 insertion(+)
 create mode 100644 file

1
2
3
4

$ git status5
On branch master6
nothing to commit, working tree clean7

$ git status
On branch master
nothing to commit, working tree clean

$ git commit -m "Added untracked file"1
[master (root-commit) 68581f7] Added untracked file2
 1 file changed, 1 insertion(+)3
 create mode 100644 file4

5
6
7

$ git commit -m "Added untracked file"
[master (root-commit) 68581f7] Added untracked file
 1 file changed, 1 insertion(+)
 create mode 100644 file
$ git status
On branch master
nothing to commit, working tree clean

1
2
3
4
5
6
7

From unmodi�ed to modi�ed: edit the tracked �le

UNDERSTAND THE STATUS OF YOUR FILES

$ echo 'Adding a new line of text' >> file1
$ git status2
On branch master3
Changes not staged for commit:4
 (use "git add <file>..." to update what will be committed)5
 (use "git restore <file>..." to discard changes in working directory6
 modified: file7
 8
no changes added to commit (use "git add" and/or "git commit -a")9

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory
 modified: file

no changes added to commit (use "git add" and/or "git commit -a")

$ echo 'Adding a new line of text' >> file1
2
3
4
5
6
7
8
9

$ echo 'Adding a new line of text' >> file
$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory
 modified: file

no changes added to commit (use "git add" and/or "git commit -a")

1
2
3
4
5
6
7
8
9

From modi�ed to staged: add the �le to the index

We can now run git commit again to go from staged to
unmodi�ed (by recording a new snapshot)

UNDERSTAND THE STATUS OF YOUR FILES

$ git add file1
$ git status2
On branch master3
 4
No commits yet5
 6
Changes to be committed:7
 (use "git restore --staged <file>..." to unstage)8
 modified: file9

$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

$ git add file1
2
3
4
5
6
7
8
9

$ git add file
$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

1
2
3
4
5
6
7
8
9

Instead of running git add file and then commit, we can
combine these steps by
git commit -am <commit message>
" git commit -a " is not the same as " git add . " followed by
git commit (the latter adds untracked �les too!)

If you modify a staged �le again:

New modi�cations are separate from the ones you have staged earlier
If they belong in the same commit, then you need to run git add file
again to add your new changes to the already staged changes!

UNDERSTAND THE STATUS OF YOUR FILES

$ echo "Modify a staged file" >> file
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working director
 modified: file

1
2
3
4
5
6
7
8
9

10
11

$ git add file12
$ git status13
On branch master14
Changes to be committed:15
 (use "git restore --staged <file>..." to unstage)16
 modified: file17

$ git add file
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

$ echo "Modify a staged file" >> file1
$ git status2
On branch master3
Changes to be committed:4
 (use "git restore --staged <file>..." to unstage)5
 modified: file6
 7
Changes not staged for commit:8
 (use "git add <file>..." to update what will be committed)9
 (use "git restore <file>..." to discard changes in working director10
 modified: file11

12
13
14
15
16
17

$ echo "Modify a staged file" >> file
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working director
 modified: file
$ git add file
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

You can remove tracked �les from the repository.
Removing �les has two faces in git :

1. Remove �les from the .git repository, keep them in
your �le system

2. Remove �les from both, .git repository and your
�le system.

UNDERSTAND THE STATUS OF YOUR FILES

1. Remove �les from the .git repository, keep them in
your �le system

We still need to commit the changes, even when we delete �les
from the repository. Remember: git thinks in terms of �le systems,
you must record a snapshot when you remove �les too.

UNDERSTAND THE STATUS OF YOUR FILES

$ git ls-files # list files that are known to git
file

1
2

$ git rm --cached file3
rm 'file'4
$ git ls-files # no output = no files tracked5
$ ls6
file # the file is still with us, but not under VCS anymore7
$ git status8
On branch master9
Changes to be committed:10
 (use "git restore --staged <file>..." to unstage)11
 deleted: file12
 13
Untracked files:14
 (use "git add <file>..." to include in what will be committed)15
 file16

$ git rm --cached file
rm 'file'

$ git ls-files # list files that are known to git1
file2

3
4

$ git ls-files # no output = no files tracked5
$ ls6
file # the file is still with us, but not under VCS anymore7
$ git status8
On branch master9
Changes to be committed:10
 (use "git restore --staged <file>..." to unstage)11
 deleted: file12
 13
Untracked files:14
 (use "git add <file>..." to include in what will be committed)15
 file16

$ git ls-files # no output = no files tracked

$ git ls-files # list files that are known to git1
file2
$ git rm --cached file3
rm 'file'4

5
$ ls6
file # the file is still with us, but not under VCS anymore7
$ git status8
On branch master9
Changes to be committed:10
 (use "git restore --staged <file>..." to unstage)11
 deleted: file12
 13
Untracked files:14
 (use "git add <file>..." to include in what will be committed)15
 file16

$ ls
file # the file is still with us, but not under VCS anymore

$ git ls-files # list files that are known to git1
file2
$ git rm --cached file3
rm 'file'4
$ git ls-files # no output = no files tracked5

6
7

$ git status8
On branch master9
Changes to be committed:10
 (use "git restore --staged <file>..." to unstage)11
 deleted: file12
 13
Untracked files:14
 (use "git add <file>..." to include in what will be committed)15
 file16

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: file

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file

$ git ls-files # list files that are known to git1
file2
$ git rm --cached file3
rm 'file'4
$ git ls-files # no output = no files tracked5
$ ls6
file # the file is still with us, but not under VCS anymore7

8
9

10
11
12
13
14
15
16

$ git ls-files # list files that are known to git
file
$ git rm --cached file
rm 'file'
$ git ls-files # no output = no files tracked
$ ls
file # the file is still with us, but not under VCS anymore
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: file

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1. Remove �les from the .git repository, keep them in
your �le system

2. Remove �les from both, .git repository and your
�le system.

This time the �le is gone (git does not report untracked �les in
the current directory)
But fear not, we can still restore any removed �les from the git
�le system snapshot using " git restore "
There were couple of times where git really saved me from a lot
of trouble thanks to restoring...

UNDERSTAND THE STATUS OF YOUR FILES

$ git rm file
rm 'file'

1
2

$ git status3
On branch master4
Changes to be committed:5
 (use "git restore --staged <file>..." to unstage)6
 deleted: file7

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: file

$ git rm file1
rm 'file'2

3
4
5
6
7

$ git rm file
rm 'file'
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: file

1
2
3
4
5
6
7

Note that git uses the same command name to
remove �les as on the Linux command line itself: rm

UNDERSTAND THE STATUS OF YOUR FILES

The same applies when you want to rename �les. In
that case you would use the mv command (move) in
the Linux command line as well as for git : git mv

$ git mv file new_filename
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 renamed: file -> new_filename

1
2
3
4
5
6

To move a �le means to change the �le system. git
wants you to commit a snapshot for this action, as
usual.

KNOW YOUR HISTORY
Every commit you make in git is recorded in the history.
The history contains a huge amount of information and obviously is
important when you need to comprehend changes that were not
necessarily committed by you.

For that reason, every commit must be documented accordingly.

It is not easy to write good commit messages!

KNOW YOUR HISTORY
Good practices for commit messages:

The anatomy of a commit message is:
Message subject: One single line, (should be) not more than 72 characters

Longer message body: The body provides more details if the commit
contains a complex change. It can consist of multiple paragraphs,
formatted at 72 characters per line maximum (some projects are very
strict on these format requirements because the commit will go into the
history of the project and it should maintain a consistent format).
These format requirements are usually implemented (or can be configured
easily) in editors like vim or emacs when you write git commit messages.
You may omit the message body if your commit is small and the subject is
descriptive enough.

(The subject line above is actually 74 characters long...)

1
2
3
4
5
6
7
8
9

10
11
12
13

Write short and concise message subjects!
$ git log --oneline
9cb047b (HEAD -> master) Add license information in README.md <- OK
b51859a (origin/master) Add tests <- Not very descriptive!
2c1f77c Minor <- This is bad!
5dfb982 Bug fix <- Also bad!

1
2
3
4
5

KNOW YOUR HISTORY
You display the history with " git log "
The anatomy of a history entry looks like this:

Commit identi�er (SHA-1 hash)
Commit author/committer and date
Commit subject
Followed by commit body

commit 72e96d44caf034fdad447eb40ff9cf001075bd0f
Author: Fabian Wermelinger <author@domain.net>
Date: Mon Jun 21 18:38:39 2021 +0200

 Add src_field_ and dst_field_ for pointwise kernel inputs

 Memory layout in fields is more favorable for pointwise operations than
 pitched layout in labs. This allows to test kernels that take a field
 (without ghost cells) as input source.

1
2
3
4
5
6
7
8
9

KNOW YOUR HISTORY
Searching the history: git log

Often you need to search the history for speci�c keywords,
commits or the commit author
You can specify the --grep=<pattern> option to search for a regex
pattern. This searches log messages (subject or body)
You can specify the --author=<pattern> option to search for a
particular author/committer using a regex pattern. This only
searches author information but not commit messages.
If you use the --grep option multiple times, any pattern may
match. If you want that all patterns must match pass the --all-
match option.

KNOW YOUR HISTORY
Formatting the output: git log

You can change the format of how git displays the history log
Use git log --pretty=oneline to display the commits in
compact form (this option also exists as --oneline because it is
used often). If you want a lot of information, you can use
--pretty=fuller instead. See git help log for docs.

Your git installation also ships with a graphical tool that you
may use to explore the history. You can use the gitk tool or git
gui

IGNORE DATA THAT YOU DON'T WANT TO TRACK
Often you will have certain �les in your project that you don't want
under VCS
In git you can use one or many .gitignore �les for this purpose
Recall that �les starting with a " . " are hidden �les

IGNORE DATA THAT YOU DON'T WANT TO TRACK
Example:

Content of .gitignore �le:
you can use comments too!
__pycache__/ # this ignores a whole directory
*.bak # name of backup files
*~ # some editors create backup files ending with '~'

1
2
3
4

Let's create an annoying �le:
$ touch .DS_Store # annoying meta-data file in Mac OSX
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .DS_Store

nothing added to commit but untracked files present (use "git add" to track)

1
2
3
4
5
6
7
8
9

10

IGNORE DATA THAT YOU DON'T WANT TO TRACK
Example:

We can add it to the .gitignore �le:

Notice that .DS_Store does no longer show up as an untracked �le.

$ echo '.DS_Store' >> .gitignore
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: .gitignore

no changes added to commit (use "git add" and/or "git commit -a")

1
2
3
4
5
6
7
8
9

10
11

Of course we have modi�ed our tracked .gitignore �le, which we
must now stage and commit to make the changes persistent.

A FEW COMMENTS ON .gitignore
It is essential that you keep your repository clean, the
.gitignore �le is the key to a clean house.

You usually have one in the root directory and possibly others in
more speci�c locations of your project
Often they have speci�c entries for the programming language you
are using. E.g. for python you want to ignore the __pycache__
directories.
GitHub offers you some templates for this �le at the time when
you create a new repository, have a look at them to get an idea. I
often prefer to create them from scratch and extend them
incrementally.

A FEW COMMENTS ON .gitignore
git is great for VCS of text �les
It can handle binary �les but they are more dif�cult to track. This
often leads to bloating up the size of your .git repository.
Ignore such �les in your .gitignore �les. E.g. for PDF �les:

If you must make an exception, force add the �le to the index:

You can use " ! " as negation in your .gitignore �les:

*.pdf # ignore all pdf's1

$ git add --force important.pdf1

* # ignore everything (remember the wildcard in the shell, it expands to anything)
!*.py # except any file with the .py suffix

1
2

GETTING git help
All commands in git have proper manual pages

You can get them in two ways:
1. Via git : git help commit
2. Via man : man git-commit

REMOTE REPOSITORIES

REMOTE REPOSITORIES
Recall distributed VCS:

The "server computer" is called a remote.

REMOTE REPOSITORIES

It can be a server from GitHub, for example, but it
can also be local on your computer.
The term "remote" does not necessarily imply that it
is some place else on the internet, only that the
remote repository is somewhere else.
All that a remote repository needs is the content of
the .git directory, such a repository is called a bare
repository.
You can list the remotes with git remote show .

REMOTE REPOSITORIES DEMO
Let us emulate these git repositories:

As soon as you work with collaborators, you may run into
git rejecting your push because your local repository is not
up to date with the remote you are trying to push to:

Simply fetch and merge these changes �rst before you
push. Recall: git pull does both of these tasks in one shot.

REMOTE REPOSITORIES DEMO
Let us emulate these git repositories:

 ! [rejected] master -> master (fetch first)
error: failed to push some refs to '../remote/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

The pull in the previous demo went smooth. In the
real world, this may not always be the case.
In many cases git is very good at performing
merges...

REMOTE REPOSITORIES DEMO
Let us emulate these git repositories:

...but what should git do when two collaborators
modify the exact same place in a �le?

Let's continue our demo and see...

Merge con�icts are not uncommon and are possibly
the trickiest part in git . They are hard to avoid in
distributed VCS.

And are another good reason why you want to keep
your individual commits small and well-structured.
git offers you a tool to resolve merge con�icts:
git help mergetool

REMOTE REPOSITORIES DEMO
Let us emulate these git repositories:

REMOTE REPOSITORIES
You can add as many remotes as you like.
If you do not setup a tracking branch for git push , then you must
explicitly say which remote you want to push to and which branch.
The same is true for git pull .
On GitHub you can choose to use https or ssh to communicate
with a remote.
If you use https you now must create a token in
"Settings/Developer Settings".
For ssh you should generate an ssh key using ssh-keygen -t rsa
-b 4096 and upload the public key part to GitHub.

BRANCHING IN git

BRANCHING IN git
We have encountered branches already but not said much about
them up to now.
In your GitHub repo, main or master are branches. In git
everything is a branch.
Branches are your main tool for development. They allow you to
get messy without breaking anything in the main branch and you
can just discard them and start over.

Historically, branching is an expensive task in VCS, not so in git
In git , a branch is just an alias name for a SHA-1 hash that points
to a particular snapshot
$ cat .git/refs/heads/master
d5278fbd2931b75e9f41ef031448fa1b2696fce4

BRANCHING IN git
Assume you have a new repository and you just created the initial
commit A :

The "pointer" named master contains the same SHA-1 entry as the
one generated for commit A .

A master

Now suppose we make two more commits B and C . The pointer
that describes the master branch moves along:
A---B---C master

At this point in your development stage, you notice a strange
behavior of your code and you suspect that a bug has been
introduced. How to proceed now?

BRANCHING IN git
You could continue on master but this is not a good idea because
�xing a bug requires you to throw things around. Create a new
branch for this bug �x:
$ git switch -c bugfix1 # the -c option creates the branch if it does not exist

Note: in older versions of git a new branch was checked out like this

The reason this is confusing is because git checkout has dual meaning:
1. It can checkout branches
2. It can checkout individual �les and restore their content

Newer versions of git split these tasks by introducing two new commands:
1. git switch : switch branches
2. git restore : restore �les

$ git checkout -b bugfix1 # the -b option creates the branch if it does not exist

Our revision timeline now looks like this:
A---B---C master # branch point is C
 \
 bugfix1 # branch point is C, active branch and what HEAD points to

BRANCHING IN git
Our revision timeline now looks like this:

There is a special pointer in git called HEAD . It always points to
the currently active branch.

A---B---C master # branch point is C
 \
 bugfix1 # branch point is C, active branch and what HEAD points to

Now we do some work and �x this bug. Assume the next two
commits D and E implement these �xes:

We also switched back to the master branch.
Which git command did we use for this?

A---B---C master # this is the active branch now
 \
 D---E bugfix1 # this branch contains the bug fixing code

git switch master

BRANCHING IN git
We have now tested our changes on the bugfix1 branch and are
back on the master branch as we would like to merge the history
of bugfix1 into master .

Because there are no new commits on master since we branched
off, the merge is trivial. git has two options:

1. Fold bugfix1 and master together (fast-forward merge)
2. Create a merge commit which joins bugfix1 and master in a common

commit.

A---B---C master # this is the active branch now
 \
 D---E bugfix1 # this branch contains the bug fixing code

BRANCHING IN git
Situation before merge:

Fast-Forward merge: this is the default that git assumes. Assume
you are on the master branch, the command for this merge is
git merge [--ff] bugfix1 (the fast-forward option --ff is implied if not given)

After this merge your history looks like this:

A---B---C master # this is the active branch now
 \
 D---E bugfix1 # this branch contains the bug fixing code

A---B---C---D---E master
 \
 bugfix1 # this branch is now dangling

The bugfix1 branch is now fully merged in master . We do not
need it anymore and it is good practice to remove it:
git branch -d bugfix1
A---B---C---D---E master

BRANCHING IN git
Situation before merge:

Non Fast-Forward merge: this type of merge creates a common join
commit for the merge:
git merge --no-ff bugfix1

After this merge your history looks like this:

A---B---C master # this is the active branch now
 \
 D---E bugfix1 # this branch contains the bug fixing code

A---B---C-------F master # F is called a merge commit
 \ /
 D---E bugfix1 # this branch is now dangling

Same story for keeping your repository clean:
git branch -d bugfix1
A---B---C-------F master
 \ /
 D---E

FAST-FORWARD WITH MERGE-COMMIT

BRANCHING IN git
Compare the difference of the two approaches:

$ git log --oneline --graph
* 57f4883 (HEAD -> master) Commit E
* d5278fb Commit D
* 9cb047b Commit C
* b51859a Commit B
* 2c1f77c Commit A

$ git log --oneline --graph
* 4466977 (HEAD -> master) Merge branch 'b
|\ (Commit F)
| * 57f4883 Commit E
| * d5278fb Commit D
|/
* 9cb047b Commit C
* b51859a Commit B
* 2c1f77c Commit A

Linear history: Non-linear history:

A---B---C---D---E master A---B---C-------F master
 \ /
 D---E

FAST-FORWARD WITH MERGE-COMMIT

BRANCHING IN git
Compare the difference of the two approaches:

Some people argue that creating merge commits adds noise to your
history (technically they are not needed)
They preserve your branching history, which may be useful to
understand at some point in your project(s)
Some projects have policies for that, be aware of it

$ git log --oneline --graph
* 57f4883 (HEAD -> master) Commit E
* d5278fb Commit D
* 9cb047b Commit C
* b51859a Commit B
* 2c1f77c Commit A

$ git log --oneline --graph
* 4466977 (HEAD -> master) Merge branch 'b
|\ (Commit F)
| * 57f4883 Commit E
| * d5278fb Commit D
|/
* 9cb047b Commit C
* b51859a Commit B
* 2c1f77c Commit A

STASHING CHANGES WITHOUT COMMITTING
Assume you �nd yourself in this situation:

Common scenario: you stop work on the bugfix1 branch temporarily and need to switch to
some other branch (say master). Your work on bugfix1 is not ready to be committed yet.

A---B---C master
 \
 D-* bugfix1 # a bugfix branch, active branch ('*' means modified files)

$ git switch master
error: Your local changes to the following files would be overwritten by checkout:
 file
Please commit your changes or stash them before you switch branches.
Aborting

$ git status1
On branch bugfix12
Changes not staged for commit:3
 (use "git add <file>..." to update what will be committed)4
 (use "git restore <file>..." to discard changes in working directory)5
 modified: file6
 7
no changes added to commit (use "git add" and/or "git commit -a")8

9
10
11
12
13

$ git status
On branch bugfix1
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: file

no changes added to commit (use "git add" and/or "git commit -a")
$ git switch master
error: Your local changes to the following files would be overwritten by checkout:
 file
Please commit your changes or stash them before you switch branches.
Aborting

1
2
3
4
5
6
7
8
9

10
11
12
13

STASHING CHANGES WITHOUT COMMITTING
Assume you �nd yourself in this situation:

Common scenario: you stop work on the bugfix1 branch temporarily and need to switch to
some other branch (say master). Your work on bugfix1 is not ready to be committed yet.

If committing is too early, you can use git stash to temporarily stash your changes:

A---B---C master
 \
 D-* bugfix1 # a bugfix branch, active branch ('*' means modified files)

$ git stash # push current work on top of stash stack
Saved working directory and index state WIP on bugfix1: b955cbe Adding new file on bugfix

1
2

$ git stash list # list all stashed work, WIP means Work In Progress3
stash@{0}: WIP on bugfix1: b955cbe Adding new file on bugfix14
$ git status5
On branch bugfix16
nothing to commit, working tree clean7
$ git switch master # do some other work on master8
Switched to branch 'master'9

$ git stash list # list all stashed work, WIP means Work In Progress
stash@{0}: WIP on bugfix1: b955cbe Adding new file on bugfix1

$ git stash # push current work on top of stash stack1
Saved working directory and index state WIP on bugfix1: b955cbe Adding new file on bugfix2

3
4

$ git status5
On branch bugfix16
nothing to commit, working tree clean7
$ git switch master # do some other work on master8
Switched to branch 'master'9

$ git status
On branch bugfix1
nothing to commit, working tree clean

$ git stash # push current work on top of stash stack1
Saved working directory and index state WIP on bugfix1: b955cbe Adding new file on bugfix2
$ git stash list # list all stashed work, WIP means Work In Progress3
stash@{0}: WIP on bugfix1: b955cbe Adding new file on bugfix14

5
6
7

$ git switch master # do some other work on master8
Switched to branch 'master'9
$ git switch master # do some other work on master
Switched to branch 'master'

$ git stash # push current work on top of stash stack1
Saved working directory and index state WIP on bugfix1: b955cbe Adding new file on bugfix2
$ git stash list # list all stashed work, WIP means Work In Progress3
stash@{0}: WIP on bugfix1: b955cbe Adding new file on bugfix14
$ git status5
On branch bugfix16
nothing to commit, working tree clean7

8
9

$ git stash # push current work on top of stash stack
Saved working directory and index state WIP on bugfix1: b955cbe Adding new file on bugfix
$ git stash list # list all stashed work, WIP means Work In Progress
stash@{0}: WIP on bugfix1: b955cbe Adding new file on bugfix1
$ git status
On branch bugfix1
nothing to commit, working tree clean
$ git switch master # do some other work on master
Switched to branch 'master'

1
2
3
4
5
6
7
8
9

STASHING CHANGES WITHOUT COMMITTING
Assume you �nd yourself in this situation:

Common scenario: you stop work on the bugfix1 branch temporarily and need to switch to
some other branch (say master). Your work on bugfix1 is not ready to be committed yet.

If committing is too early, you can use git stash to temporarily stash your changes:

A---B---C master
 \
 D-* bugfix1 # a bugfix branch, active branch ('*' means modified files)

$ git switch bugfix1 # when done return to your bugfix1 branch
Switched to branch 'bugfix1'

1
2

$ git stash pop # apply your last stashed changes, i.e. stash@{0}3
On branch bugfix14
Changes not staged for commit:5
 (use "git add <file>..." to update what will be committed)6
 (use "git restore <file>..." to discard changes in working directory)7
 modified: file8
 9
no changes added to commit (use "git add" and/or "git commit -a")10
Dropped refs/stash@{0} (e3e552a02d84049a314e77edcb34dae0987ef145)11

$ git stash pop # apply your last stashed changes, i.e. stash@{0}
On branch bugfix1
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: file

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (e3e552a02d84049a314e77edcb34dae0987ef145)

$ git switch bugfix1 # when done return to your bugfix1 branch1
Switched to branch 'bugfix1'2

3
4
5
6
7
8
9

10
11

$ git switch bugfix1 # when done return to your bugfix1 branch
Switched to branch 'bugfix1'
$ git stash pop # apply your last stashed changes, i.e. stash@{0}
On branch bugfix1
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: file

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (e3e552a02d84049a314e77edcb34dae0987ef145)

1
2
3
4
5
6
7
8
9

10
11

LINEAR HISTROY AND git rebase
Lets return to our previous state but now we have a collaborator who

did work on master in the meantime (the commit labels A , B ,... are
only symbolic, don't take them literally):

Can you apply a fast-forward merge strategy in this case?

A---B---C---D---E master # work has advanced on this branch
 \
 F---G bugfix1 # this branch contains the bug fix, active branch

LINEAR HISTROY AND git rebase

Can you apply a fast-forward merge strategy in this case?

You can not. Remember, once a history is recorded by computing
the SHA-1 hash, we can not change it anymore.

A---B---C---D---E master # work has advanced on this branch
 \
 F---G bugfix1 # this branch contains the bug fix, active branch

There are two options:

1. Merge via a merge commit (same as before)
2. If bugfix1 is a branch that only exists in your local .git

repository, we can rebase and therefore rewrite the local
history that none of your collaborators has seen yet.

LINEAR HISTROY AND git rebase

Merge via merge commit: same as in the previous case where work
on master did not advance:

1. git switch master (change to the target branch)
2. git merge bugfix1

3. git branch -d bugfix1 (clean up)

A---B---C---D---E master # work has advanced on this branch
 \
 F---G bugfix1 # this branch contains the bug fix, active branch

A---B---C---D---E---H master # this is the active branch now
 \ /
 F-------G bugfix1 # this branch contains the bug fix, now dangling

LINEAR HISTROY AND git rebase

Rebase and merge: here we �rst rebase our bugfix1 branch onto the
advanced master branch and then use a fast-forward merge to
linearize the history (we start with the state shown above):

1. git rebase master (Rewriting history here!)

Commits F' and G' have a different SHA-1 than F and G , therefore, history is rewritten!
Their time stamp remains the same

2. git switch master && git merge bugfix1

3. git branch -d bugfix1 (clean up)

A---B---C---D---E master # work has advanced on this branch
 \
 F---G bugfix1 # this branch contains the bug fix, active branch

A---B---C---D---E master # work has advanced on this branch
 \
 F'---G' bugfix1 # after rebase, active branch

A---B---C---D---E---F'---G' master # rebased history
 \
 bugfix1 # now dangling

LINEAR HISTROY AND git rebase
git rebase unwinds commits and re-applies them on top of
another commit. Naturally, this changes your history
Rebased histories can have commit time stamps that are not in
chronological order
But rebasing allows to linearize your history
Some projects have policies for these merge strategies. Be sure to
check them out before collaborating.

You can get into big trouble if you rebase a history and (forcefully) push it to
a remote where others can pull from. git does not allow you to do this by
default, but you can force it with git push --force . It will invalidate the

history in all your collaborators' local repositories. Be careful.

RECAP
More git basics: use git status often.
Remote repositories: differences between a normal .git repository
and a bare .git repository, merge con�icts.
Branching in git : fast-forward merges and rebasing, linear and
non-linear histories.

REFERENCE
 by Scott Chacon and Ben Straub, Apress

(Chapters 2, 3 and 4)
Pro Git book

git command reference

https://git-scm.com/book/en/v2
https://git-scm.com/docs

