
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 3
Tuesday, September 14th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Shell customization
Input/Output (I/O) and redirection
Job/process management
Environment variables
Shell scripting (today)

OUTLINE
Introduction to version control systems
Centralized and distributed approaches
Bare essentials of git
Interactive git rebase demo

Content and some �gures are based on the free book written by Scott Chacon and Ben Straub.Pro Git

https://git-scm.com/book/en/v2

NEW TEACHING FELLOWS

Sergey Litvinov David Assaraf
lisergey@seas.harvard.edu davidassaraf@g.harvard.edu

mailto:lisergey@seas.harvard.edu
mailto:davidassaraf@g.harvard.edu

PP-SECTIONS IN-PERSON
Pair-programming sections are now mostly in-person. This is not only more ef�cient
for the supervising TF but also more ef�cient for your team progress.
We continue to offer two sections via zoom mainly for students in self-quarantine.

We have also added two more of�ce hours. See the main website https://harvard-
iacs.github.io/2021-CS107/

https://harvard-iacs.github.io/2021-CS107/

INTRODUCTION TO VERSION CONTROL SYSTEMS

INTRODUCTION TO VERSION CONTROL SYSTEMS
WHAT IS VERSION CONTROL?

Version control is a system (abbreviated VCS) that records changes
to a �le or set of �les over time so that you can recall speci�c

versions later.

VCS is absolutely essential if you plan to do serious software
development (academic and company based software development)
If you work on a software project with more than one person*, not

having a VCS will just not work! (*note that it should actually read
more than zero)

LOCAL VERSION CONTROL
If you would only need version control on your local machine (e.g.
laptop), you would probably make backup copies of your �les into

some directory you dedicate for VCS.

LOCAL VERSION CONTROL

Discuss with your neighbors:
If you were to implement such a tool with a shell script, which of
the available basic Linux commands would you use for this task?

LOCAL VERSION CONTROL
Discuss with your neighbors:

If you were to implement such a tool with a shell script, which of
the available basic Linux commands would you use for this task?

One command that would be useful for this task is diff . You can
track the difference between two �les and store this data as
patches. You can then reconstruct the state of a �le at an earlier
time by recursively applying patches in reverse.
You could also use the rsync tool together with ln to form
hard-links. This strategy is similar to differential backups but
would likely require more disk space than storing simple diffs
only.

LOCAL VERSION CONTROL
Doing all of this through a shell script is, of course, error prone and
associated with quite some overhead to get the script to a state with
production quality.
Additional complexity will be added when you must account for
multiple users which are possibly not working on the same machine.
(Each user has a local VCS database, how do you sync it?)
There are many tools that can do the job much more ef�cient, with
a minimal extra overhead for you to maintain your code/�les.

EXAMPLE FOR VCS IN ACTION
Many people maintain a directory with all sorts of con�guration �les for

tools, such as bash , zsh , vim , git and others. Here is a snapshot of my .rc
directory, which is under VCS as seen in the prompt:

EXAMPLE FOR VCS IN ACTION
Why do I care about having these �les under VCS?

I have accounts on multiple machines. E.g. my laptop, remote clusters,
RaspberryPi, etc.
I spend more time on one machine than others, but when I am working that
other machine, I want my con�guration to be identical.
My con�g �les change often. I learn something new that I think is useful, I
will integrate it in my work�ow.
Because I am using VCS, I can make such changes irrespective of the
machine I am currently working on. Any changes propagate to all the other
machines by pushing the changes to a remote hub.
A year later I can browse through my VCS history and re�ect the old times
while thinking to myself "I can't believe I did such a complicated thing back
then..."

EXAMPLE FOR VCS IN ACTION
You can still be �exible, even with VCS:

My main .bashrc �le is under VCS in the $HOME/.rc directory
On each machine you create the ~/.bashrc �le which wraps your
main .bashrc �le that is under VCS:

set -o vi

source your main .bashrc configuration (under VCS)
source ~/.rc/.bashrc

local machine specific environment variables, possibly override vars if ne
export EDITOR=vim
export GIT_EDITOR=vim
export VISUAL=vim
export BROWSER=qutebrowser
export DEFAULT_PDF=zathura
export PDFVIEWER=zathura
export LOCAL=$HOME/local
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14

WHY VCS IS A REQUIREMENT
Every change you commit is tracked (author, time, changelog)
You can easily revert changes
The VCS allows you to bisect your commits in case you need to
isolate a bug (e.g.)git-bisect
You know exactly when, where and who introduced changes. This is
crucial in large projects with many developers.
Think carefully about changes you commit in large projects, your
name tag is on it and people will know. This must not scare you, but
raise awareness to become a better programmer!

https://git-scm.com/docs/git-bisect

EXAMPLES OF VERSION CONTROL SYSTEMS
Concurrent Version Systems (CVS)

Subversion (SVN)

Helix Core (proprietary)

Centralized VCS

http://cvs.nongnu.org/

https://subversion.apache.org/

https://www.perforce.com/products/helix-alm

Bazaar https://bazaar.canonical.com/en/

Darcs http://darcs.net/

Git https://git-scm.com/

Mercurial https://www.mercurial-scm.org/

Distributed VCS

Google Drive and Dropbox are no examples of VCS

http://cvs.nongnu.org/
https://subversion.apache.org/
https://www.perforce.com/products/helix-alm
https://bazaar.canonical.com/en/
http://darcs.net/
https://git-scm.com/
https://www.mercurial-scm.org/

CENTRALIZED AND DISTRIBUTED MODELS FOR VCS
The two main VCS modeling approaches for collaboration

Instead of hosting the
VCS database locally,
it is hosted on a
central server
Administrators have
�ne grained control
over access rights
and policies
Every one knows to
certain degree what
everyone else does

CENTRALIZED MODEL (CLIENT-SERVER)

Work�ow in a centralized VCS (CVCS):

1. A developer checks out a �le to do work on.

What should be the policy for other developers who want to
checkout the same �le?

CENTRALIZED MODEL (CLIENT-SERVER)

i. File locking: local read-only, write access through locking.
ii. Version merging: local read- and write-access, con�icts resolved

through merging algorithms.
2. Commit the changes and check-in the �le on the central repository:

i. File locking: the check-in process is trivial. The updated �le is
simply added.

What is the main drawback?
ii. Version merging: if multiple developers modi�ed the same �le,

individual changes must be merged. Can be an expensive
operation for large changes.

This slide shows examples of different CVCS

There are problems with CVCS however:

Single server instance. If the server dies, you
better have a backup!
During server downtime (or you are of�ine), your
whole team enjoys a free break, with coffee on the
house.
Branching for feature testing and implementation is
not trivial in CVCS.
Resolving merge con�icts can be an expensive
problem.

CENTRALIZED MODEL (CLIENT-SERVER)

Clients do not only checkout
the latest snapshot, but
mirror the full repository
If a server instance dies,
everybody has a backup
locally
It allows you to work
completely of�ine
Having multiple server
instances is trivial and
allows for hierarchical
collaboration

DISTRIBUTED MODEL

Work�ow in a distributed VCS (DVCS):

1. A developer clones a repository if it does not exist locally yet.

DISTRIBUTED MODEL

2. Modi�cations are committed on the local repository. There are two
ways how these commits can be distributed to collaborators:

i. Sending patches to collaborators via email. Receivers then
patch their local repositories (you would not need a remote server
computer in this case).

ii. Hosting the repository remotely where commits can be pushed
to or pulled from (as in the �gure on the left).

What do you think is a potential dif�culty in the
distributed work�ow?

This slide shows examples of different DVCS

BARE ESSENTIALS OF git

WHY git EXACTLY?
We have seen that there are many alternatives. The existence of git

emerges from the Linux kernel development:

The Linux kernel is a very large project
There are many contributors developing in parallel
On many feature branches

Linus Torvalds created git . The home of git is
https://git.kernel.org/pub/scm/git/git.git/

https://git.kernel.org/pub/scm/git/git.git/

WHY git EXACTLY?
These requirements are summarized in the following key

characteristics of git :

Speed
Simple design
Strong support for non-linear development (thousands of parallel
branches)
Fully distributed
Ability to handle large projects ef�ciently in terms of speed and data size

Side note: before git , the Linux kernel used BitKeeper which changed licensing policies to
commercial focus in 2005 (the year git was born). Now the Linux kernel uses git and

BitKeeper is open-source...

git REFERENCES
Recommended git references:

Excellent Atlassian tutorial:

git get started on GitHub:

StackOver�ow beginners guide:

Selection of projects and companies that use git :

https://www.atlassian.com/git/tutorials

https://docs.github.com/en/get-started/quickstart/set-up-git

https://stackover�ow.com/questions/315911/git-for-beginners-the-de�nitive-
practical-guide

https://www.atlassian.com/git/tutorials
https://docs.github.com/en/get-started/quickstart/set-up-git
https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide

THE BARE ESSENTIALS OF git
BEFORE WE START:

The �rst steps you should take when working with git is to ensure
that your contact information is setup correctly. Every commit

contains the author information with an email address. All your git
customization is done in the �le ~/.gitconfig . Verify that the �le

exists and you have at least the following lines:

[user]
 name = FirstName LastName
 email = you@domain.com

1
2
3

THE BARE ESSENTIALS OF git
BEFORE WE START:

The �rst steps you should take when working with git is to ensure
that your contact information is setup correctly. Every commit

contains the author information with an email address. All your git
customization is done in the �le ~/.gitconfig . Verify that the �le

exists and you have at least the following lines:

[user]
 name = FirstName LastName
 email = you@domain.com
[core]
 editor = vim ; and possibly this

1
2
3
4
5

THE BARE ESSENTIALS OF git
The major difference between git and any other VCS is the way

git thinks about its data

Most other VCS store the data as a list of �le-based changes
We refer to this as delta-based version control
Think of "delta" as a difference, often denoted by the Greek Delta
Recall the earlier slide (local VCS): using the diff command to
implement a VCS system is a -based approach.

Δ

Δ

THE BARE ESSENTIALS OF git

Storing data as a series of differences relative to a base version (delta-based VCS)

THE BARE ESSENTIALS OF git
git thinks about its data more like a �le system and it stores the

state of the full �le system for a particular instant in time.

Such a frozen state is called a snapshot
Think of it as if git is taking a picture of all your �les whenever you
add a commit
If a �le has not changed git will not store it again but simply add a
reference to the already stored �le
Recall the earlier slide (local VCS): using the rsync command (with
hard-links) to implement a VCS system is more like git handles
things (to give you the idea).

THE BARE ESSENTIALS OF git

Storing data as a stream of snapshots, how git does it. Dashed lines indicate
references to the previous version.

git (each version is a snapshot of
the full file system)

Most other VCS (each version records
a set of differences between

individual files)

THE BARE ESSENTIALS OF git

THE BARE ESSENTIALS OF git
git does not reference its �les by name!

Everything in git is checksummed
It uses the for this
The result looks something like this:
05682360767630528cc5188a81f88d5e64711608

SHA-1 hashing algorithm

Once the hash is computed, it is impossible (or extremely hard) to
change (or corrupt) the underlying �le system state
It means that changes you commit are �nal (especially once you push
them to a remote to share your changes with others)

Before you share your changes, you can be messy and play around
in your local repository as much as you like without breaking
anything. This is where git stands out from all other VCSs!

https://en.wikipedia.org/wiki/SHA-1

THE BARE ESSENTIALS OF git
There are three �le states in git that are very important to

understand:

1. modified : you have changed the �le but not committed to your
local database

2. staged : you have marked a modi�ed �le to go into your next
commit snapshot

3. committed : the data is safely stored in your local database (SHA-1
hash is computed)

THE BARE ESSENTIALS OF git
This leads to three main sections of a git project:

1. The working tree where you modify �les
Holds the �les of a decompressed snapshot (git stores data using compression
algorithms)
Here is where you play around and get creative

2. The staging area where you put your staged �les (also referred to as index)
The staging area is simply a �le inside the .git directory called index
You selectively add changes to the index that you plan for the next commit
You should add logical, small changes at a time. If you are faced with a larger problem,
divide it into smaller sub-problems and go step-by-step. Why is this good advice?

3. The .git directory where your commit history lives
This is where git stores metadata and the object database for your project. When
you remove it, you remove the VCS.
It is the heartbeat of git and the data that is copied when you clone a project.

THE BARE ESSENTIALS OF git
This leads to three main sections of a git project:

The three main sections of git and how information �ows.

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 1: obtain .git directory

To start VCS using git you need a .git directory inside to root
directory of your project:

1. You can initialize a new one
2. Or clone an existing project (you already did this in HW1)

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 1: obtain .git directory

Initialize from scratch:
$ git init # you must run this command in the root of your project
Initialized empty Git repository in /home/fabs/CS107/project/.git/
$ ls -a
. .. .git

Clone a local project:
$ cd ..
$ git clone project cloned_project # local project from above
Cloning into 'cloned_project'...
warning: You appear to have cloned an empty repository. # It's OK, I know
done.

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 1: obtain .git directory

Initialize from scratch:

Clone from a URL: let's get the git project itself

$ git init # you must run this command in the root of your project
Initialized empty Git repository in /home/fabs/CS107/project/.git/
$ ls -a
. .. .git

$ git clone https://git.kernel.org/pub/scm/git/git.git/
Cloning into 'git'...
remote: Enumerating objects: 8907, done.
remote: Counting objects: 100% (8907/8907), done.
remote: Compressing objects: 100% (789/789), done.
remote: Total 312519 (delta 8401), reused 8434 (delta 8117), pack-reused 303612
Receiving objects: 100% (312519/312519), 101.52 MiB | 6.52 MiB/s, done.
Resolving deltas: 100% (233246/233246), done.

Getting help: git help init

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 1: obtain .git directory

When you clone a repository (usually from the web):

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git clone via http(s), ssh or local repo

World Wide Web
(or local)

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 2: check your status (we are in the
empty project of step 1)

$ git status # inside: /home/fabs/CS107/project/
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)
$ ls .git # no index yet...
config HEAD hooks objects refs

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 2: check your status (we are in the
empty project of step 1)

$ git status # inside: /home/fabs/CS107/project/
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)
$ ls .git # no index yet...
config HEAD hooks objects refs
$ echo "Hello Git!" > file
$ git status
On branch master

No commits yet

Untracked files: # files that git is not aware of at this point
 (use "git add ..." to include in what will be committed)
 file # we have just created this file

nothing added to commit but untracked files present (use "git add" to track)

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 2: check your status (we are in the
empty project of step 1)

The status is checked in the working directory:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git status

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 3: add new or modi�ed �les to the index

$ git add file # inside: /home/fabs/CS107/project/
$ git status
On branch master

No commits yet

Changes to be committed: # now git is aware of the file...
 (use "git rm --cached ..." to unstage)
 new file: file

$ ls .git # ...and we have an index file (a.k.a staging area)
config HEAD hooks index objects refs

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 3: add new or modi�ed �les to the index

New or changed �les are added to the index (what you plan to
commit next):

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git add

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 4: Commit staged changes to the
repository:

The -m <message string> option allows for a short commit
messages on the command line. Useful if only few changes have
been committed
If you run git commit only, your editor speci�ed in ~/.gitconfig
or the GIT_EDITOR environment variable will open up.
See git help commit for more details.

$ git commit -m "My short commit message"
[master (root-commit) 5e8adae] My short commit message
 1 file changed, 1 insertion(+)
 create mode 100644 file

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 4: Commit staged changes to the
repository:

Staged changes are committed to the repository:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git commit

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 4: Commit staged changes to the
repository:

Shortcut to add all modi�ed or deleted (but not new) �les in the
working directory and commit right away:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git commit -a

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 5: Push commits to the repository:

The option -u is only needed if you push for the �rst time and you
would like git to know that subsequent pushes from the local
master branch are meant for the origin/master branch on the
remote called origin (this is the default name for a remote in git)

$ git push -u origin master
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 264 bytes | 264.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To <remote path or URL>
 * [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 5: Push commits to the repository:

Pushing commits to a remote repository:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git push

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6a: Synchronizing with the remote:

You only need git clone at the very beginning to get the .git
directory
Once you have a .git directory, you obtain new commits from the
remote using git fetch (or git pull)

$ git fetch
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), 247 bytes | 247.00 KiB/s, done.
From ../project_remote
 5e8adae..7b53cec master -> origin/master

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6a: Synchronizing with the remote:

Obtaining new commits from the remote:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git fetch

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6b: Synchronizing with the remote:

To update your working directory, you need to merge the commits
you just fetched

$ git merge
Updating 5e8adae..7b53cec
Fast-forward
 file | 1 +
 1 file changed, 1 insertion(+)

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6b: Synchronizing with the remote:

Merging new commits from the local .git repository:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git merge

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6c: Synchronizing with the remote:

Combine git fetch and git merge in one go with git pull

$ git pull # combine git fetch and git merge in one go
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), 248 bytes | 248.00 KiB/s, done.
From ../project_remote
 7b53cec..6a2d2af master -> origin/master
Updating 7b53cec..6a2d2af
Fast-forward
 file | 1 +
 1 file changed, 1 insertion(+)

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 6c: Synchronizing with the remote:

Pulling new commits from the remote:

Working
Directory

Staging
Area

.git directory
(Repository)

Remote
Repository

git pull

THE BARE ESSENTIALS OF git
[Step-by-step example] Step 7: See the log of commits (contributed
by you and others):

Or compact in one line per commit:

$ git log
commit 7b53cec71d375b4e570af1113d5a76059de3c1d1 (HEAD -> master, origin/master)
Author: Fabian Wermelinger <fabianw@seas.harvard.edu>
Date: Fri Sep 3 20:13:33 2021 -0400

 Quick fix

commit 5e8adae9f07b34fca41334b7997750e13bbe6c92
Author: Fabian Wermelinger <fabianw@seas.harvard.edu>
Date: Fri Sep 3 19:20:42 2021 -0400

 My short commit message

 You can be more verbose in the body of the commit.

$ git log --oneline
7b53cec (HEAD -> master, origin/master) Quick fix
5e8adae My short commit message

HOW OFTEN SHOULD YOU COMMIT CHANGES?
Remember: on your local repo, you can get messy and clean up later

If you are working on something complex, it may make sense to
commit very frequently, such that you can keep track of the impact of
your changes (micro commits)
You can always reorder and combine local commits (before you push
them to a remote where others have access too)
Committing once or twice a day is too few. Your commits will be bulky
and it will be dif�cult to bisect if you introduced a bug...

Final commits that you intend to push should always build the code
correctly (if you work with a compiled language) and pass all your unit
tests. If you do not take care of this and you share your commits with
others, then they will not be very pleased with you!

INTERACTIVE git rebase DEMO
When you have done some work in your local repository, you may
want to clean up a bit before you push your changes to the remote.
You can do this with an interactive rebase of your local commit
history.
The command for this is: git rebase -i
You need an editor for the interactive changes.

The demo git repo can be downloaded here:
https://harvard-iacs.github.io/2021-CS107/lectures/lecture3/

https://harvard-iacs.github.io/2021-CS107/lectures/lecture3/

RECAP
Introduction to version control systems
Centralized and distributed approaches
Bare essentials of git
Interactive git rebase demo

REFERENCE
 by Scott Chacon and Ben Straub, ApressPro Git book

https://git-scm.com/book/en/v2

