
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 23
Tuesday, November 23rd 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Hands-on exercises using sqlite3 and pandas

Table joins in SQL

SQL interface in pandas

SQL-like operations in pandas

OUTLINE
Back to ...

Debugging: how to locate bugs in (python) code.

Pro�ling: how to locate performance bottlenecks in (python) code.

Back to bytecode: understand bytecode limitations to identify
performance issues in your code.

DEBUGGING
Debugging refers to any technique to locate or prevent bugs (defective code)
in a computer program.

The term "debugging" (or "bug") is attributed to while working
on Mark II at Harvard. Supposedly a moth was stuck in the mechanical parts
of the computer and her co-workers were debugging the machine.

Grace Hopper

Codes that are "free" of bugs are extremely rare.
Humans are a main source of bugs.

Open source projects have usually less bugs than commercial/proprietary software.

Bugs can make your program crash (these are obvious) or make your code run but behave
strangely (these are the hard ones to eliminate).

Good debugging skills will make you a more ef�cient and con�dent
programmer. It requires knowledge of the debugging tools but also
understanding of low-level concepts such as instructions or bytecode in
python .

https://en.wikipedia.org/wiki/Grace_Hopper

DEBUGGING
The main tool is called a debugger. It is a program that allows you to
analyze your code by stepping through your code for the examination
of local values and memory states.

Test driven development is another passive debugging technique.
Writing (good) tests helps to avoid bugs and side-effects.

Defensive programming:
Use the statement in your code. You can avoid the additional overhead

of assert by running your python code with python -O .

Address boundary/edge cases in your tests. Also test for things you are certain they
will not happen (). E.g., non-physical results such as negative chemical
concentrations, a negative age of a person and so on.

Apply the techniques discussed in class: write unit and integration tests, use version
control, write modular code (do not duplicate code), document carefully (this
includes commit messages).

assert

Murphy's Law

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://en.wikipedia.org/wiki/Murphy's_law

DEBUGGING TECHNIQUES
Some techniques that are being used to debug:

Interactive debugging. This requires a debugger to allow you interact with your program as it
executes. Examples are (GNU debugger for C , C++ and other languages),
(python debugger) and various others in integrated environments.

gdb pdb

Trace based debugging. Manually creating a trace in your program by using print
statements for example:

def main():
 x = 1
 print(f'Value of x before function call: {x}')
 f(x)
 print(f'Value of x after function call: {x}')

1
2
3
4
5

Online debugging. Attach to a running process (could be in a production environment) to
isolate a problem.

Isolation by bisection. Narrowing down to smaller sections until you can see the bug.
Examples are (e.g. git bisect).divide and conquer

Inspection after failure. Refers to the analysis of a memory dump after a program has
crashed. These are called core dumps historically because of the early

 modules. A debugger can load such �les.
magnetic core

memory

https://www.gnu.org/software/gdb/
https://docs.python.org/3/library/pdb.html
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Magnetic-core_memory

SOME COMMON FORMS OF BUGS
The most common form of bugs are memory corruptions. These may cause

 and crash your program. If the program does not crash
then its behavior will be strange and �nding the root of the bug is usually
hard. It is very easy to produce such bugs in the C programming language,
harder in C++ and very hard in the programming language. You are
also less likely to run into them in pure python .

segmentation faults

Rust

Other type of bugs involve illegal operations such as division by zero,
, loops that run inde�nitely or variables that

have not been initialized.
leakage of dynamic memory

Yet other "bugs" may not affect the correctness of your program but they
can impact the performance of your program. Examples are wrong
memory layouts or adverse memory access patterns for cache memory
architectures.

https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Memory_leak

DEBUGGING PROCESS
You have "to sense" that there is a bug in your program. This is easy when it
crashes but can be hard when the bug is more silent and shows up
randomly. You must have a belief for some expected behavior of your
program and by debugging you prove that those beliefs are indeed true. If
your program �nds them to be false, you may �nd it surprising but you also
found a clue for a bug.

Once you know there is a bug, you must �nd a way to reproduce it. This is
not always easy. You should consider the following steps:

Reduce/disable components in your code that seem irrelevant (divide and
conquer).

Reduce the number of inputs if possible or restart your code from a snapshot
before the anomalous behavior.

Add traces in your code (e.g. print statements) or use a debugger directly if
possible.

DEBUGGER
A debugger is a program that allows to step through your code. The GNU
debugger gdb is the classic text based debugger. In python we use .

Main debugger operations:
Stepping through the source code: this can be done on a per line basis or per
instruction basis. In order to stop at a particular point the notion of breakpoints
is used. You can stop and resume execution at will.

pdb

Inspecting variables: when you pause, you can inspect the values of variables in
the current frame and all other frames below the current one.

Watching a variable of interest: breakpoints and variable inspection are
combined to a watchpoint, which causes the debugger to stop whenever the
value of a watched variable changes. (This concept is not supported in pdb .)

Moving around the call stack: the debugger allows you moving to any stack
frame that is currently on the stack. This allows to inspect variable values in the
caller frame as well as generating a backtrace (traceback objects in python).

https://docs.python.org/3/library/pdb.html

BREAKPOINTS
Breakpoints are like tripwires. You can set them at arbitrary places
in your code and the debugger will stop when it "trips" over one.

"Places" in your code can be source line numbers, a code address
or function entry point.

You can track breakpoints as well and get information such as how
often the breakpoint has been hit or you could say I want to stop at
this breakpoint only after it has been hit times. Other conditions
may be imposed on breakpoints additionally that depend on the
debugger used.

n

Once stopped at a breakpoint, you can inspect variables or
remove/modify breakpoints and continue execution anytime.

python DEBUGGER: pdb
 is an interactive debugger for python programs. You can

import pdb in your code or run it from the command line through
python -m pdb your_script.py

Examples:
Running from within the interpreter: You can run the debugger on speci�c
code from a module:

pdb

>>> import pdb
>>> import your_module
>>> pdb.run('your_module.test()')

1
2
3

Inserting a breakpoint in your code: the classic way:

Since python 3.7 you can use the built-in:

some code
import pdb; pdb.set_trace()
more code

1
2
3

breakpoint()
some code
breakpoint()
more code

1
2
3

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/functions.html#breakpoint

python DEBUGGER: pdb
Simply running the following will drop us into the pdb shell:

Note: the default pdb debugger does not offer much color highlighting. If you prefer
visual support through color you can run instead inside an shell.

The debugger pauses at the �rst line. The basic commands are similar to
gdb (you can also abbreviate them if there is no ambiguity):

run : restart the debugging session.

next execute next line (skipping over functions)

step execute next line (stepping into functions)

list print lines of code around the current line.

print x print the value of name x .

break [line_number] set a breakpoint on the line_number .

bt Print the backtrace starting from the current frame.

help Print the help menu. (This command is important.)

$ python -m pdb factorial.py
< /home/fabs/CS107/lecture23/pdb_factorial/factorial.py(5)<module>()
-< import numpy as np
:(Pdb)

1
2
3
4

ipdb ipython

https://pypi.org/project/ipdb/
http://ipython.org/

python DEBUGGER: pdb
Example: factorial(5)

We now step through the factorial code we did for C++ and gdb before using the
python debugger. The factorial.py source can be downloaded from the lecture

website:

We can start the debugger with the following python command:

Alternatively, we can use ipdb with ipython for color highlighting:

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23

$ python -m pdb factorial.py1

$ ipython -m ipdb factorial.py1

We want to investigate the following:

List the source code at the start of the debugging session.

Set a breakpoint at the statement return 1 in the factorial function. When done list all active
breakpoints.

Continue running until you reached the breakpoint.

Print a backtrace and study the recursion of factorial() . Go up and down the call stack.

Step through the return statements of the recursion and inspect the return values. Using the built-
in is helpful to inspect the local names.locals()

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23/
https://docs.python.org/3/library/functions.html#locals

python DEBUGGER: pdb
Summary:

The gdb and pdb (or ipdb) debuggers share the same command names
(most of them).

The debugger is an extremely powerful tool and you should integrate it in
your development work�ow. We could only touch the basics today;
continuous use will make you pro�cient (the set of commands in pdb is small).

The interactive inspection of variable values is very helpful for debugging,
you do not need to manually insert print() statements in your code once
you know how to use a debugger.

Useful references:
The python debugger (pdb)

The ipython debugger (ipdb)

pdb cheatsheet (pdf)

https://docs.python.org/3/library/pdb.html
https://pypi.org/project/ipdb/
https://github.com/nblock/pdb-cheatsheet/releases/download/v1.2/pdb-cheatsheet.pdf

PROFILING
Debugging: verify/investigate the correctness of code.

Pro�ling: analyze performance bottlenecks of correct code.

Performance analysis and optimization:
Why: when you take your code to production you want it to perform. Ef�cient code
means you maximize your returns on investment. If you buy a $10'000 GPU and run
at 50% nominal peak, you waste $5'000. In addition, you will not be able to tackle
large computational problems at 50% ef�ciency.

When: you start with optimizations once you have a running baseline that is well
tested and debugged.

How: there are many optimization techniques. Your approach for optimization is top-
down: from simple (low time investment) to dif�cult (high time investment; you must
assess if you really need these optimizations).

Before you start with optimizations you must know where to start and the pro�ler
is the performance analysis tool for this task.

PROFILING
A pro�le of your code lists statistics of the various function calls
executed when running your code.

It will show you in which functions/subroutines you are spending
the most time, thus enabling you to identify bottlenecks in your code.

The bottlenecks you identify by pro�ling your code are your �rst
targets for optimization. Removing them often leads a signi�cant
improvement already.

Commonly used pro�lers:
 for programs written in C , C++ , Fortran or Pascal .

 for GPU programs written in .

The python standard library contains the packages for
pro�ling python code. Due to associated timer overhead, you should prefer to use
cProfile .

GNU gprof

Nvidia nvprof CUDA

cProfile and profile

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://developer.nvidia.com/blog/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://developer.nvidia.com/cuda-zone
https://docs.python.org/3/library/profile.html

PROFILING: cProfile DEMO
We are given the following small program:

The cProfile.run('main()') statement runs the pro�ler on the main() function.

We can also pro�le the whole module from the command line without using
cProfile explicitly in our code (the -s option sorts the output relative to total time

in this example):

.

import time
import cProfile

def fast():
 time.sleep(0.5)

def slow():
 time.sleep(1)

def main():
 for i in range(5):
 fast()
 for i in range(3):
 slow()

if __name__ == "__main__":
 cProfile.run('main()')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

$ python -m cProfile -s tottime my_module.py1

See this link for a table of possible sort �ags

https://docs.python.org/3/library/profile.html#pstats.Stats.sort_stats

PROFILING: cProfile DEMO
Pro�le output:

20 function calls have been carried out.

The total runtime of the program is about 5.5 seconds (by design for this
example).

The Ordered by: tells you the sort order and depends on the sort �ag -s .
By default sorting is done alphabetically based on the function name.

$ python -m cProfile -s tottime my_module.py
 20 function calls in 5.507 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 8 5.508 0.688 5.508 0.688 {built-in method time.sleep}
 1 0.000 0.000 5.508 5.508 my_module.py:10(main)
 5 0.000 0.000 2.504 0.501 my_module.py:4(fast)
 3 0.000 0.000 3.004 1.001 my_module.py:7(slow)
 1 0.000 0.000 5.508 5.508 {built-in method builtins.exec}
 1 0.000 0.000 5.508 5.508 my_module.py:2(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

1
2
3
4
5
6
7
8
9
10
11
12
13

PROFILING: cProfile DEMO
Pro�le output:

Displayed timings are in seconds. Some functions execute in very short time
and show 0.000 seconds. Their execution time is not exactly zero but
below the displayed resolution.

Use the module if you need a more accurate time measurement.

$ python -m cProfile -s tottime my_module.py
 20 function calls in 5.507 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 8 5.508 0.688 5.508 0.688 {built-in method time.sleep}
 1 0.000 0.000 5.508 5.508 my_module.py:10(main)
 5 0.000 0.000 2.504 0.501 my_module.py:4(fast)
 3 0.000 0.000 3.004 1.001 my_module.py:7(slow)
 1 0.000 0.000 5.508 5.508 {built-in method builtins.exec}
 1 0.000 0.000 5.508 5.508 my_module.py:2(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

1
2
3
4
5
6
7
8
9
10
11
12
13

timeit

https://docs.python.org/3/library/timeit.html#module-timeit

PROFILING: cProfile DEMO
Pro�le output:

ncalls : This column indicates the number of times a function has been called.

$ python -m cProfile -s tottime my_module.py
 20 function calls in 5.507 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 8 5.508 0.688 5.508 0.688 {built-in method time.sleep}
 1 0.000 0.000 5.508 5.508 my_module.py:10(main)
 5 0.000 0.000 2.504 0.501 my_module.py:4(fast)
 3 0.000 0.000 3.004 1.001 my_module.py:7(slow)
 1 0.000 0.000 5.508 5.508 {built-in method builtins.exec}
 1 0.000 0.000 5.508 5.508 my_module.py:2(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

1
2
3
4
5
6
7
8
9
10
11
12
13

tottime : The total time spent in that function. The measurement does not include calls
to sub-functions.

percall : The third column corresponds to the average function call computed by
tottime/ncalls .

filename:lineno(function) : Provides data/information for the respective function.

PROFILING: cProfile DEMO
Pro�le output:

The pro�le above contains primitive function calls only.

A primitive function call means that it was not induced via recursion.

$ python -m cProfile -s tottime my_module.py
 20 function calls in 5.507 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 8 5.508 0.688 5.508 0.688 {built-in method time.sleep}
 1 0.000 0.000 5.508 5.508 my_module.py:10(main)
 5 0.000 0.000 2.504 0.501 my_module.py:4(fast)
 3 0.000 0.000 3.004 1.001 my_module.py:7(slow)
 1 0.000 0.000 5.508 5.508 {built-in method builtins.exec}
 1 0.000 0.000 5.508 5.508 my_module.py:2(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

1
2
3
4
5
6
7
8
9
10
11
12
13

cumtime : This column displays the cumulative time (including time spent in sub-
functions) from invocation to exit. This �gure is accurate even for recursive functions.

percall : The �fth column corresponds to the quotient of cumtime divided by the
number of primitive function calls.

PROFILING: cProfile DEMO
Consider the factorial.py code from the debugging discussion before.
See .

The pro�le for recursive functions will look slightly different:

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23

 103 function calls (4 primitive calls) in 0.000 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
 100/1 0.000 0.000 0.000 0.000 factorial.py:5(factorial)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

1
2
3
4
5
6
7
8
9

A total of 103 function calls have been made (including recursive calls). 4
out of the 103 are primitive calls (not recursive).

When there are recursive calls, the ncalls column displays the function
calls by two numbers 100/1. The �rst number is the total number of calls
and the second number indicates the number of primitive calls.

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23/

PROFILING: cProfile STATS
For more �exible post-processing of your pro�ling data, you can save the pro�le to a
�le. This is useful when you create pro�les for codes that run a while.

You can achieve this by the following:

or when you pro�le your module from the command line:

cProfile.run('main()', filename='my_stats') # when you call the profiler in your code1

$ python -m cProfile -o my_stats my_module.py # when you call the profiler from the command line1

Post-processing script: for reuse and consistency you can write small scripts that load
the pro�ling data for analysis. An example could look like this:

This sorts the pro�le by cumulative time of function calls and only prints the 10 most
signi�cant calls. If you want to understand what functions are taking the most time,
the above line 4 is what you would use.

import pstats
from pstats import SortKey
p = pstats.Stats('my_stats')
p.sort_stats(SortKey.CUMULATIVE).print_stats(10)

1
2
3
4

Interactive analysis: you can investigate your pro�ling data interactively using the
 module (type help for possible analysis commands):pstats

$ python -m pstats my_stats # enter the pstats interpreter for profiling analysis1

https://docs.python.org/3/library/profile.html#the-stats-class

PROFILING: cProfile HANDS-ON (15MIN)
Download the netwon.py script from the lecture webpage:

 (note: this
is the code we have used in lecture 9).

In the body of if __name__ == "__main__": , implement three pro�lers:

1. Pro�le the main() function using the exact Jacobian and save the data in a �le called
" exact ".

2. Pro�le the main() function using the FD approximation with eps=1.0e-1 and save
it in a �le called " fd_1.0e-1 ".

3. Pro�le the main() function using the FD approximation with eps=1.0e-8 and save
it in a �le called " fd_1.0e-8 ".

Analyse the three pro�les using the interactive python tool python -m
pstats . Type the command help and look for the commands read , strip ,
stats and sort .

What do you observe? How does the function call count differ?

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23

https://harvard-iacs.github.io/2021-CS107/lectures/lecture23/

python BYTECODE INSTRUCTIONS
Recall: in Lecture 19 we were looking at how the python
interpreter executes bytecode instructions.

We were using the python disassembler () to understand how
python translates our code into a low-level representation which
is consumed by the interpreter.

dis

A bytecode instruction takes the following form: opcode oparg .
Both opcode and oparg are encoded by one byte each in the code object's raw
byte string ().

Not all opcode 's require an argument. Even it they do not need it, the
(super�uous) oparg is still encoded (and set to 0x00).

The oparg 's are indices into the co_names or co_consts tuples of the
underlying code object.

Why does python encode instructions like that?

think of paper punch cards in the early days

https://docs.python.org/3/library/dis.html
https://ethw.org/Harvard_Mark_I

python BYTECODE AND PERFORMANCE
Let us think for a moment what does it mean when opcode and
oparg are encoded by one byte each:

An unsigned byte can encode 255 bit permutations.

You can implement at most 255 different instructions in the python
interpreter. Is this enough? (has about 50.)RISC-V

The co_names and co_consts tuples can have at most 255 elements. Is
this true?

What does the latter bullet mean when you write code, for example a
function?

When you target micro-optimizations (these are the optimizations
you do last, see the "How" bullet on the �rst slide about pro�ling)
you must know how python bytecode and its instructions work.

https://en.wikipedia.org/wiki/RISC-V

python BYTECODE AND PERFORMANCE
Range based iteration (iterators) and loop-counters

Iterators are implemented directly in C code in the python interpreter.

Using iterators is faster than using a counter variable. Consider the
following loop structures:

def iterator(x):
 for i in range(x):
 pass # no meaningful work done

1
2
3

def counter(x):
 k = 0
 while k < x:
 k += 1 # loop counter must be incremented

1
2
3
4

2 0 LOAD_GLOBAL 0 (range)
 2 LOAD_FAST 0 (x)
 4 CALL_FUNCTION 1
 6 GET_ITER
 >> 8 FOR_ITER 4 (to 14)
 10 STORE_FAST 1 (i)

3 12 JUMP_ABSOLUTE 8
 >> 14 LOAD_CONST 0 (None)
 16 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10

This code is about 3x faster than the
loop counter version!
(Benchmarked using python 3.9.7 on an AMD Ryzen 7 Pro 4750U)

2 0 LOAD_CONST 1 (0)
 2 STORE_FAST 1 (k)

3 >> 4 LOAD_FAST 1 (k)
 6 LOAD_FAST 0 (x)
 8 COMPARE_OP 0 (<)
 10 POP_JUMP_IF_FALSE 22

4 12 LOAD_FAST 1 (k)
 14 LOAD_CONST 2 (1)
 16 INPLACE_ADD
 18 STORE_FAST 1 (k)
 20 JUMP_ABSOLUTE 4
 >> 22 LOAD_CONST 0 (None)
 24 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

python BYTECODE AND PERFORMANCE
Pythonic and C -style loops

In Lecture 7 (python data model) we were looking at (proper) pythonic
loops and C -style loops.

Reconsider these two implementations (both are iterator based):
def pythonic(x):
 for v in x:
 pass # no meaningful work done

1
2
3

def c_style(x):
 for i in range(len(x)):
 v = x[i] # reference array element

1
2
3

2 0 LOAD_FAST 0 (x)
 2 GET_ITER
 >> 4 FOR_ITER 4 (to 10)
 6 STORE_FAST 1 (v)

3 8 JUMP_ABSOLUTE 4
 >> 10 LOAD_CONST 0 (None)
 12 RETURN_VALUE

1
2
3
4
5
6
7
8

This code is about 1.9x faster than the
C -style version!

(Benchmarked using python 3.9.7 on an AMD Ryzen 7 Pro 4750U)

2 0 LOAD_GLOBAL 0 (range)
 2 LOAD_GLOBAL 1 (len)
 4 LOAD_FAST 0 (x)
 6 CALL_FUNCTION 1
 8 CALL_FUNCTION 1
 10 GET_ITER
 >> 12 FOR_ITER 12 (to 26)
 14 STORE_FAST 1 (i)

3 16 LOAD_FAST 0 (x)
 18 LOAD_FAST 1 (i)
 20 BINARY_SUBSCR
 22 STORE_FAST 2 (v)
 24 JUMP_ABSOLUTE 12
 >> 26 LOAD_CONST 0 (None)
 28 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

python BYTECODE AND PERFORMANCE
Dynamic name lookup

Dynamic name lookup of an attribute outside the local scope is more
expensive because it must be loaded every time it is referenced (it may
have changed between two consecutive lookups).

Consider lookup of an attribute inside the math package:
import math

def dynamic(x):
 retval = 0.0
 for v in x:
 retval += math.sqrt(v) # global lookup
 return retval

1
2
3
4
5
6
7

import math

def cached(x):
 sqrt = math.sqrt # cache the name locally
 retval = 0.0
 for v in x:
 retval += sqrt(v) # cached lookup
 return retval

1
2
3
4
5
6
7
8

python BYTECODE AND PERFORMANCE
Dynamic name lookup

Consider lookup of an attribute inside the math package:
def dynamic(x):
 retval = 0.0
 for v in x:
 retval += math.sqrt(v) # global lookup
 return retval

1
2
3
4
5

def cached(x):
 sqrt = math.sqrt # cache the name locally
 retval = 0.0
 for v in x:
 retval += sqrt(v) # cached lookup
 return retval

1
2
3
4
5
6

2 0 LOAD_CONST 1 (0.0)
 2 STORE_FAST 1 (retval)

3 4 LOAD_FAST 0 (x)
 6 GET_ITER
 >> 8 FOR_ITER 18 (to 28)
 10 STORE_FAST 2 (v)

4 12 LOAD_FAST 1 (retval)
 14 LOAD_GLOBAL 0 (math)
 16 LOAD_METHOD 1 (sqrt)
 18 LOAD_FAST 2 (v)
 20 CALL_METHOD 1
 22 INPLACE_ADD
 24 STORE_FAST 1 (retval)
 26 JUMP_ABSOLUTE 8

5 >> 28 LOAD_FAST 1 (retval)
 30 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

2 0 LOAD_GLOBAL 0 (math)
 2 LOAD_ATTR 1 (sqrt)
 4 STORE_FAST 1 (sqrt)

3 6 LOAD_CONST 1 (0.0)
 8 STORE_FAST 2 (retval)

4 10 LOAD_FAST 0 (x)
 12 GET_ITER
 >> 14 FOR_ITER 16 (to 32)
 16 STORE_FAST 3 (v)

5 18 LOAD_FAST 2 (retval)
 20 LOAD_FAST 1 (sqrt)
 22 LOAD_FAST 3 (v)
 24 CALL_FUNCTION 1
 26 INPLACE_ADD
 28 STORE_FAST 2 (retval)
 30 JUMP_ABSOLUTE 14

6 >> 32 LOAD_FAST 2 (retval)
 34 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

python BYTECODE AND PERFORMANCE
Dynamic name lookup

Dynamic lookup

Locally cached name is about 1.6x faster than
dynamic lookup (LOAD_FAST)! This applies to
any nested attributes in the form of a.b.c.f() .
(Benchmarked using python 3.9.7 on an AMD Ryzen 7 Pro 4750U)

Locally cached
Consider lookup of an attribute inside the math package:

2 0 LOAD_CONST 1 (0.0)
 2 STORE_FAST 1 (retval)

3 4 LOAD_FAST 0 (x)
 6 GET_ITER
 >> 8 FOR_ITER 18 (to 28)
 10 STORE_FAST 2 (v)

4 12 LOAD_FAST 1 (retval)
 14 LOAD_GLOBAL 0 (math)
 16 LOAD_METHOD 1 (sqrt)
 18 LOAD_FAST 2 (v)
 20 CALL_METHOD 1
 22 INPLACE_ADD
 24 STORE_FAST 1 (retval)
 26 JUMP_ABSOLUTE 8

5 >> 28 LOAD_FAST 1 (retval)
 30 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

2 0 LOAD_GLOBAL 0 (math)
 2 LOAD_ATTR 1 (sqrt)
 4 STORE_FAST 1 (sqrt)

3 6 LOAD_CONST 1 (0.0)
 8 STORE_FAST 2 (retval)

4 10 LOAD_FAST 0 (x)
 12 GET_ITER
 >> 14 FOR_ITER 16 (to 32)
 16 STORE_FAST 3 (v)

5 18 LOAD_FAST 2 (retval)
 20 LOAD_FAST 1 (sqrt)
 22 LOAD_FAST 3 (v)
 24 CALL_FUNCTION 1
 26 INPLACE_ADD
 28 STORE_FAST 2 (retval)
 30 JUMP_ABSOLUTE 14

6 >> 32 LOAD_FAST 2 (retval)
 34 RETURN_VALUE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

python BYTECODE AND PERFORMANCE
Dynamic name lookup

Consider lookup of an attribute inside the math package:

Of course by now you know that if your data allows it, the correct way
to do this is:

import math

def dynamic(x):
 retval = 0.0
 for v in x:
 retval += math.sqrt(v) # global lookup
 return retval

1
2
3
4
5
6
7

import math

def cached(x):
 sqrt = math.sqrt # cache the name locally
 retval = 0.0
 for v in x:
 retval += sqrt(v) # cached lookup
 return retval

1
2
3
4
5
6
7
8

import numpy as np

def vectorized(x):
 return np.sum(np.sqrt(x))

1
2
3
4

RECAP
Back to ...

Debugging: how to locate bugs in (python) code.

Pro�ling: how to locate performance bottlenecks in (python) code.

Back to bytecode: understand bytecode limitations to identify
performance issues in your code.

