
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 20
Thursday, November 11th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
python internals:

Code objects

The interpreter and the evaluation loop

Frame objects

Generator objects

Traceback objects

python lists and numpy arrays

OUTLINE
Introduction to databases

Data models

SQLite and python

INTRODUCTION TO DATABASES
Why learn databases?

SQL (Structured Query Language) is very popular and will remain
so for some time.

You will therefore encounter databases in your career.

Unlike Microsoft Excel/Access, SQL databases scale.

A robust SQL database allows you to do work with terabytes of
data, multiple related tables and thousands of columns.

SQL integrates well with python or R .

Basic knowledge of SQL beyond data analysis is helpful since it
shows up in almost all web applications and content management
systems.

MOTIVATION
It is very hard to implement a database well. Understanding how they
work is important.

Data storage/management/wrangling are not just database concerns.
Packages such as and require a similar understanding.pandas dplyr

When you need to integrate a database system in your program, it is
important that you are able to make decisions whether such a data
management system performs well and can scale to large data:

You should understand the query performance of your transactions.

Is your application dominated by single transactions or do you need bulk
processing of data? The former would rely on a .
Analytical databases are often supported by hardware and are more
suitable for the bulk data analysis.

.

transactional database

A comparison of transactional and
analytical databases is given here

https://pandas.pydata.org/
https://dplyr.tidyverse.org//
https://en.wikipedia.org/wiki/Database_transaction
https://datawarehouseinfo.com/how-does-oltp-differ-from-olap-database/

WHAT KIND OF DATA ACCESS DO YOU NEED?
The answer to this question depends on your problem and the

resources you have available.

Database Genre Examples

Relational and its derivatives

Document oriented ,

Key-value , ,

Graph oriented

Columnar

SQL

CouchDB MongoDB

Riak Memcached leveldb

Neo4J

HBase

https://en.wikipedia.org/wiki/SQL
https://couchdb.apache.org/
https://www.mongodb.com/
https://riak.com/
https://memcached.org/
https://github.com/google/leveldb
https://neo4j.com/
https://hbase.apache.org/

DATA MODELS
Database management systems (DBMS) organize and structure data in a
speci�c way. The access techniques and data structures used for this task are
called the data model of the DBMS.

One of the most in�uential data models (still widely used today) is the relational
data model. It is the data model used by SQL. This data model has evolved from
the concepts of some earlier data models (some in use today):

File management systems
All data is stored permanently in �les on disk. This is not a data model because individual �les are
unaware of each other. It is still widely used today, an example is the Unix hierarchical �le system.

Hierarchical databases
An important early data model to manage large lists of assembly parts (e.g. automobile industry)
which is organized into assembly groups that decrease in size as we go down the hierarchy. E.g., a
car is divided into engine, body and chassis which are in turn further divided into sub-assembly
groups and so on. This introduces a parent/child relationship among assemblies and sub-
assemblies. Similar to a tree structure.

Network databases
Extend hierarchical databases by allowing multiple parent/child relationships between data
entries (called records). E.g., connect customer records and product records with order records.

RELATIONAL DATA MODEL
The central element in the relational data model is a table.

A table is a grid of rows and columns that store data.

Each row holds a collection of columns, also called a tuple.

Each column contains data of a speci�ed type. Common data types
are numbers, characters and dates.

Multiple tables relate to each other via common values in columns.
We call these identi�ers keys.

 is used to de�ne the structure of a table and the relations
among tables. It is further used to extract or query data from tables.
SQL

In contrast to python (imperative language: describes how a
program should accomplish a task), SQL is a declarative language
describing what a program should accomplish (without the how).

https://www.iso.org/standard/63555.html

Table 1: student_enrollment

Table 2: students

Table 1 on the left shows student
enrollments in two different classes.

This table does not contain any
details about students or classes.

The relation for this data is
established through the unique keys in
the columns with attribute
student_id and class_id .

RELATIONAL DATA MODEL
Example: student class enrollments

student_id	class_id	class_section	semester
CHRISPA004	COMPSCI107	3	Fall 2021
DAVISHE010	COMPSCI107	3	Fall 2021
ABRILDA002	APCOMP207	40	Fall 2021
DAVISHE010	APCOMP207	40	Fall 2021
RILEYPH002	APCOMP207	40	Fall 2021

1
2
3
4
5
6
7

student_id	first_name	last_name	dob
ABRILDA002	Abril	Davis	1999-01-10
CHRISPA004	Chris	Park	1996-04-10
DAVISHE010	Davis	Hernandez	1987-09-14
RILEYPH002	Riley	Phelps	1996-06-15

1
2
3
4
5
6

Table 3: class_student_list
class_id	first_name	last_name
COMPSCI107	Davis	Hernandez
COMPSCI107	Chris	Park
APCOMP207	Abril	Davis
APCOMP207	Davis	Hernandez
APCOMP207	Riley	Phelps

1
2
3
4
5
6
7

The relations between tables allows
us to create new rows with data
obtained from both tables, such as
mapping class enrollments to student
names.

RELATIONAL DATA MODEL
Example: student class enrollments

A table for class information would work the same way with a
class_id column and several other columns with data about the
classes.

Note how the different tables are organized such that they each
contain a main entity that the database manages. The students'
names and birth dates are stored in a separate table to reduce
redundant data. If a student signs up for multiple classes, we store the
student data only once and save storage space on the disk.

This relation among tables and organization into main entities is a
powerful feature of the relational data model.

KEY-VALUE MODEL
A key-value data model uses a dictionary like data structure (

 for fast look-up).

It is not a relational data model. Instead, keys uniquely identify
data records in a dictionary.

Can be more �exible than the relational data model and follows
more closely modern concepts like object oriented programming.

Often require far less memory to store an equivalent relational
database. This can result in better performance for certain
applications.

A popular example of a key-value database is .

hash
table

redis

https://en.wikipedia.org/wiki/Hash_table
https://redis.io/

DOCUMENT MODEL
A document data model stores the data in nested records.

In contrast to the relational data model, where the description of
an object is obtained by multiple tables, the document model
stores all data related to the object in one record.

Example encodings for records (documents) are , or
.

A popular example of a document-oriented database is .

XML YAML
JSON

MongoDB

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/JSON
https://www.mongodb.com/

WORKFLOW FOR (RELATIONAL) DATABASES
Components to a database:

1. Hardware: is where the data is physically stored. Databases are usually operated in a
client/server model. The physical storage of the data usually happens on the server
side. Clients communicate through user interfaces. Examples are web forms for order
placement or the iTunes app.

2. Software: the main component that implements a data model with a corresponding
API.

3. Data: the essence of a database. Metadata is description of data similar to the nutrition
label on food products. Metadata is what is usually stored in a table for example. It may
contain a reference to large data (e.g. a �le path) if there is such an association.

4. Procedures: are general instructions to interact with the database such as the setup
and installation of a DBMS, login and logout from the server, creating backups, etc.

5. Database access language: provides commands to access, insert, delete or update data
stored in the database; other commands include creation and management of tables.
Similar to the shell, a DBMS usually provides a command line interface or scripting
facilities.

WORKFLOW FOR (RELATIONAL) DATABASES
Database access language:

We need a language to help us easily query items in a database.

It should provide simple verbs to describe what to do (declarative
language).

 is a library for python that allows users to work with data
structures and relational databases.

The package offers data manipulation tools for the R
programming language, including a tool set for the manipulation of
relational databases.

Pandas

dplyr

https://pandas.pydata.org/
https://dplyr.tidyverse.org/

WORKFLOW FOR (RELATIONAL) DATABASES
Database access language:

A notebook by T. Augspurger contains a tabular comparison of verbage between
pandas and dplyr . The following table is a modi�cation by D. Sondak:

Verb dplyr pandas SQL

QUERY/SELECTION filter() (and slice()) query() (and loc[] , iloc[]) SELECT WHERE

SORT arrange() sort() ORDER BY

SELECT-COLUMNS/PROJECTION select() (and rename()) [] (__getitem__) (and rename()) SELECT COLUMN

SELECT-DISTINCT distinct() unique() , drop_duplicates() SELECT DISTINCT COLUMN

ASSIGN mutate() (and transmute()) assign() ALTER/UPDATE

AGGREGATE summarise() describe() , mean() , max() None, AVG(),MAX()

SAMPLE sample_n() and sample_frac() sample() implementation dep., use RAND()

GROUP-AGG group_by / summarize groupby / agg , count , mean GROUP BY

DELETE ? drop /masking DELETE/WHERE

SQLite AND python
From :

SQLite is a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, SQL database engine (it

does not require a separate server process). SQLite is the most used
database engine in the world. SQLite is built into all mobile phones and

most computers and comes bundled inside countless other
applications that people use every day.

We need a way of querying a relational database. There are many
languages available, we will focus on SQL
because of its long lasting history and the arguments above.

. However, we will stick with
relational databases in this class.

https://sqlite.org

(Structured Query Language)

NoSQL databases are gaining in popularity

https://sqlite.org/index.html
https://en.wikipedia.org/wiki/SQL
https://www.mongodb.com/post/36151042528/post-transactional-future

SQLite AND python
We will use SQLite. The following are useful references:

.

.

.

SQLite homepage

A thorough guide to SQLite database operations in python

SQL tutorial

. It implements a standard database API for all
databases called DB-API 2.0. It is speci�ed in ; a brief

.

SQLite is built into python
PEP 249 introduction can be

found here

There is an even higher level python API called .SQLAlchemy

You can install SQLite on your system if you need it. Linux distros have built
packages in their repositories or you can �nd pre-built packages at

.https://www.sqlite.org/download.html

The SQLite browser may be useful as well: . Most Linux
distros will have this tool in their repo as well.

https://sqlitebrowser.org/

A command line interface is available as well: .
Linux distros will have this available as well.

https://www.sqlite.org/cli.html

https://sqlite.org/index.html
https://sebastianraschka.com/Articles/2014_sqlite_in_python_tutorial.html
https://a-gentle-introduction-to-sql.readthedocs.io/en/latest/
https://docs.python.org/3/library/sqlite3.html
https://www.python.org/dev/peps/pep-0249/
http://cewing.github.io/training.codefellows/lectures/day21/intro_to_dbapi2.html
https://www.sqlalchemy.org/
https://www.sqlite.org/download.html
https://sqlitebrowser.org/
https://www.sqlite.org/cli.html

SQLite AND python
The plan for the following slides:

We will work through an example using the sqlite3 package in
python .

This package will allow us to execute basic SQLite commands in
python to build and manipulate our database.

We will start by creating a SQL database and work up from there.

Note: we could work with pandas alternatively to make our lives
easier. We will work with SQLite commands directly to internalize
the basic commands and use some features of pandas next week.

SQLite AND python
Core SQL commands:

Command Description

SELECT Select a table name

INSERT Insert data into the table

UPDATE Change data values in the table

DELETE Delete data in the table

We can string these commands together to perform our basic
operations on the database.

SQLite AND python
Structural SQL commands:

Command Description

CREATE Create a table in the database

DROP Delete a table in the database

ALTER Add, delete or modify columns in an existing table

These commands are used to modify the structure of a table in the
database.

SQLite AND python
Starting a database:

Our goal is to create a database with tables of presidential candidates and
their contributors using data from 2008 (candidates.txt).

We start by importing sqlite3 :

.

import sqlite31

This package is shipped with the python standard library

The �rst thing we need to establish is a to the database of a given
�lename. A new database will be created if it does not exist.

connection

To perform operations on our database, we need to get a to it by
calling the .cursor() method on the connection object.

cursor object

We need support for foreign keys in our database. We will see what those are in
just a few slides. Support for foreign keys is disabled in SQLite by default, the
following command enables it through the cursor object:

cursor.execute('PRAGMA foreign_keys=1')1

https://docs.python.org/3/library/sqlite3.html
https://www.python.org/dev/peps/pep-0249/#connection-objects
https://www.python.org/dev/peps/pep-0249/#cursor-objects

SQLite AND python
Creating a table:

We have established a connection to our database, which does not have
any tables yet.

We will create a table for the presidential candidates with the following
columns: id , first_name last_name , middle_initial , party .

The data type of the id column must be an integer and the rest shall be
strings. We can simply achieve this with the following code:

cursor.execute('''CREATE TABLE candidates (
id INTEGER PRIMARY KEY NOT NULL,
first_name TEXT,
last_name TEXT,
middle_initial TEXT,
party TEXT NOT NULL)''')

db.commit() # commit the changes to the database

1
2
3
4
5
6
7
8

SQLite AND python
What did we just do?

1. cursor.execute() runs the SQLite command, which we pass in as a string.

2. The id column is special: It contains integer values and is tagged as PRIMARY
KEY . This means that values in this column are unique and cannot have NULL
values (missing data or empty cell).

A table can only have one PRIMARY KEY .

3. first_name , last_name , middle_initial are all columns with TEXT values of
unlimited length.

Note that SQL has other data types such as VARCHAR(N) and CHAR(N) .
VARCHAR(N) allows variable text lengths up to N characters in length and
CHAR(N) expects text of exactly N characters. You can also have REAL/FLOAT
(8-byte �oating point) or BLOB types for large binary data.

4. The party column is also of TEXT type and cannot have NULL as an additional
constraint.

SQLite AND python
SQL conventions:

Note that we have followed a convention wherein SQL commands
are issued in capital letters and table �elds are written in lowercase text.

Commit your changes:

Always commit your changes to your database! If you fail to do
that, you will lose them when you close the database. See the

 method of a connection object..rollback()

db.commit() # commit the changes to the database1

https://www.python.org/dev/peps/pep-0249/#rollback

SQLite AND python
Adding values to a table:

Adding values into a table is achieved with the INSERT command:

Note the declarative style of the language. Commands express the "what"
instead of the "how".

cursor.execute('''INSERT INTO candidates
(id, first_name, last_name, middle_initial, party)
VALUES (?, ?, ?, ?, ?)''', (16, 'Mike', 'Huckabee', '', 'R'))

db.commit() # commit the changes to the database

1
2
3
4
5

SQLite AND python
Adding values to a table:

Adding values into a table is achieved with the INSERT command:

The " ? " in the declaration above have a special meaning. We could also
use the python string .format() method to insert parameters. This would
leave our code more vulnerable to . Two reasons why
you should use the ? placeholders are:

1. They leave the burden of correctly encoding and escaping data items to the
database module.

2. They prevent injection of arbitrary SQL syntax into a database query. See
 for a guide on preventing SQL injection

attacks.

cursor.execute('''INSERT INTO candidates
(id, first_name, last_name, middle_initial, party)
VALUES (?, ?, ?, ?, ?)''', (16, 'Mike', 'Huckabee', '', 'R'))

db.commit() # commit the changes to the database

1
2
3
4
5

SQL injection attacks

https://bobby-tables.com/python

https://en.wikipedia.org/wiki/SQL_injection
https://bobby-tables.com/python

SQLite AND python
SQL queries:

Let us �rst add another two entries:
cursor.execute('''INSERT INTO candidates
(id, first_name, last_name, middle_initial, party)
VALUES (?, ?, ?, ?, ?)''', (32, 'Ron', 'Paul', '', 'R'))

cursor.execute('''INSERT INTO candidates
(id, first_name, last_name, middle_initial, party)
VALUES (?, ?, ?, ?, ?)''', (20, 'Barack', 'Obama', '', 'D'))

db.commit() # commit the changes to the database

1
2
3
4
5
6
7
8
9

SQLite AND python
SQL queries:

Getting all rows columns from a table:
cursor.execute("SELECT * FROM candidates")
rows = cursor.fetchall()
print(f'All rows and columns: got {len(rows)} rows')
for row in rows:
 print(row)

1
2
3
4
5

All rows and columns: got 3 rows
(16, 'Mike', 'Huckabee', '', 'R')
(20, 'Barack', 'Obama', '', 'D')
(32, 'Ron', 'Paul', '', 'R')

1
2
3
4

Selecting speci�c content with WHERE :

Note the case-sensitive search. You need to use LOWER() or UPPER()
to avoid case sensitivity.

cursor.execute("SELECT * FROM candidates WHERE first_name = 'mike'")
rows = cursor.fetchall()
print(f"Looking for 'mike': got {len(rows)} rows")
for row in rows:
 print(row)

1
2
3
4
5

Looking for 'mike': got 0 rows1

SQLite AND python
SQL queries:

Select a speci�c column:
cursor.execute("SELECT first_name FROM candidates")
rows = cursor.fetchall()
print(f"Looking for first_name: got {len(rows)} rows")
for row in rows:
 print(row)

1
2
3
4
5

Looking for first_name: got 3 rows
('Mike',)
('Barack',)
('Ron',)

1
2
3
4

SQLite AND python
Adding another table:

We add another table to our database and introduce a few new
SQL commands and ideas.

The new table contains data on supporters and their contributions
to each candidate. This will introduce a relation to our �rst table.

cursor.execute('''CREATE TABLE contributors (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
last_name TEXT,
first_name TEXT,
middle_name TEXT,
street_1 TEXT,
street_2 TEXT,
city TEXT,
state TEXT,
zip TEXT,
amount FLOAT(7,3),
date DATETIME,
candidate_id INTEGER NOT NULL,
FOREIGN KEY(candidate_id) REFERENCES candidates(id))''')
db.commit() # commit the changes to the database

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

SQLite AND python
Adding another table:

AUTOINCREMENT : the id for a new entry to the table will be
automatically generated. You do not need to enter this manually.
The counter starts at 1 and increments by 1.

FLOAT(7,3) : �oating point number with 7 digits, 3 of them after
the decimal point.

DATETIME : returns the date in the format YYYY-MM-DD HH:MM:SS .

FOREIGN KEY : allows us to link the contributors table with the
candidates table.

SQLite AND python
Adding another table:

Tables are related to one another by the data they contain. The
relational data model uses primary keys and foreign keys to

represent these relationships among tables.

A primary key is a column or combination of columns in a table whose values
uniquely identify each row of the table. A table has only one primary key.

A foreign key is a column or combination of columns in a table whose values are
a primary key value for some other table. A table can contain more than one
foreign key, linking it to one or more other tables.

A primary key/foreign key combination creates a parent/child relationship
between the tables that contain them.

SQLite AND python
Adding another table:

In our example, we declare a child/parent relationship between the
candidate_id attribute in the contributors table and the id attribute in the

candidates table through the statement:

cursor.execute('''CREATE TABLE contributors (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
last_name TEXT,
first_name TEXT,
middle_name TEXT,
street_1 TEXT,
street_2 TEXT,
city TEXT,
state TEXT,
zip TEXT,
amount FLOAT(7,3),
date DATETIME,
candidate_id INTEGER NOT NULL,
FOREIGN KEY(candidate_id) REFERENCES candidates(id))''')

1
2
3
4
5
6
7
8
9
10
11
12
13
14

SQLite AND python
Adding contributors en masse:

If you have a list of contributors you can add them all at once using the
cursor.executemany() method (note: we omit the id column):

contributors = [
("Agee", "Steven", "", "549 Laurel Branch Road", "", "Floyd", "VA",
 int(24091), 500.0, '2007-06-30', 16),
("Buck", "Jay", "K.", "1855 Old Willow Rd Unit 322", "", "Northfield", "IL",
 int(600932918), 200.0, '2007-09-12', 20),
("Choe", "Hyeokchan", "", "207 Bridle Way", "", "Fort Lee", "NJ",
 int(70246302), -39.50, '2008-04-21', 32),
]

cursor.executemany('''INSERT INTO contributors
(last_name, first_name, middle_name, street_1, street_2, city, state, zip, amount, date, candidate_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', contributors)
db.commit()

cursor.execute('SELECT last_name FROM contributors WHERE amount <= 200')
for row in cursor.fetchall():
 print(row)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

('Buck',)
('Choe',)

1
2

SQLite AND python
Adding contributors with an id mismatch into the candidates table:

Adding contributors with non-existent candidate identi�er:

The traceback is clear: there is no candidate with candidate_id equal
to 34 .

The foreign key prevents us from entering invalid data. The exception
above is raised because we have set

when we created our database at the beginning.

cursor.execute('''INSERT INTO contributors
(last_name, first_name, middle_name, street_1, street_2, city, state, zip, amount, date, candidate_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''',
("Buckler", "Steve", "", "24351 Armada Dr.", "", "Dana Point", "CA", int(926291), 50, '2007-07-30', 34))

1
2
3
4

Traceback (most recent call last):
 File "/home/fabs/harvard/CS107/lecture20/presidential.py", line 121, in <module>
 main()
 File "/home/fabs/harvard/CS107/lecture20/presidential.py", line 112, in main
 cursor.execute('''INSERT INTO contributors
sqlite3.IntegrityError: FOREIGN KEY constraint failed

1
2
3
4
5
6

cursor.execute('PRAGMA foreign_keys=1')1

SQLite AND python
Summary:

SQL is based on the relational data model that organizes the data in a database
as a collection of tables.

Each table has a table name that uniquely identi�es it.

Each table has one or more columns, which are arranged in a speci�c, left-to-
right order.

Each table has zero or more rows, each containing a single data value in each
column.

All data values in a given column have the same data type and are drawn from a
set of legal values called the domain of the column.

A primary key/foreign key combination creates a parent/child relationship
between the tables that contain them.

When done working with our sqlite3 database, we it with:close
db.close()1

https://www.python.org/dev/peps/pep-0249/#connection-methods

RECAP
Introduction to databases

Data models

SQLite and python

