
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 2
Thursday, September 9th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
More on Linux commands and the man -pages
Working with the shell (Unix philosophy and pipes)
Regular expressions and grep
File attributes and permissions
Short journey into text editors

OUTLINE
Shell customization
Input/Output (I/O) and redirection
Job/process management
Environment variables
Shell scripting

SHELL CUSTOMIZATION

The shell is your tool, just like an editor.
Make it your own.
There are different shell interpreters:

sh
bash (Mac: since OSX Jaguar)
csh
ksh
zsh (Mac: since OSX Catalina)

Each of those shells executes a number
of �les at startup
You can use them to run commands
(rc) and con�gure your shell

RECALL THE SHELL IS YOUR COMMAND INTERFACE

SHELL CUSTOMIZATION
Examples for con�guration: user prompt, environment variables,
auto-completion, command aliases, color theme and appearance,
message of the day (), ...motd
These customizations are implemented in startup �les that are
read by the bash shell when it starts:

Interactive login shell or with --login option:
1. /etc/profile
2. ~/.bash_profile (if it exists, read and execute then stop)
3. ~/.bash_login (if it exists, read and execute then stop)
4. ~/.profile (if it exists, read and execute then stop)
Interactive non-login shell (e.g. a terminal emulator like xterm):
1. ~/.bashrc

https://en.wikipedia.org/wiki/Motd_(Unix)

SHELL CUSTOMIZATION
The �les that are being read at shell startup depends on the shell
you are using. This is a nice for different
types of shells.

summary and overview

A login shell is one that you login to your system.
If you use Ubuntu with a GUI front end like Gnome, you will not see
this shell as the system boots directly into graphical mode.
On a headless server you will be dropped into a login shell. This is
called an interactive login shell
The login shell allows you to create other shell instances, these are
interactive non-login shells.

https://en.wikipedia.org/wiki/Unix_shell#Configuration_files

SHELL CUSTOMIZATION
Summary for bash :

Files read for interactive login shell:
1. /etc/profile
2. One of (in that order): ~/.bash_profile , ~/.bash_login , ~/.profile

Files read for interactive non-login shell:
1. ~/.bashrc

Typically, ~/.bash_profile contains this code:

[[-f ~/.bashrc]] && source ~/.bashrc # if ~/.bashrc exists, source its conte1

Conclusion: edit your ~/.bashrc to customize your shell. zsh
users edit ~/.zshrc instead.

Bash reference: startup �les

https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

SHELL CUSTOMIZATION
A few comments about bash and zsh :

Mac users will most likely be working with , a newer shell with
some additional features.

zsh

The default shell on Linux is bash . You must install zsh from the
package repo if you want to use it on Linux.
While startup �les may be different, most scripts should run with either
shell.
You will be confronted with bash on most remote machines and
servers. Keep that in mind when you work with zsh and must be
compatible with bash .

References worth checking:
Moving to zsh - Scripting OSX
What should/shouldn't go in .zshenv , .zshrc , .zlogin , .zprofile , .zlogout ?
About .bash_profile and .bashrc on MacOS

https://zsh.sourceforge.io/
https://scriptingosx.com/2019/06/moving-to-zsh/
https://unix.stackexchange.com/questions/71253/what-should-shouldnt-go-in-zshenv-zshrc-zlogin-zprofile-zlogout
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

SHELL CUSTOMIZATION
Simple .bashrc example:

A useful adaptive prompt for bash and zsh :
Shell color themes based on 16 colors:

set -o vi # configure the shell prompt to behave like vi (normal and insert mo
 # default is set -o emacs

alias diff='diff --color=always' # alias for the diff command to enforce color

These are some environment variables. The export keyword is important
export EDITOR=vim
export GIT_EDITOR=vim
export VISUAL=vim
export BROWSER=qutebrowser
export DEFAULT_PDF=zathura
export PDFVIEWER=zathura

update the PATH environment variable
export PATH=$HOME/bin:$HOME/.local/bin:$HOME/go/bin:$PATH

set a custom primary prompt: promt is defined in the variable PS1, see `man
export PS1='\e[36m\w\e[0m\$ '

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

https://github.com/nojhan/liquidprompt
https://github.com/chriskempson/base16-shell

https://github.com/nojhan/liquidprompt
https://github.com/chriskempson/base16-shell

SHELL CUSTOMIZATION
Work together with your neighbors and setup a shell startup �le:

You �nd yourself often typing ls -l . Create an alias named ll to
minimize your future typing overhead.
Figure out what the prompt from the previous slide is doing:

Con�gure your own prompt.
Try out the

settings. You can type them directly in the shell to test it and
modify your startup �le accordingly if you prefer either.

set a custom primary prompt: promt is defined in the variable PS1, see `m
export PS1='\e[36m\w\e[0m\$ '

1
2

This page might be helpful.

$ set -o vi
$ set -o emacs

https://www.howtogeek.com/307701/how-to-customize-and-colorize-your-bash-prompt/

INPUT/OUTPUT (I/O) AND REDIRECTION

INPUT/OUTPUT (I/O) AND REDIRECTION

Standard Error
(stderr)

Standard Input
(stdin)

Standard Output
(stdout)program

Inside the shell, the stdin is from your keyboard
A program generates two output streams:
1. stdout : normal program output
2. stderr : output associated to something gone wrong

Recall the �le descriptors: stdin=0 , stdout=1 , stderr=2
To send and EOF (end-of-�le) character, press ctrl-d

REDIRECTION OF I/O STREAMS
You have learned about the pipe which streams the stdout of one
program into the stdin into the next (see the " SHELL GRAMMAR " section in man bash)

You can also redirect any stream to or from �les
To redirect stdout to a �le use the > operator:

$ ls -l > ls_long_output

To redirect �le contents to stdin use the < operator:
$ sort < some_data

You can combine both in one go:
$ sort < some_data > some_sorted_data

REDIRECTION OF I/O STREAMS
You can either create (or overwrite) �les or append to existing �les:

Use > to create or overwrite (it will delete previous contents)
Use >> to append to existing �les (nice for logging)

There are two special data sinks in Linux:
1. /dev/null : data written to this device is discarded. Reading from

this device always returns the end-of-�le (EOF) character.
2. /dev/zero : data written to this device is discarded. Reading from

this device returns the '\0' (NUL) byte (e.g. see).

Example: �lter spam email and send it to /dev/null

ASCII table

$ script_to_filter_spam_email > /dev/null

https://www.asciitable.com/

REDIRECTION OF I/O STREAMS
The �le redirection operates on stdout by default.

You can specify the �le descriptor explicitly. E.g., to redirect stderr
use �le descriptor 2 :

$ my_prog 2> error_log # only redirect stderr

For convenience, you can redirect stdout and stderr at the same
time:

$ my_prog &> full_log # redirect stdout and stderr

This also works if you want to use pipes (by default only stdout is piped
into stdin):

$ prog1 |& prog2 # pipe stdout and stderr into stdin of prog2

You can also chain redirection operators:
$ my_prog > my_output 2> my_error_log # write error log file
$ my_prog > my_output 2>&1 # redirect stderr to stdout instead of separ

SPECIAL CHARACTERS IN THE SHELL
We have already seen the wildcard * that matches anything. E.g.,
list all python �les

White space in �lenames: although common on Windows, it is bad
practice to create �lenames with spaces. In the shell, white space
separates arguments to commands:

$ ls
exercise_1.py exercise_2.py README.md
$ ls *.py
exercise_1.py exercise_2.py

$ touch exercise 1.py; ls
1.py exercise README.md # touch creates 2 files: 1.py and exercise
$ touch exercise\ 1.py; ls # you must escape white space to get a single file
1.py exercise 'exercise 1.py' README.md

1
2
3
4

$ touch exercise\ 1.py; ls # you must escape white space to get a single file

$ touch exercise 1.py; ls1
1.py exercise README.md # touch creates 2 files: 1.py and exercise2

3
1.py exercise 'exercise 1.py' README.md4

JOB/PROCESS MANAGEMENT

JOB/PROCESS MANAGEMENT
Any process or job is assigned a unique PID :

The PID for this sleep process is 145691
The shell gives you some tools to manage such processes:

Run them in the background
Move a job to the foreground
Suspend a job
Terminate a job

$ sleep 100

$ ps aux | grep sleep # this is run in another bash instance, you see why in a second
fabs 145691 0.0 0.0 5364 688 pts/4 S+ 12:19 0:00 sleep 100

Running a process will block your prompt by default. For example: the
command sleep 100 you will give you back control only after 100
seconds have passed.

JOB/PROCESS MANAGEMENT
Running a process will block your prompt by default. For example: the
command sleep 100 you will give you back control only after 100
seconds have passed.
You can get back control immediately by appending a &

This way you can continue with work in the current shell session.

$ sleep 100 &
[1] 153514 # the shell notifies us that PID 153514 is running in background
$ jobs # we check that the job is running indeed
[1]+ Running sleep 100 &
... # 100 seconds later the shell will tell you that the process has concluded
[1]+ Done sleep 100

Appending a & will put the job in the background, you could exit the
shell and the job would continue to run. (Only if the shell you are
quitting is a non-login shell!)

JOB/PROCESS MANAGEMENT
You can suspend a job to get back control of the shell by pressing Ctrl-z .

A stopped (or suspended) job does not make progress! If you want to quit the
current shell (even if inside an interactive non-login shell) it will warn you
the �rst time you try:

You can bring a stopped job back to foreground by using the fg command.

$ sleep 100
^Z # here I pressed Ctrl-z
[1]+ Stopped sleep 100
$ jobs
[1]+ Stopped sleep 100

$ exit
exit
There are stopped jobs.
$ exit # the second time you call exit (or Ctrl-d) the shell will quit without warning

JOB/PROCESS MANAGEMENT
Stopping a job with Ctrl-z and resuming with fg is very useful.

Example: When you launch vim to edit �les and you quickly need
to go back to the shell where you came from, but you do not want

to quit vim , press Ctrl-z while inside vim . When you want to
resume vim , simply type fg on the shell prompt.

JOB/PROCESS MANAGEMENT
What to do when you want to keep a job running but you need to

exit an interactive login-shell?

Where does this scenario happen in the �rst place?

You are in the middle of work on a remote machine but you must go get
groceries right now. When you are home you want to continue work.
Assume that on your way you will lose your internet connection.
You want to run a simulation for, say, 24 hours on a local workstation
without job scheduling. During that time you want to be able to logout and
login whenever you want to check on your results.

JOB/PROCESS MANAGEMENT
What to do when you want to keep a job running but you need to

exit an interactive login-shell?

Two solutions:

1. Use the nohup (no hangup, see man nohup)

Make sure to redirect the output, both stdout and stderr , to a �le for
later reference.

$ nohup my_prog &> my_output &

2. Use a terminal multiplexer on the target machine.
: one of the �rst, it has seen years.

: a more recent multiplexer with more features than screen .
: a fork of tmux designed to collaborate with other mates.

screen
tmux
tmate

https://www.gnu.org/software/screen/
https://en.wikipedia.org/wiki/Tmux
https://tmate.io/

JOB/PROCESS MANAGEMENT
You can list and display running jobs and processes in several ways:

jobs (see man jobs): displays the status of jobs in the current session
(running, stopped, terminated)

ps aux (see man ps): list all running processes on stdout . You may
need to �lter through grep to �nd what you are looking for.
top (always available on Linux, see man top) or better UI use htop
(you will need to install it, see man htop): list running processes with
the ones consuming most resources at the top

$ jobs
[1]- Running /bin/zathura leiserson2020a.pdf &
[2]+ Stopped vim newton_iterations.cpp

JOB/PROCESS MANAGEMENT
You can list and display running jobs and processes in several ways:

top (always available on Linux, see man top) or better UI use htop
(you will need to install it, see man htop): list running processes with
the ones consuming most resources at the top

htop

JOB/PROCESS MANAGEMENT
You can terminate any job you have appropriate permissions. You can graciously

terminate a job or forcefully kill it. You should only use the latter when there is no
hope (e.g. system starts to become unresponsive due to memory leak). The
former will make sure that claimed resources are freed correctly and child

processes are shutdown �rst.

JOB/PROCESS MANAGEMENT
You terminate jobs by sending a signal to them through the kill
command. See:

By default kill will send a SIGTERM signal which is what you want (the
mean one is called SIGKILL)

$ whatis signal
signal (7) - overview of signals
signal (2) - ANSI C signal handling
signal (3p) - signal management
$ man 7 signal
$ man kill

You can specify the signal with the -s switch (be sure to get the PID right!
Use ps or top to get it):

$ kill -s SIGKILL <PID> # only do this when nothing else works anymore

If you are sure that, for example, python is causing you trouble, you can
send a SIGTERM by name which is easier and more verbose

$ killall python

JOB/PROCESS MANAGEMENT
You terminate jobs by sending a signal to them through the kill
command. See

You can send an interrupt signal (SIGINT) by pressing Ctrl-c

$ whatis signal
signal (7) - overview of signals
signal (2) - ANSI C signal handling
signal (3p) - signal management
$ man 7 signal
$ man kill

A SIGINT can be catched and processed differently by interactive
software. E.g., a hanging python script will not always terminate
with Ctrl-c because the interpreter will catch the signal and
decide what to do with it. Use killall python instead.
In most cases a SIGINT translates to SIGTERM

JOB/PROCESS MANAGEMENT
Work together with your neighbors and practice job management:

1. Use the sleep command to sleep for 1000 seconds
2. Suspend the job (stop it from running)
3. Open vim and suspend it too
4. List your jobs with jobs
5. Continue running the �rst job (sleep) by sending it to the background

with the bg %n command. n is the job ID listed by jobs
6. Bring vim back to the foreground using fg %n (what happens if you

omit %n ?)
7. Exit vim by pressing :q! followed by ENTER
8. Forcefully kill the running sleep command (you need to �nd its PID and

then use the kill command)

ENVIRONMENT VARIABLES

ENVIRONMENT VARIABLES
You can customize your environment by setting the values of
certain environment variables
You have already seen them when customizing your prompt by
setting the value of PS1 accordingly
You can get a list of all environment variables and their
corresponding value with the env command
Any variables in a shell script (not only environment variables) can
be dereferenced by prepending a $ character:

Environment variables are usually set in ALL CAPS

$ my_var='Hello CS107!'
$ echo $my_var
Hello CS107!
$ echo my_var
my_var

ENVIRONMENT VARIABLES
The role of the PATH is to specify the search path(s) used by the

shell to �nd executable programs.

For every command you enter, the shell checks if this command is a built-in
command (see the " SHELL BUILTIN COMMANDS " in man bash)
If not found, it will check the path(s) de�ned in PATH to see whether it can
�nd the executable
Finally, the shell will give up:

Each path speci�ed in PATH must be delimited by a colon " : ". This is true
for any environment variable that can hold a list of paths, e.g. MANPATH ,
INFOPATH , PYTHONPATH and others

$ this_command_is_hypothetical
bash: this_command_is_hypothetical: command not found

ENVIRONMENT VARIABLES
By default, PATH holds at least the relevant paths for your system
commands. It is a good idea to extend it in your .bashrc as follows:

The export ensures that your customized PATH is available in other shell
instances as well
Can you guess what HOME is?

PATH=$HOME/bin:$HOME/.local/bin:$PATH
export PATH

1
2

$HOME/bin : a standard path in your home directory for executable scripts
or programs
$HOME/.local/bin : default path used by python to install packages in a
user directory (some of those packages come with executables and you
want to access them). E.g., this command installs the python package
" package_name " below your $HOME/.local by default:

$ python -m pip install --user <package_name>

ENVIRONMENT VARIABLES
By default, PATH holds at least the relevant paths for your system
commands. It is a good idea to extend it in your .bashrc as follows:

Order is important: You must dereference PATH in order to keep
what was previously de�ned in it. Append it at the end to ensure
that your custom executables (with possibly the same names as

already existing ones) will be picked up by the shell �rst! Once the
shell has found a match in the search path, it will not look any further

PATH=$HOME/bin:$HOME/.local/bin:$PATH
export PATH

1
2

SETTING VARIABLES
You can omit the export keyword. In that case the variable will only be
available in the current shell instance:

$ my_var='Hello CS107!' # set a variable in the current shell (no spaces between '=')
$ bash # create another shell instance
$ echo $my_var # my_var is empty

With export :

You must use export in your .bashrc or .zshrc �les to ensure the
settings propagate correctly.

$ export my_var='Hello CS107!' # set a variable in the current shell
$ bash # create another shell instance
$ echo $my_var # value of my_var is propagated
Hello CS107!

You can delete any variable using the unset command:
$ my_var='Hello CS107!' # set a variable in the current shell
$ unset my_var # unset it again in the current shell
$ echo $my_var # my_var is empty

SHELL SCRIPTING

SHELL SCRIPTING (WHAT IS IT?)
Typing out a series of commands that do complex tasks is not
convenient
Shell scripting (and also python scripts) is a powerful tool to
perform all kinds of automation tasks, often repetitive in time
By setting variables from the previous slides, you have already
seen an important part of shell scripting

A shell script is an executable �le that contains commands together with
pipes and �le redirection to perform (more complex) tasks in the command

line. A shell script allows you to replay the commands contained in it.

SHELL SCRIPTING INTERPRETER
You should be speci�c about which shell (interpreter) you want to

target in your scripts. This ensures portability of your scripts.

You specify the interpreter with a shebang. The general form is:

which you must write at the very beginning of your script.

#!interpreter_command [optional arguments]1

Here are a few examples:
bash #!/usr/bin/env bash

zsh #!/usr/bin/env zsh

python #!/usr/bin/env python3

Note: Use the /usr/bin/env tool to resolve the actual path of the
interpreter you target. Some users might have custom installations for
these interpreters in their PATH . Hard-coding a path like /bin/bash , for
example, would ignore that and possibly annoy users of your script.

SHELL SCRIPTING INTERPRETER
Your script must be executable, like any other program. By now you know how to

do that. Here is an example script called cs107.sh :

I save the script inside $HOME/bin because this path is in my PATH lookup. The
suf�x .sh is optional, you can choose any name you want. It is just another �le.
Make the script executable and run it:

What output do you expect?

#!/usr/bin/env bash
echo "I am script $0, running inside $PWD."
echo "The following arguments were given:"
for arg in "$@"; do
 echo $arg
done

1
2
3
4
5
6

$ chmod 755 ~/bin/cs107.sh
$ pwd
/home/fabs
$ cs107.sh C S 1 0 7

SHELL SCRIPTING INTERPRETER

Make it executable and run it:

What output do you expect?

#!/usr/bin/env bash
echo "I am script $0, running inside $PWD."
echo "The following arguments were given:"
for arg in "$@"; do
 echo $arg
done

1
2
3
4
5
6

$ chmod 755 ~/bin/cs107.sh
$ pwd
/home/fabs
$ cs107.sh C S 1 0 7

I am script /home/fabs/bin/cs107.sh, running inside /home/fabs.
The following arguments were given:
C
S
1
0
7

SHELL SCRIPTING SPECIAL VARIABLES
There are some special variables that you can make use of in your

scripts and functions:

$@ Expands to quoted arguments. For previous example: "C" "S" "1" "0"
"7"

$0 The full path of the script. Always use $0 for your help messages in case
you rename your script later.

$1 , ...,
$9

The �rst nine script arguments. For previous example: $1=C , $5=7

$# The number of arguments given to the script

A NOTE ABOUT STRINGS
Strings are very useful in scripts. They exist in two variants:

1. Hard-quoted strings: single-quotes

2. Soft-quoted strings: double-quotes

expansion=1234
str='This is a literal string, no variable ${expansion}' # single-quotes
echo ${str}

1
2
3

This is a literal string, no variable ${expansion}1

variables='random values from other variables'
str="This string allows me to expand ${variables}" # double-quotes
echo ${str}

1
2
3

This string allows me to expand random values from other variables1

SHELL SCRIPTING FOR-LOOPS
Often you want to loop over a list of items:

#!/usr/bin/env bash
dir=$1 # what does this line do?
for f in $(find $dir -maxdepth 1 -type f -name "*.py"); do
 # f: iteration variable
 # in: expects a list of items (for iteration)
 echo $f # of course you do something more meaningful
done

1
2
3
4
5
6
7

The $(...) executes the statement inside the parenthesis in a sub-
shell and returns the stdout . You can use pipes inside the parenthesis

as well. Running such sub-commands is very useful in scripting.

SHELL SCRIPTING IF-CONDITIONALS
The general form for an if -conditional looks like this:

Main reference for if -conditionals:

if [condition_A]; then
 # execute this block when condition_A is true
elif [condition_B]; then
 # execute this block when condition_B is true
else
 # execute this block otherwise
fi # except for loops, the end-delimiter of constructs is the construct name in

1
2
3
4
5
6
7

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

SHELL SCRIPTING IF-CONDITIONALS
String comparison condition :

[STRING1 == STRING2] Test for equality. For strict POSIX compliance you may use " = " instead of " == "

[STRING1 != STRING2] Test for not equal

[-z STRING] True if the length of the string is zero

[-n STRING] or
[STRING]

True if the length of the string is non-zero

if [condition]; then
 # code if condition is true
fi

1
2
3

SHELL SCRIPTING IF-CONDITIONALS
String comparisons: Example

What output do you expect from the following invocation:

#!/usr/bin/env bash
if ["$1" == 'Hello CS107!']; then
 echo 'Success!'
else
 echo 'Got an unexpected argument'
fi

1
2
3
4
5
6

$ example.sh Hello CS107!

SHELL SCRIPTING IF-CONDITIONALS
String comparisons: Example

What output do you expect from the following invocation:

#!/usr/bin/env bash
if ["$1" == 'Hello CS107!']; then
 echo 'Success!'
else
 echo 'Got an unexpected argument'
fi

1
2
3
4
5
6

$ example.sh Hello CS107!
Got an unexpected argument

How can we �x it?

$ example.sh 'Hello CS107!'
Success!

SHELL SCRIPTING IF-CONDITIONALS
Integer comparisons: the general form is

[INT1 OP INT2]
where OP is one of the following:

-eq INT1 is equal to INT2

-ne INT1 is not equal to INT2

-lt INT1 is less than INT2

-le INT1 is less than or equal to INT2

-gt INT1 is greater than INT2

-ge INT1 is greater than or equal to INT2

SHELL SCRIPTING IF-CONDITIONALS
Integer comparisons: Example

Testing with different number of arguments:

#!/usr/bin/env bash
if [$# -gt 2]; then
 echo "Number of arguments $# is larger than two"
else
 echo "Number of arguments $# is less than or equal to two"
fi

1
2
3
4
5
6

$ example.sh a b
Number of arguments 2 is less than or equal to two
$ example.sh a b c
Number of arguments 3 is greater than two

SHELL SCRIPTING IF-CONDITIONALS
Often you need to test if �les exist:

[-d FILE] True if FILE exists and is a directory

[-f FILE] True if FILE exists and is a regular �le

[-e FILE] True if FILE exists

[-r FILE] True if FILE exists and is readable

[-w FILE] True if FILE exists and is writable

[-x FILE] True if FILE exists and is executable

Note that instead of FILE (which is some path to a �le) you can also
specify a �le descriptor using /dev/fd/n with n the �le descriptor ID.

(stdin=0 , stdout=1 , stderr=2 , ...)

See: https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

SHELL SCRIPTING IF-CONDITIONALS
Testing for �les: Example

Download example script here:

#!/usr/bin/env bash
if [$# -ne 1]; then
 cat <<EOF
 USAGE: $0 <path/to/file>

 More documentation here. The form used here is called a here-document.
 They are very useful to write longer strings and expanding variables like
 \$0 above. See
EOF
 exit 1 # exit with failure code
fi

if [-f $1]; then
 echo "File $1 exists and is a regular file"
elif [-d $1]; then
 echo "File $1 exists and is a directory"
elif [-e $1]; then
 echo "File $1 exists and is an unknown file"
fi

1
2
3
4
5
6
7
8 https://tldp.org/LDP/abs/html/here-docs.html
9

10
11
12
13
14
15
16
17
18
19

https://harvard-iacs.github.io/2021-CS107/lectures/lecture2/

https://tldp.org/LDP/abs/html/here-docs.html
https://harvard-iacs.github.io/2021-CS107/lectures/lecture2/

SHELL SCRIPTING REFERENCE
This is a very good reference for bash :

bash / zsh and scripting require practice. When you notice that you
keep repeating a task over and over, write a script instead and save
it in ~/bin for example.
bash scripts are extremely useful to automate tasks that involve
batch processing. This may include �ltering noise from data,
generating movie frames or running periodic data backups.
bash scripts are not very well suited for �oating point arithmetic
(use python for this).

https://tldp.org/LDP/Bash-Beginners-Guide/html/index.html

https://tldp.org/LDP/Bash-Beginners-Guide/html/index.html

RECAP
Take advantage of the shell customization capabilities
I/O redirection is a powerful tool that you must master when you
spend the majority of time in the shell
Process management and suspension. Be considerate when
terminating your processes.
Environment variables and essentials of bash shell scripting

