
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 19
Tuesday, November 9th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Generators

Coroutines

python internals: objects, bytecode and interpreter

OUTLINE
python internals:

Code objects

The interpreter and the evaluation loop

Frame objects

Generator objects

Traceback objects

python lists and numpy arrays

python INTERNALS: INTERPRETER
All the data stored in a python program is built around the concept of an object.
Code objects are compiled bytecode. The interpreter turns those code objects into
frame objects and executes them (the left column you saw in).pythontutor

What is still missing to execute these frame objects is input data (the right column you
saw in).pythontutor

The python interpreter obtains input data from a value stack and executes frame
objects arranged in a frame stack in a central loop called the evaluation loop. In the
interactive python shell this is called REPL: Read, Evaluate, Print, Loop. The
python interpreter is written in C (you can inspect the source code at

). At the very core of the evaluation loop is the
 function. This is the function that brings everything

together and makes your code come to life. Everything that is executed in python
must go through this function.

https://github.com/python/cpython
_PyEval_EvalFrameDefault

https://pythontutor.com/
https://pythontutor.com/
https://github.com/python/cpython
https://github.com/python/cpython/blob/main/Python/ceval.c#L1535

python INTERNALS: CODE OBJECTS
Code objects is what the python interpreter executes. They represent raw
bytecode.

We can generate code objects with the built-in function:compile()
>>> a = 1
>>> co = compile('a + 1', '<string>', mode='eval')
>>> eval(co) # evaluate the code object
2

1
2
3
4

The raw bytecode is contained in co_code :
>>> co.co_code
b'e\x00d\x00\x17\x00S\x00'

1
2

We can bytecode into the instructions that python executes for a
particular code object:

4 instructions are executed: 2 loads, 1 binary addition and returning the result.

disassemble

>>> import dis
>>> dis.dis(co)
 1 0 LOAD_NAME 0 (a)
 2 LOAD_CONST 0 (1)
 4 BINARY_ADD
 6 RETURN_VALUE

1
2
3
4
5
6

A list of all bytecode instructions can be found here.

https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

python INTERNALS: INTERPRETER
We saw that a LOAD_NAME instruction pushes the object at given
index in co_names onto the value stack. This instruction obtains the
object from the local scope. The LOAD_GLOBAL instruction would be
used to load a name from the global scope.

In python , the local and global scopes can be inspected with the
 and built-ins, respectively:locals() globals()

>>> def f(x):
... l = x
... print(f'f() local variables: {locals()}')
... print(f'f() global variables: {globals()}')
...
>>> g = 0
>>> f(g)
f() local variables: {'x': 0, 'l': 0}
f() global variables: {'__name__': '__main__', '__doc__': None, '__package__': None,
'__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None,
'__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>,
'f': <function f at 0x7f6868f8f280>, 'g': 0}

1
2
3
4
5
6
7
8
9
10
11
12

https://docs.python.org/3/library/functions.html#locals
https://docs.python.org/3/library/functions.html#globals

Read-only x !

python INTERNALS: INTERPRETER
Short detour: low-level explanation of two things we have seen previously in

the lecture: 1.) the nonlocal keyword

def f(x):
 def g(y):
 z = x + y
 return z
 return g

1
2
3
4
5

>>> g = f(0)
>>> f.__code__.co_cellvars # tuple of vars referenced in nested functions
('x',)
>>> g.__closure__
(<cell at 0x7f90da60fc10: int object at 0x7f90da769910>,)
>>> g.__closure__[0].cell_contents
0
>>> g(1)
1
>>> g.__closure__[0].cell_contents
0

1
2
3
4
5
6
7
8
9
10
11

The UnboundLocalError
happens in line 3 (�rst
access) because it is not

de�ned in the scope!

def f(x):
 def g(y):
 z = x + y
 x = y
 return z
 return g

1
2
3
4
5
6

>>> g = f(0)
>>> f.__code__.co_cellvars # tuple of vars referenced in nested functions
()
>>> g.__closure__ # is None -- no cellvars in code object this time
>>> g(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in g
UnboundLocalError: local variable 'x' referenced before assignment
>>> import dis; dis.dis(g)
 3 0 LOAD_FAST 1 (x)
 2 LOAD_FAST 0 (y)
 4 BINARY_ADD
 6 STORE_FAST 2 (z)
... # more assembly ignored

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Read-only x !

Will this result in an UnboundLocalError ?

python INTERNALS: INTERPRETER
Short detour: low-level explanation of two things we have seen previously in

the lecture: 1.) the nonlocal keyword

def f(x):
 def g(y):
 z = x + y
 return z
 return g

1
2
3
4
5

>>> g = f(0)
>>> f.__code__.co_cellvars # tuple of vars referenced in nested functions
('x',)
>>> g.__closure__
(<cell at 0x7f90da60fc10: int object at 0x7f90da769910>,)
>>> g.__closure__[0].cell_contents
0
>>> g(1)
1
>>> g.__closure__[0].cell_contents
0

1
2
3
4
5
6
7
8
9
10
11

def f(x):
 def g(y):
 x = y
 z = x + y
 return z
 return g

1
2
3
4
5
6

Read-Write captured x !

The UnboundLocalError
happens in line 3 (�rst
access) because it is not

de�ned in the scope!

python INTERNALS: INTERPRETER
Short detour: low-level explanation of two things we have seen previously in

the lecture: 1.) the nonlocal keyword

def f(x):
 def g(y):
 nonlocal x
 z = x + y
 x = y
 return z
 return g

1
2
3
4
5
6
7

>>> g = f(0)
>>> f.__code__.co_cellvars # tuple of vars referenced in nested functions
('x',)
>>> g.__closure__
(<cell at 0x7f7bdcf37a60: int object at 0x7f7bdd0a2910>,)
>>> g.__closure__[0].cell_contents
0
>>> g(1)
1
>>> g.__closure__[0].cell_contents
1

1
2
3
4
5
6
7
8
9
10
11

def f(x):
 def g(y):
 z = x + y
 x = y
 return z
 return g

1
2
3
4
5
6

>>> g = f(0)
>>> f.__code__.co_cellvars # tuple of vars referenced in nested functions
()
>>> g.__closure__ # is None -- no cellvars in code object this time
>>> g(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in g
UnboundLocalError: local variable 'x' referenced before assignment
>>> import dis; dis.dis(g)
 3 0 LOAD_FAST 1 (x)
 2 LOAD_FAST 0 (y)
 4 BINARY_ADD
 6 STORE_FAST 2 (z)
... # more assembly ignored

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

python INTERNALS: INTERPRETER
Short detour: low-level explanation of two things we have seen previously in

the lecture: 2.) positional and keyword only arguments

The compiled bytecode is aware of what arguments are expected.

co_argcount does not include keyword-only arguments
()

See and for the introduction of positional-only
arguments and the for more discussion.

>>> def f(posonly, /, pos_or_kw=None, *, kwonly=None):
... pass
...
>>> f.__code__.co_argcount
2
>>> f.__code__.co_posonlyargcount
1
>>> f.__code__.co_kwonlyargcount
1

1
2
3
4
5
6
7
8
9

https://docs.python.org/3/library/inspect.html#types-and-members

PEP 457 PEP 570
control �ow tutorial

https://docs.python.org/3/library/inspect.html#types-and-members
https://www.python.org/dev/peps/pep-0457/
https://www.python.org/dev/peps/pep-0570/
https://docs.python.org/dev/tutorial/controlflow.html#special-parameters

python INTERNALS: INTERPRETER
Important terms for the python interpreter:

The evaluation loop (or REPL in the interactive python shell) will take a code
object and convert it into a series of frame objects.

Frame objects are executed in a so called frame stack (what we saw in).pythontutor

The interpreter manages referenced variables in a value stack.

The interpreter has at least one thread but at most one thread can run at a time. The
python interpreter uses an internal global interpreter lock (called GIL) which

prevents and ensures thread safety. The GIL imposes a very strong
constraint on multi-threaded execution and was subject to many discussions in the
past. proposes a new
design to remove the GIL which would mean a major change in the python
interpreter, a possible change that will be reality in the next python 4 release.

race conditions

A recent post (10/07/2021) on the python-dev mailing list

Did you know: for the �rst time in 20 years,
 this year.

python became the worlds most popular
programming language

https://pythontutor.com/
https://en.wikipedia.org/wiki/Race_condition
https://mail.python.org/archives/list/python-dev@python.org/thread/ABR2L6BENNA6UPSPKV474HCS4LWT26GY/
https://spectrum.ieee.org/top-programming-languages/

Fixed size object base:

_PyObject_HEAD_EXTRA is a macro that is
usually empty.

ob_refcnt is the reference count for the
object.

ob_type is a pointer to the type object.
Recall that python is dynamically typed.

python INTERNALS: BACK TO OBJECTS
Repeat: everything in python is an object!

typedef struct _object {
 _PyObject_HEAD_EXTRA
 Py_ssize_t ob_refcnt;
 PyTypeObject *ob_type;
} PyObject; // C code in cpython

1
2
3
4
5

Variable size object base:

ob_base is a �xed size object instance.

ob_size is the number of items in the
variable part.

Containers (e.g. list) are objects of this
type.

typedef struct {
 PyObject ob_base;
 Py_ssize_t ob_size;
} PyVarObject; // C code in cpython

1
2
3
4

No object in python is a direct instance of PyObject . BUT, every object in python can
be cast to a PyObject ; if it is variable size it can be cast to PyVarObject in addition.

The PyFrameObject :

ob_base is the base instance (as before).

f_back is a pointer to the previous
PyFrameObject towards the caller

(enables the frame stack).

f_frame is a pointer to the frame data.

Other �elds are used for debugging.

python INTERNALS: FRAME OBJECTS
A frame object is a PyObject with the following additional properties:

struct _frame {
 PyObject ob_base;
 struct _frame *f_back;
 struct _interpreter_frame *f_frame;
 PyObject *f_trace;
 int f_lineno;
 char f_trace_lines;
 char f_trace_opcodes;
 char f_own_locals_memory;
} PyFrameObject;

1
2
3
4
5
6
7
8
9
10

The PyFrameObject :

ob_base is the base instance (as before).

f_back is a pointer to the previous
PyFrameObject towards the caller

(enables the frame stack).

f_frame is a pointer to the frame data.

Other �elds are used for debugging.

The frame data (some code not shown):

Is not an object (has no ob_base).
f_globals and f_locals point to data.

f_code is the bytecode object that will
be executed by the frame.

f_lasti index of the last instruction
executed. Where is this index used?

python INTERNALS: FRAME OBJECTS
A frame object is a PyObject with the following additional properties:

 struct _interpreter_frame *f_frame;

struct _frame {1
 PyObject ob_base;2
 struct _frame *f_back;3

4
 PyObject *f_trace;5
 int f_lineno;6
 char f_trace_lines;7
 char f_trace_opcodes;8
 char f_own_locals_memory;9
} PyFrameObject;10

typedef struct _interpreter_frame {
 PyObject *f_globals;
 PyObject *f_builtins;
 PyObject *f_locals;
 PyCodeObject *f_code;
 PyFrameObject *frame_obj;
 PyObject *generator;
 int f_lasti;
 int depth;
} InterpreterFrame;

1
2
3
4
5
6
7
8
9
10

python INTERNALS: FRAME OBJECTS

PyFrameObject

PyCodeObject

Instruc�ons
Names
Constants

Built-ins
Globals
Locals
Values

PyFrameObject

PyCodeObject

Instruc�ons
Names
Constants

Built-ins
Globals
Locals
Values

PyFrameObject

PyCodeObject

Instruc�ons
Names
Constants

Built-ins
Globals
Locals
Values

PyFrameObject

PyCodeObject

Instruc�ons
Names
Constants

Built-ins
Globals
Locals
Values

PyFrameObject

PyCodeObject

Instruc�ons
Names
Constants

Built-ins
Globals
Locals
Values

_PyEval_EvalFrameDefault
Evaluates the code in frame objects
associated with the corresponding
values

Evalua�on Loop

_PyEval_EvalCode
Creates new frame objects from
code objects and push/pop them
onto the frame stack

Frame Stack

https://github.com/python/cpython

https://github.com/python/cpython

The (some code not shown):

gi_xframe points to the current frame
object for the generator.

gi_code bytecompiled code object of the
generator function.

PyGenObject 's are �agged when created
with CO_GENERATOR (this class),
CO_COROUTINE () or
CO_ASYNC_GENERATOR ().

python INTERNALS: GENERATOR OBJECTS
PyGenObject

typedef struct {
 /* The gi_ prefix is intended to
 remind of generator-iterator. */
 PyObject ob_base;
 /* Note: gi_frame can be NULL if
 the generator is "finished" */
 struct _interpreter_frame *gi_xframe;
 /* The code object backing
 the generator */
 PyCodeObject *gi_code;
} PyGenObject;

1
2
3
4
5
6
7
8
9
10
11

PEP 492
PEP 525

Frame objects have a pointer to generator
objects and they store the index of the last
instruction in the bytecode of the frame.

This allows to resume a generator object that is
associated with a frame. Why? The frame data
has this code:

This is a pointer to a PyObject "somewhere" in
memory. Aside: pointers in C/C++ are used for
dynamic memory management.

PyObject *generator;1

Although the frame object is in the stack, the
generator pointer allows to obtain the

generator object from somewhere else in
memory which can then be resumed (e.g. the
frame evaluates next() on a generator).

In fact: python 's frame stack is maintained
in dynamic memory (), something that is
not true for standard program execution.

heap

https://github.com/python/cpython/blob/main/Include/cpython/genobject.h#L28
https://www.python.org/dev/peps/pep-0492/
https://www.python.org/dev/peps/pep-0525/
https://stackoverflow.com/a/2308762

python INTERNALS: DYNAMIC MEMORY
Processes share CPU and memory among each other.

Sharing memory is a non-trivial task when designing operating
systems.

Each physical memory cell (byte-sized cells) can be addressed
uniquely. For example:

32-bit system: 4294967296 addresses; can handle 4GB (gigabyte) of RAM at most.

64-bit system: 18446744073709551616 addresses; can handle 16EB (exabyte) of
RAM at most. (This is A LOT!)

Virtual memory simpli�es memory management in operating
systems by making processes "think" that their memory space
always starts at address 0 . The virtual address is then translated to
the real physical address by a hardware component called

.
memory

management unit (MMU)

https://en.wikipedia.org/wiki/Memory_management_unit

python INTERNALS: DYNAMIC MEMORY
Static memory allocation: variables with known size at compile time.
The compiler allocates this memory inside the executable.

Automatic memory allocation: similar to static memory allocation;
the allocation requirements are known at compile time. Allocation
is carried out on the stack when the code executes.

Dynamic memory allocation: when it is not possible for the compiler
to determine a speci�c memory request, e.g. the allocation size
depends on user input at runtime, the memory must be allocated
dynamically. A dynamic memory segment is allocated on the heap.

All objects in python (including frame objects and code objects)
are allocated dynamically on the heap.

python INTERNALS: DYNAMIC MEMORY
Virtual memory of a Linux process

Command line arguments
and environment variables

Stack

Free memory

Heap

Unini�alized data (.bss)

Ini�alized data (.data)

Code (.text)

High address

Low address
Executable machine code (instruc�ons),
read-only segment.

Global and sta�c variables. The linker
allocates memory in these segments. Those
variables can be either ini�alized or
unini�alized.

Dynamic memory that grows depending on
program. Hard to manage (fragmenta�on,
garbage collec�on) and involves expensive
kernel calls (e.g. malloc or new). Alloca�ng
memory on the heap is slow.

LIFO stack (Last-In-First-Out), allocated by
the OS at program start. Stack frames are
created here (e.g. func�on calls). Easy to
manage and much faster than memory
alloca�on on the heap.

Stack and heap grow in opposite direc�on.

Automa�c
memory
alloca�on

Dynamic
memory
alloca�on

Sta�c
memory
alloca�on

python INTERNALS: DYNAMIC MEMORY
The python interpreter emulates a frame stack using dynamic memory.
Frame objects are pushed and popped to and from the frame stack on the
heap (dynamic memory pool).

These stack operations are more expensive than the ones used with
automatic memory allocation in a x86_64 executable.

Since all python objects are allocated on the heap, generator objects
persist until the interpreter explicitly removes them from the heap. This
allows to easily resume a suspended generator including its state.
Because a PyFrameObject stores the last instruction in f_lasti , it will
be used to index into the bytecode of a generator object to resume
execution with instruction f_lasti + 1 .

python INTERNALS: TRACEBACK OBJECTS
The python interpreter exposes a number of internal objects to
the user of which we have discussed three so far:

Code objects for byte compiled code

Frame objects to execute code.

Generator objects for suspension and resumption of code execution.

It is rare that you will need to manipulate these objects directly in
your code. We have used them here to understand the low-level
python internals without going too deep into the interpreter
source code.

The last python internal object we want to look at are traceback
objects. They are created when exceptions are raised and used for
debugging purposes or non-standard exception handling.

Obtain a traceback object from an exception:

Output:

Traceback objects can only
be obtained through an
exception.

They are similar to frame
objects, except that
tb_next points towards the

frame where the exception
has been thrown.

Control on the left is in the
main() function after the

exception was thrown. The
line number in the frame
and trace objects are
different because we
execute this frame.

python INTERNALS: TRACEBACK OBJECTS
import dis

def g():
 raise Exception

def f():
 g()

def main():
 try:
 f()
 except Exception as e:
 tb = e.__traceback__
 i = 0
 while tb is not None:
 frame = tb.tb_frame
 li = frame.f_code.co_code[frame.f_lasti]
 print(f'frame {i}: line frame={frame.f_lineno}; ' +
 f'line trace={tb.tb_lineno}; ' +
 f'last instruction={dis.opname[li]}')
 tb = tb.tb_next
 i += 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

frame 0: line frame=18; line trace=11; last instruction=LOAD_ATTR
frame 1: line frame=7; line trace=7; last instruction=CALL_FUNCTION
frame 2: line frame=4; line trace=4; last instruction=RAISE_VARARGS

1
2
3

Standard traceback:

Output:

Read python traceback
from bottom up.

Each line that starts with
File corresponds to a new

traceback object.

The defaults contain
information about the �le
where the code is executed,
the current line and the
name of the frame.

Recall that code blocks in
python are among the

following: modules,
function bodies, class
de�nitions or commands
typed interactively.

python INTERNALS: TRACEBACK OBJECTS
def g():
 raise Exception("A useful description goes here")

def f():
 g()

def main():
 f()

if __name__ == "__main__":
 main()

1
2
3
4
5
6
7
8
9

10
11

Traceback (most recent call last):
 File "/home/fabs/CS107/traceback/tb.py", line 17, in <module>
 main()
 File "/home/fabs/CS107/traceback/tb.py", line 13, in main
 f()
 File "/home/fabs/CS107/traceback/tb.py", line 9, in f
 g()
 File "/home/fabs/CS107/traceback/tb.py", line 5, in g
 raise Exception("A useful description goes here")
Exception: A useful description goes here

1
2
3
4
5
6
7
8
9

10

python LIST OBJECTS AND NUMPY ARRAYS
python has the reputation of being slow.

This is true. It is not due to bad design however (the GIL is
debatable), but rather prioritizing �exibility and the possibility for
fast prototyping.

One of the reasons for this performance penalty is that python
objects are not necessarily near by in memory due to dynamic
memory allocation.

How does this matter since memory cells in random access
memory (RAM) can be accessed in constant time?

Additional pointer dereferences until you get to the data.
(Everything must be referenced by pointers.)

Spatial and temporal locality of the data is not optimal. Results in
many cache misses when reading or writing data.

python LIST OBJECTS AND NUMPY ARRAYS
Let us see how list objects are implemented in python :

ob_item is a pointer to pointer(s) to PyObject 's. For example,
ob_item[0] returns a pointer to a PyObject , ob_item[1] returns the
next pointer to the second PyObject and so on.

typedef struct {
 PyVarObject ob_base;
 // Vector of pointers to list elements. list[0] is ob_item[0], etc.
 PyObject **ob_item;
 Py_ssize_t allocated;
} PyListObject;

1
2
3
4
5
6

In the following we assume PyObject represents a python integer:

We assume that the PyObject takes 16 byte, ob_size is 8 byte and
ob_digit is 4 byte. A PyLongObject then has a size of 28 byte.

struct _longobject {
 PyObject ob_base;
 Py_ssize_t ob_size;
 digit ob_digit[1]; // the actual integer
} PyLongObject;

1
2
3
4
5

python LIST OBJECTS AND NUMPY ARRAYS

0 1 2 3 4 5 6 7 8 9 ...

0x77ae55f0

PyLongObject

0x1a62cdf8

28 byte 10

PyLongObject

0x1a62cdf8

28 byte 11

PyLongObject

0x1a62cdf8

28 byte 12

PyLongObject

0x5a62cdf8

28 byte 13

Assume the following python list

The elements of ob_item are coalesced in memory. We can access the
PyObject references in the list with complexity.

To obtain the actual value we must dereference the pointer and read
ob_digit[0] for every item in the list.

li = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]1

O(1)

python LIST OBJECTS AND NUMPY ARRAYS
We can visualize this list on showing all heap allocations:

ObjectsFrames
Python 3.6

 line that just executed
 next line to execute

< Prev Next >

Step 1 of 1
Rendered by Python Tutor
Customize visualization

1 li = [10, 11, 12, 13, 14, 15, 16, 17, 18,

pythontutor.com

http://pythontutor.com/
https://pythontutor.com/visualize.html#code=li%20%3D%20%5B10,%2011,%2012,%2013,%2014,%2015,%2016,%2017,%2018,%2019%5D&cumulative=false&curInstr=0&heapPrimitives=true&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Sum values in iterable x : Assembly:

python LIST OBJECTS AND NUMPY ARRAYS
Example: for -loop over iterable

import timeit
import numpy as np

def pysum(x):
 s = 0
 for i in x:
 s += i

def main():
 x = np.array(list(range(1000000)))
 t = timeit.timeit('f(x)',
 globals={'f': pysum, 'x': x},
 number=10
)

if __name__ == "__main__":
 main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

5 0 LOAD_CONST 1 (0)
 2 STORE_FAST 1 (s)

6 4 LOAD_FAST 0 (x)
 6 GET_ITER
 >> 8 FOR_ITER 12 (to 22)
 10 STORE_FAST 2 (i)

7 12 LOAD_FAST 1 (s)
 14 LOAD_FAST 2 (i)
 16 INPLACE_ADD
 18 STORE_FAST 1 (s)
 20 JUMP_ABSOLUTE 8
 >> 22 LOAD_CONST 0 (None)
 24 RETURN_VALUE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Running this code with 1'000'000 elements
takes 0.74 seconds, averaged over 10
samples.

python LIST OBJECTS AND NUMPY ARRAYS
While PyObject 's in python are generic in the sense that they are
very �exible in terms of describing data, the generality comes at a
performance price.

The python interpreter is designed to work with PyObject 's
exclusively (recall: everything in python is an object).

Performance oriented designs are centered around data rather
than objects.

Because the python interpreter is written in C , extensions can
easily be implemented.

 is a python extension module designed for ef�cient
numerical computation in python .

It operates on its own data structures for this reason.

NumPy

https://numpy.org/

Object oriented
python list:

0 1 2 3 4 5 6 7 8 9 ...

0x77ae55f0

PyLongObject

0x1a62cdf8

28 byte 10

PyLongObject

0x1a62cdf8

28 byte 11

PyLongObject

0x1a62cdf8

28 byte 12

PyLongObject

0x5a62cdf8

28 byte 13

The list above is the same as

PyLongObject uses 32-bit integral type
for integers, i.e., int in C .

python LIST OBJECTS AND NUMPY ARRAYS
Back to this list:

li = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]1

PyObject *ob_item[10]; // 10 contiguous pointer1

Data oriented
NumPy array :

10 11 12 13 14 15 16 17 18 19 ...

0x7512ab5f

0 1 2 3 4 5 6 7 8 9

The elements of a NumPy array are
contiguous data items, not pointers
(references) to PyObject 's.

The NumPy array above is similar to

Reading the data in this format will
saturate the memory bandwidth!

int ob_item[10]; // 10 contiguous data items1

Sum values in iterable x : Assembly:

python LIST OBJECTS AND NUMPY ARRAYS
Example: for -loop over iterable (same as before)

import timeit
import numpy as np

def pysum(x):
 s = 0
 for i in x:
 s += i

def npsum(x):
 s = x.sum()

def main():
 x = np.array(list(range(1000000)))
 t = timeit.timeit('f(x)',
 globals={'f': npsum, 'x': x},
 number=10
)

if __name__ == "__main__":
 main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

10 0 LOAD_FAST 0 (x)
 2 LOAD_METHOD 0 (sum)
 4 CALL_METHOD 0
 6 STORE_FAST 1 (s)
 8 LOAD_CONST 0 (None)
 10 RETURN_VALUE

1
2
3
4
5
6

Running this code with 1'000'000 elements
averaged over 10 samples:

Pure python : 0.74 seconds

NumPy array: 0.0046 seconds

Two orders of magnitude faster!

Note: the built-in function is only
slightly faster (0.60 seconds) than the naive
for -loop implementation.

sum()

https://docs.python.org/3/library/functions.html#sum

RECAP
python internals:

Code objects

The interpreter and the evaluation loop

Frame objects

Generator objects

Traceback objects

python lists and numpy arrays

