
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 18
Thursday, November 4th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Binary trees and principal binary tree traversal

Priority queues and heaps

OUTLINE
Generators

Coroutines

python internals: objects, bytecode and interpreter

GENERATORS
In a previous lecture we discussed the iterator design pattern. Its intent
was the following:

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Iterators are fundamental for processing data. So far our conception was
that the data we are iterating over lives in the Random Access Memory
(RAM) of your computer (e.g. list , tuple or a linked lists).

What if the data we need to process is too large to �t into the RAM? Then
we need a way to lazily fetch new elements as we call next() .

Every generator is an iterator and fully implements the iterator interface.
An iterator retrieves its items from a collection (e.g. a list), while a
generator can produce items upon request (it is "lazy").

The terms "iterator" and "generator" are often used interchangeably. Be aware of the
difference above.

Iterable
__iter__

Iterator
__next__
__iter__

Bu
il
ds
 a
n
it
er
at
or

Iterable: an object x that is iterable
implements the __iter__ special
method, which returns a new iterator
for every iter(x) call.

GENERATORS
Recall: the iterator interface (python obtains iterators from iterables)

Iterator: an iterator implements the
standard interface:

__next__ : returns the next available
item. Raises StopIteration when
there are no more items.

__iter__ : returns self . (Allows
iterators to be used where an iterable is
expected.)

A generator has the same interface as
an iterator.

GENERATORS
Generators were added in python 2.2 (2001) and introduced a
new keyword: yield .

They are de�ned in .PEP 255 -- Simple Generators

A generator function is essentially the same as regular function,
except that it yields or produces a value.

A generator g yields a value whenever we call next(g) on it. It is
then temporarily suspended until we call next(g) again (it is lazy
and executes on demand).

A StopIteration is raised when we reach a return statement or
the end of the generator function body.

https://www.python.org/dev/peps/pep-0255/

GENERATOR FUNCTION
Any python function that has the yield keyword in its body is a

generator function. A generator function is a function which, when
called, returns a generator object. You can think of generator

functions as factories for generator objects.

The generator yields the value that
follows every yield keyword.

The built-in advances the
generator the same way it does for
iterators.

Example:

def gen_107():
 """Generator function"""
 yield 1
 yield 0
 yield 7

1
2
3
4
5

next()

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>

1
2
3

>>> g = gen_107()4
<generator object gen_107 at 0x7fe79f57d820>5
>>> getgeneratorstate(g)6
'GEN_CREATED'7
>>> next(g)8
19
>>> getgeneratorstate(g)10
'GEN_SUSPENDED'11
>>> list(g)12
[0, 7]13
>>> getgeneratorstate(g)14
'GEN_CLOSED'15

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>
>>> g = gen_107()
<generator object gen_107 at 0x7fe79f57d820>

1
2
3
4
5

>>> getgeneratorstate(g)6
'GEN_CREATED'7
>>> next(g)8
19
>>> getgeneratorstate(g)10
'GEN_SUSPENDED'11
>>> list(g)12
[0, 7]13
>>> getgeneratorstate(g)14
'GEN_CLOSED'15

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>
>>> g = gen_107()
<generator object gen_107 at 0x7fe79f57d820>
>>> getgeneratorstate(g)
'GEN_CREATED'

1
2
3
4
5
6
7

>>> next(g)8
19
>>> getgeneratorstate(g)10
'GEN_SUSPENDED'11
>>> list(g)12
[0, 7]13
>>> getgeneratorstate(g)14
'GEN_CLOSED'15

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>
>>> g = gen_107()
<generator object gen_107 at 0x7fe79f57d820>
>>> getgeneratorstate(g)
'GEN_CREATED'
>>> next(g)
1
>>> getgeneratorstate(g)
'GEN_SUSPENDED'

1
2
3
4
5
6
7
8
9

10
11

>>> list(g)12
[0, 7]13
>>> getgeneratorstate(g)14
'GEN_CLOSED'15

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>
>>> g = gen_107()
<generator object gen_107 at 0x7fe79f57d820>
>>> getgeneratorstate(g)
'GEN_CREATED'
>>> next(g)
1
>>> getgeneratorstate(g)
'GEN_SUSPENDED'
>>> list(g)
[0, 7]

1
2
3
4
5
6
7
8
9

10
11
12
13

>>> getgeneratorstate(g)14
'GEN_CLOSED'15

>>> from inspect import getgeneratorstate
>>> gen_107
<function gen_107 at 0x7fe79f4e7310>
>>> g = gen_107()
<generator object gen_107 at 0x7fe79f57d820>
>>> getgeneratorstate(g)
'GEN_CREATED'
>>> next(g)
1
>>> getgeneratorstate(g)
'GEN_SUSPENDED'
>>> list(g)
[0, 7]
>>> getgeneratorstate(g)
'GEN_CLOSED'

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

https://docs.python.org/3/library/functions.html#next

The generator yields the value that
follows every yield keyword.

The built-in advances the
generator the same way it does for
iterators.

A generator implements the standard iterator
interface. We can use it interchangeably with iterators!

GENERATOR FUNCTION
Example:

def gen_107():
 """Generator function"""
 yield 1
 yield 0
 yield 7

1
2
3
4
5

next()

>>> for i in gen_107():
... i
...
1
0
7

1
2
3
4
5
6

A generator function creates separate
instances of generators (it is a factory):

>>> a, b = gen_107(), gen_107()
>>> a; b
<generator object gen_107 at 0x7fe79f2cf120>
<generator object gen_107 at 0x7fe79f2cf190>
>>> iter(a); iter(b)
<generator object gen_107 at 0x7fe79f2cf120>
<generator object gen_107 at 0x7fe79f2cf190>

1
2
3
4
5
6
7

https://docs.python.org/3/library/functions.html#next

GENERATOR FUNCTION
Example:

You can use the return keyword inside a generator function. It will raise
StopIteration and yield 7 will never be reached.

def gen_107():
 """Generator function"""
 yield 1
 yield 0
 return
 yield 7

1
2
3
4
5
6

>>> for i in gen_107():
... i
...
1
0

1
2
3
4
5

Generator states: obtained by
State Description

GEN_CREATED Waiting to start execution

GEN_RUNNING Currently being executed by the interpreter

GEN_SUSPENDED Currently suspended at a yield expression

GEN_CLOSED Execution has completed

inspect.getgeneratorstate

https://docs.python.org/3/library/inspect.html#inspect.getgeneratorstate

Iterator implementation for
linked list in previous class:

REVISIT ITERATOR FOR LINKED LIST

class LinkedList:
 # other code skipped

 def __iter__(self):
 return LinkedListForwardIterator(
 self.first)

class LinkedListForwardIterator:
 def __init__(self, start):
 self.node = start

 def __next__(self):
 if self.node != None:
 curr_node = self.node
 self.node = self.node.next
 return curr_node
 else:
 raise StopIteration

 def __iter__(self):
 return self

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Same functionality implemented
with a generator function:

__iter__ is now a generator
function (a factory of generators).

A generator implements the
standard iterator interface.

No need to write an extra class
for it! Less code, more elegant.

class LinkedList:
 # other code skipped

 def __iter__(self):
 node = self.first
 while node != None:
 yield node
 node = node.next

1
2
3
4
5
6
7
8

:
Comprehensions provide a concise way
to build lists, sets or dictionaries.

list comprehension example:

set comprehension example:

dict comprehension example:

Comprehensions are built eagerly.
Once created, the complete data
structure exists in memory (RAM).

GENERATOR EXPRESSIONS
Comprehensions

>>> [x for x in range(5)]
[0, 1, 2, 3, 4]

1
2

>>> {x for x in [0, 0, 1, 2, 2]}
{0, 1, 2}

1
2

>>> {k:v for k, v in [(0,'a'), (1,'b'), (2,'c')]}
{0: 'a', 1: 'b', 2: 'c'}

1
2

:

A generator expression can be
thought of as a lazy version of a list
comprehension.

It does not eagerly build a list, but
returns a generator that will lazily
produce the items on demand.

A generator expression is written
using parentheses instead of brackets
or curly braces.

Generator expression example:

You can not use the yield or yield
from keywords in a generator
expression.

Generator expressions

>>> (x for x in range(0))
<generator object <genexpr> at 0x7f6c2d732430>

1
2

https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#generator-expressions

Iterable via list comprehension:

Output (eager):

Iterable via generator expression:

Output (lazy):

GENERATOR EXPRESSIONS

generator function
def gen():
 print('Start')
 yield 'A'
 print('Continue')
 yield 'B'
 print('End')

list comprehension (eager)
lc = [x for x in gen()]

iterate over list
print('Enter loop')
for i in lc:
 print(i)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Start
Continue
End
Enter loop
A
B

1
2
3
4
5
6

generator function
def gen():
 print('Start')
 yield 'A'
 print('Continue')
 yield 'B'
 print('End')

generator expression (lazy)
ge = (x for x in gen())

iterate over generator expression
print('Enter loop')
for i in ge:
 print(i)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Enter loop
Start
A
Continue
B
End

1
2
3
4
5
6

GENERATOR EXPRESSIONS
Generator expressions are syntactic sugar. They are nice in places
where you want to be brief and concise, same as with
comprehensions.

Generator functions and generator expressions both return
generators. They are both generator factories and perform the
same job.

Generator functions are much more �exible and allow for multiple
statements and more complex code. Generator functions can
further be used as coroutines (will be introduced later).

Generator expressions were proposed in .PEP 289

https://www.python.org/dev/peps/pep-0289/

GENERATOR FUNCTIONS IN THE STANDARD LIBRARY
The python standard library has many generator utilities
implemented.

You should be aware of them in order not to reinvent the wheel.

Categories include:
Filters

Maps

Merge of inputs

Expansion of input into multiple outputs

Rearrangements

Reductions

Most of these tools are available in the module the
others are built-in.

itertools

https://docs.python.org/3/library/itertools.html

Example directory structure: os.walk generator in python :

GENERATOR FUNCTIONS IN THE STANDARD LIBRARY
Example:

os.walk is a very powerful tool

Makes it trivial to recursively iterate over a �le system tree.

os.walk

./
├── file_top
├── oswalk.py
├── subdir1
│ ├── file_subdir1
│ └── subsubdir1
│ └── file_subsubdir1
└── subdir2
 └── file_subdir2

1
2
3
4
5
6
7
8
9

>>> import os
>>> for path, dirs, files in os.walk('./'):
... print(f'{path}\n\tdirs: {dirs}\n\tfiles: {files
...
./
 dirs: ['subdir1', 'subdir2']
 files: ['oswalk.py', 'file_top']
./subdir1
 dirs: ['subsubdir1']
 files: ['file_subdir1']
./subdir1/subsubdir1
 dirs: []
 files: ['file_subsubdir1']
./subdir2
 dirs: []
 files: ['file_subdir2']

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

https://docs.python.org/3/library/os.html#os.walk

GENERATOR FUNCTIONS IN THE STANDARD LIBRARY
Example:

Filter elements in an iterable for which a predicate function returns true.

filter returns an iterator.

Examples: �lter vowels

or �lter types:

The inverse of filter is provided by :

filter

>>> list(filter(lambda x: x.lower() in 'aeiou', 'What you seek is seeking you.'))
['a', 'o', 'u', 'e', 'e', 'i', 'e', 'e', 'i', 'o', 'u']

1
2

>>> list(filter(lambda x: isinstance(x, int), [0, 0x1, 0o2, 3.0]))
[0, 1, 2]

1
2

itertools.filterfalse
>>> from itertools import filterfalse
>>> list(filterfalse(lambda x: isinstance(x, int), [0, 0x1, 0o2, 3.0]))
[3.0]

1
2
3

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/itertools.html#itertools.filterfalse

GENERATOR FUNCTIONS IN THE STANDARD LIBRARY
Example:

Applies a function to every item of an iterable and yields the result.

You can pass iterables. In this case the function must take
arguments. See for an alternative version.

Example:

Note that map stops when the shortest input iterator is exhausted.

map

n n

itertools.starmap

>>> list(map(lambda a, b: (a, b), range(11), list('ABC')))
[(0, 'A'), (1, 'B'), (2, 'C')]

1
2

There are many more useful generator functions in . Be
sure to check them out.

itertools

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/itertools.html#itertools.starmap
https://docs.python.org/3/library/itertools.html

APPLICATION EXAMPLE: LAZY READ OF LARGE DATA
Another case where generators are useful is to de�ne different readers
of input data which must expose an identical interface to retrieve the
data (iterator pattern).

If your input data set is very large it may not �t into RAM entirely. In
that case you must produce the data on the �y, that is, lazily read the
data from the disk or tape. A generator is the right tool for this.

Assume you are working with the following function to process data,
where your input data may either come from an ASCII text �le or a
NumPy (due to different data collection procedures):binary �le

from itertools import chain
def process(*data_generators):
 val = 0
 item_count = 0
 for item in chain.from_iterable(data_generators):
 val += item
 item_count += 1
 if item_count % 10000 == 0:
 print(f'{item_count} items processed from input')
 return val

1
2
3
4
5
6
7
8
9

10

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html

APPLICATION EXAMPLE: LAZY READ OF LARGE DATA
Data processing function:

The process() function takes a number of data generators (or just
iterables) and chains them together to iterate over individual data items
that must be processed. Examples could be movie frames, pressure �elds
from simulations, audio samples, sentences, anything really. In the
example above the generators yield just one number at a time.

from itertools import chain
def process(*data_generators):
 val = 0
 item_count = 0
 for item in chain.from_iterable(data_generators):
 val += item
 item_count += 1
 if item_count % 10000 == 0:
 print(f'{item_count} items processed from input')
 return val

1
2
3
4
5
6
7
8
9

10

If the data �le(s) are larger than your physical RAM size or you read from
a continuous stream, you will not be able to load the full data set and you
must use a generator instead.

Example lazy binary reader for some data
format irrelevant for this example:

Example eager binary reader version. This
loads all the data into RAM:

APPLICATION EXAMPLE: LAZY READ OF LARGE DATA

Be aware that loading small chunks of data from disk is signi�cantly slower
than reading it from RAM.

def lazy_binary(fname):
 """Lazy binary load (generator)"""
 with open(fname, 'r') as fin:
 while True:
 x = np.fromfile(
 fin, dtype=float, count=1)
 if x.size > 0:
 yield x
 else:
 break

1
2
3
4
5
6
7
8
9

10

def eager_binary(fname):
 """Eager binary load (iterable numpy array)"
 with open(fname, 'r') as fin:
 return np.fromfile(fin, dtype=float)

1
2
3
4

If you must read from disk (lazy)
and your individual data elements
are small, consider reading larger
chunks at a time.

def lazy_binary(fname, chunk_size=1):
 """Lazy binary load (generator)"""
 with open(fname, 'r') as fin:
 while True:
 x = np.fromfile(
 fin, dtype=float,
 count=chunk_size)
 for i in x:
 yield i
 if x.size == 0:
 break

1
2
3
4
5
6
7
8
9

10
11

If you lazy read data that
is very small, you can end
up spending 100x longer
processing your data.

You should at least read
10–100 kilobyte at a time.
This may depend on the
architecture you are
running on. The larger the
chunk size the better.

Prefer to eager load the
full data set if you can
afford it.

APPLICATION EXAMPLE: LAZY READ OF LARGE DATA
Benchmark for lazy load of 512MB �le with different chunk size:

COROUTINES
You are already familiar with a function. They are also called subroutines
(especially in Fortran).

Functions allow you to avoid code duplication.

They form a logical segmentation of the problem. Also enable easier debugging.

When you call a function temporary variables are allocated (called automatic
variables) that exist during the lifetime of the function only. Examples are
function arguments or local variables in the function body.

A function has one entry and may have multiple return points. It is asymmetric.
Once you return, the memory for the temporary variables is released.

A function is a special case of a more general concept called coroutines.
Functions are asymmetric between caller and callee, coroutines are
symmetric. You can enter and leave a coroutine many times. You may
think of two coroutines as a "team" of programs that repetitively call
each other with different input each time.

COROUTINES
A coroutine is syntactically the same as a generator: a function with
the yield keyword in its body.

In a coroutine the yield keyword usually appears on the right side
of an expression, for example

and it may or may not produce a value. If there is no expression after
the yield , like above, it yields None .

def coroutine():
 while True:
 x = yield
 print(x)

1
2
3
4

Unlike a generator, a coroutine can receive data from the caller by calling
c.send(data) instead of next(c) :

>>> c = coroutine()
>>> next(c) # we must prime the coroutine before use
>>> y = c.send('Hello CS107/AC207')
Hello CS107/AC207
>>> print(y)
None

1
2
3
4
5
6

line 11 creates the coroutine (noting

has been run yet).

line 13 primes the coroutine. This

means activate it and run until the �rst
yield , then suspend it.

line 16 sends data to the suspended

coroutine. This will activate it and run
until the next yield is reached. The

.send() call is similar to next()
except that we also send data.

Coroutines can be shutdown using the
.close() method in case it never

reaches a return statement (or end of

function).

COROUTINES EXAMPLE
from inspect import getgeneratorstate

def coroutine():
 ncalls = 0
 while True:
 x = yield ncalls
 ncalls += 1
 print(f'coroutine(): {x} (call id: {ncalls})')

def main():
 c = coroutine()
 print(getgeneratorstate(c))
 next(c) # prime the coroutine
 print(getgeneratorstate(c))

 c.send('Hello')
 print('main(): control back in main function')
 last_call = c.send('CS107')
 print(f'main(): called coroutine() {last_call} times'

 c.close()
 print(getgeneratorstate(c))

if __name__ == "__main__":
 main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GEN_CREATED
GEN_SUSPENDED
coroutine(): Hello (call id: 1)
main(): control back in main function
coroutine(): CS107 (call id: 2)
main(): called coroutine() 2 times
GEN_CLOSED

1
2
3
4
5
6
7

GENERATORS/COROUTINES RECAP
A generator can pause at a yield statement. It yields a value back to the
caller. The generator state is suspended until next() is called on it again.

Think of yield as control �ow.

A generator implements the standard iterator interface.

Coroutines are an advanced programming concept that involves entering
and returning from functions that are in an intermediate execution state. A
python coroutine extends a generator with .send , .close and .throw
methods. Coroutines and generators are conceptually very different.

: there are three different styles of code you can write
using generators:

1. The traditional "pull" style (example: the linked list __iter__ we discussed, see).

2. The "push" style (i.e., the coroutines that we discussed here using .send to push, see).

3. Concurrent tasks (coroutines with async and await syntax for concurrent programming, see
). We do not discuss concurrent programming in this class.

Guido van Rossum

PEP 255

PEP 342

PEP 492

https://gvanrossum.github.io/
https://www.python.org/dev/peps/pep-0255/
https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0492/

Frames: "frame objects" that execute code
(mental picture: a stack data structure, the
blue shaded frame is at the top of the stack).

Objects: any other python objects.
Functions, classes, data, etc.

There are a stacked sequence of
frames that execute code.

Arrows indicate references to objects
in memory.

When we enter a function f() , a new
frame appears that executes the code
of that function.

When done the function frame
disappears and we enter the caller
frame again (global frame here).

python INTERNALS: OBJECTS AND FRAMES
Recall: the sketches we saw during the examplespythontutor

The data structure used to organize
frames is a LIFO stack. Will that
work for coroutines?

https://pythontutor.com/

python INTERNALS: OBJECTS
All the data stored in a python program is built around the concept of an object.

Terminology:

Every piece of data is stored in an object. This includes frames and code.

Each object has an identity, a type (also known as its class) and a value.

The identity of an object is its location in memory. Names are references to that a speci�c
location.

The type of an object describes the internal representation as well as methods and
operations it supports.

When an object of a speci�c type is created, we called it an instance of that type. After an
instance is created, its identity and type can no longer be changed.

If an object's value can be modi�ed, we call it mutable, otherwise it is said to be immutable.

Containers or collections are objects that contain references to other objects.

Because everything in python is represented by objects, they are said to be �rst class.

python INTERNALS: OBJECTS
Example: user de�ned function object

User de�ned functions are callable objects created at the module level
by using def or lambda . Functions are �rst class objects in python .

>>> def f():
... pass
...
>>> g = lambda x: x
>>> f.__code__; g.__code__
<code object f at 0x7fd88a3fac90, file "<stdin>", line 1>
<code object <lambda> at 0x7fd88a3fabe0, file "<stdin>", line 1>

1
2
3
4
5
6
7

Attribute Description

f.__doc__ Documentation string

f.__name__ Function name

f.__dict__ Dictionary containing function attributes

f.__code__ Byte-compiled code

f.__defaults__ Tuple containing the default arguments

f.__globals__ Dictionary de�ning the global namespace

f.__closure__ Tuple containing data related to nested
scopes

python code you write gets compiled into
bytecode objects on the �y.

python is an interpreted language, under the
hood, code is transformed into bytecode
objects. The interpreter is a virtual machine.

Running your code for the �rst time is slower
due to bytecode generation. The result is cached
in .pyc �les for faster subsequent execution.

A user-de�ned function f has the following attributes:

RECAP
Generators

Coroutines

python internals: objects, bytecode and interpreter

