
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 17
Tuesday, November 2nd 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Introduction to data structures

Linked lists

Iterators

Binary trees

OUTLINE
Binary tree traversal

Priority queues and heaps

BINARY TREE TRAVERSAL
Recall: the distinction between ordinary trees and binary trees

1. An ordinary tree can not be empty, that is, it always has a root node.
Each node in this tree can have zero or more children.

2. A binary tree can be empty and each of its nodes can have 0, 1 or 2
children. We further distinguish between the left child and right child.

Binary trees are one of the most fundamental data structures in
Computer Science.

Binary trees appear in many places and it is more likely that they will
meet you rather than you will meet them.

It is therefore important to have a good understanding of this data
structure.

Their "dif�culty" lies in their recursive nature.

A binary tree is a
�nite set of nodes

that is either empty
or consists of a root

together with two
binary trees.

Note: this de�nition is
recursive!

Example binary tree:

The set de�nes a binary tree. How does
the set look like for the binary tree with root ?

BINARY TREE TRAVERSAL
Another way to look at a binary tree:

{A, β, γ}
B

1. Preorder traversal:
i. Visit the root

ii. Traverse the left subtree

iii. Traverse the right subtree

2. Inorder traversal:
i. Traverse the left subtree

ii. Visit the root

iii. Traverse the right subtree

3. Postorder traversal:
i. Traverse the left subtree

ii. Traverse the right subtree

iii. Visit the root

BINARY TREE TRAVERSAL
There are three principal ways to traverse a binary tree:

Preorder:

Inorder:

Postorder:

BINARY TREE TRAVERSAL
In each of the three principal ways of tree traversal, we have
visited each node once.

In the previous exercise we have just printed the node ID when we
visited it.

For more useful applications a tree node may hold a reference to
other data that we can operate on. An example includes evaluation
of dual numbers.

BRIEF RECAP
We have discussed linked lists, a linear data structure, and (binary)
trees, a nonlinear data structure, in more detail so far.

Trees and in particular binary trees are a fundamental data
structure that appears in many places in Computer Science.

Other linear data structures are stacks, queues and deques.

A stack is a linear list for which all
insertions, deletions and usually all
accesses are made at one end of
the list.

STACK

This is often referred to as Last-In-
First-Out (LIFO) stack or list.

An example where this data
structure is used is for executing
threads on your computer or
similarly when we execute python
functions with . Is
the stack a useful data structure
for recursive function calls?

pythontutor.com

https://pythontutor.com/

QUEUE

A queue is a linear list for which all insertions are made at one end
of the list and all deletions are made at the other end. Usually
accesses are made where we delete elements.

This is often referred to as a First-In-First-Out (FIFO) queue or list.

A queue keeps the order of how elements arrive.

DEQUE

A deque (double-ended-queue) is a linear list for which all
insertions and deletions are made at the ends of the list. Accesses
are usually made at both ends as well.

A deque is more general than a stack or a queue. It has some
properties in common with a deck of cards which is why it is
pronounced as "deck".

PRIORITY QUEUE
Assume items in a list have a key that is comparable.

Often a data structure that behaves like "smallest-in-�rst-out" (or
equivalently "largest-in-�rst-out") is useful.

In the case of "smallest-in-�rst-out" every deletion removes the
element with the smallest key .

A list that gives certain elements priority is called a priority
queue.

This implies a certain order that must be maintained.

PRIORITY QUEUE EXAMPLES
Operating systems or job schedulers on compute clusters use
priority queues to schedule jobs.

If you need to store data according to "least recently used", priority
queues are useful.

Maintain a priority order among your customers.

PRIORITY QUEUE IMPLEMENTATION

We need a method for element insertion that maintains the
priority order.

We need a method to remove the element with highest priority.

We need to be able to obtain the element with highest priority
(essentially the same as removal without actually removing the
element).

How would you go about this?

PRIORITY QUEUE IMPLEMENTATION
You could simply use a sorted list. Insertion of new elements is

, removal and access are .O(n) O(1)

You could keep a reference to the element with highest priority
(e.g. a pointer). Insertion and access are , removal is .O(1) O(n)

Both of these approaches are not ef�cient when the number of
elements is large.n

It is possible to use a balanced binary tree which can be represented
in a compact form using an array of keys only (no extra overhead

required for the bookkeeping of nodes in the tree). This will lead us to
the notion of a (binary) heap.

Note: a heap is a special arrangement of values, it is completely unrelated to a
.dynamic pool of memory that is often referred to as "heap"

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

BALANCED BINARY TREES
The height of a tree is given by the maximum level of the tree
(see sketch in slides of previous lecture).

A binary tree is balanced if the height difference between left and
right subtrees is no larger than 1.

For a perfectly balanced binary tree the relation
holds, where is the number of nodes in the tree.

h

⌊ (n)⌋ = hlog2

n

HEAP
A heap is de�ned as a sequence of keys

such that

for all . Here the least element is .
We can just as well de�ne the heap with " " instead. The greatest element then is

. We refer to a min-heap for the former and max-
heap for the latter de�nition, respectively.

n

, , … ,h1 h2 hn

hi

hi

≤ h2i

≤ h2i+1

i = 1, … , n/2 = min(, , … ,)h1 h1 h2 hn

≥
= max(, , … ,)h1 h1 h2 hn

A heap can therefore be cast into a binary tree, where the key of a
tree node satis�es the properties above relative to its two children.

hi

A heap ordered binary tree is a
balanced binary tree that
satis�es the heap property.

The key of the root node
corresponds to the least
element.

If you change to in the
heap property, the key in the
root node corresponds to the
greatest element.

HEAP
Heap ordered tree:

≤ ≥

A binary heap or simply "heap" is a
heap ordered binary tree
compactly represented with an
array.

If a parent node is at index in the
array, its left and right child have
indices and , respectively,

What are the corresponding
child indices if the root node is at
index 0 in the array?

A heap is the optimal data
structure for a priority queue.

HEAP
Binary heap (or just "heap"):

i

2i 2i + 1

A new element is inserted at the index
.

This will destroy the heap property. We
need to rebuild the heap from the
bottom up. This is called "swim".

Swimming up the tree is simple:

Note that // in python corresponds to integer
division

The swap function exchanges the array values at
the two given indices.

The greater function returns true if the value at
the �rst index is larger than that at the second
index.

PRIORITY QUEUE WITH HEAP
Element insertion:

Swim steps for insert of value 1 :
1.

2.

k: 7 | k//2: 3 | array[k]: 1 | array[k//2]: 5

k: 3 | k//2: 1 | array[k]: 1 | array[k//2]: 3

n + 1

def swim(k):
 while k > 1 and greater(k // 2, k):
 swap(k // 2, k)
 k = k // 2

1
2
3
4

The highest priority element is at index
1 which is where we delete elements.
The removed element is replaced with the
last element in the heap.

This will again destroy the heap
property. We need to rebuild the heap
from the top down. This is called "sink".

Sinking down the tree is simple too:

 is the number of elements in the heap

PRIORITY QUEUE WITH HEAP
Element removal:

Sink steps for removal of 3 :
1.

2.

k: 1 | 2 * k: 2 | 2 * k + 1: 3
array[k]: 20 | array[2*k]: 7 | array[2*k+1]: 5

k: 3 | 2 * k: 6 | 2 * k + 1: 7
while condition fails: only one step for this sink!

def sink(k):
 while 2 * k <= n:
 j = 2 * k
 if j < n and greater(j, j + 1):
 j += 1
 if not greater(k, j):
 break
 swap(k, j)
 k = j

1
2
3
4
5
6
7
8
9

n

PRIORITY QUEUE WITH HEAP
Building the initial heap:

Initially we need to build the heap assuming we start from an array
input with values at random order.

We can simply build the initial heap by inserting the new elements
in a loop.

What is the time complexity for the swim and sink operations?

What is the best time complexity we can expect for this initial
heap build?

We are now going through a simple implementation for
demonstration purpose. The python standard library provides an
implementation of a priority queue for you.

https://docs.python.org/3/library/heapq.html

PRIORITY QUEUE WITH HEAP
Heap exercise:

You are given the following input array:

1. Draw the heap ordered binary tree and write the binary heap
(array).

2. Remove and rebuild the heap with a corresponding swim or
sink operation.

a = [1, 8, 5, 9, 23, 2, 45, 6, 7, 99, −5]

−5

RECAP
BST traversal

Priority queues and heaps

