
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 14
Thursday, October 21st 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Virtual machines

Virtual environments

Docker containers

OUTLINE
Continuous Integration (CI) in Software Development

Testing your code and verifying the quality of your tests

Documentation

CONTINUOUS INTEGRATION (CI)

CONTINUOUS INTEGRATION (CI)
Continuous Integration (CI) is a software development process

where developers integrate new code (i.e. commits) into an
automated testing and documentation pipeline that streamlines the
build and deploy procedure of a project and helps to detect errors

and bugs early in the introduction phase.

CI signi�cantly improves quality in software development.

A version control system (VCS) is at the heart of a CI pipeline.

Automating tests and generation of documentation are essential in
any serious code base.

Understanding how CI works requires combined knowledge of
how a shell works, VCS and containerization (e.g. or

).
podman

docker

https://podman.io/
https://www.docker.com/

Image taken from

Source code and code for testing
belongs in your VCS.

CONTINUOUS INTEGRATION (CI)
How does a CI work�ow look like?

https://www.brightdevelopers.com/what-is-jenkins-and-why-it-is-so-important

A CI system frequently checks a remote
repository for new commits. Alternatively, a
service like can trigger a CI system
as new commits are being pushed.

GitHub

The CI system generates reports of several
tasks and informs the developers about
status through channels like email,
messenger integration (e.g. slack) or other
means.

The various tasks may generate output that
is not necessary for successful completion
of the CI pipeline but can be useful for
debugging. This data is called an "artifact"
and would need to be stored somewhere
(requires resources). Such a service is
optional.

https://www.brightdevelopers.com/what-is-jenkins-and-why-it-is-so-important/
https://github.com/

Image taken from

In essence a CI system is a server that will
launch a build of your project according to
some rules that you have con�gured.

CONTINUOUS INTEGRATION (CI)
What is inside a CI system?

https://www.brightdevelopers.com/what-is-jenkins-and-why-it-is-so-important

Because these rules can be extensive, a CI
server must offer �exibility with respect to
the build platform.

This �exibility is achieved through
.containerization

What are these "rules"? De�ned by your
needs but testing, documentation and
deployment are important rules you will
need. Extensions to testing may include:

Quality assessment of tests (coverage)

Building code with an assortment of
compilers on various systems like
Linux, MacOSX, Windows (including
different versions of them)

Running benchmarks and pro�ling
reports

https://www.brightdevelopers.com/what-is-jenkins-and-why-it-is-so-important/
https://www.ibm.com/cloud/learn/containerization

CONTINUOUS INTEGRATION (CI)
Requirements on CI:

You want to receive build reports almost instantly.

You should always run unit tests. These are cheap small units that test the core
functionality and interfaces of your code. If possible, integration tests should be
executed for each build as well.

More expensive test suites (time and resources) like (possibly) integration tests
and acceptance tests may be scheduled over night or higher frequency.

As you may have many CI rules de�ned, you possibly need to execute your
rules in parallel.

Generated output from your rules may need to be stored for inspection
(debugging or trouble-shooting).

All of this requires considerable computational resources. You will
either need to acquire hardware or invest in a hosted service.

CONTINUOUS INTEGRATION (CI)
What are commonly used CI platforms?

There are many CI providers, this is a non-preferential selection of few:

https://www.appveyor.com/

https://azure.microsoft.com/en-us/services/devops/pipelines/

https://bitbucket.org/product/features/pipelines

https://circleci.com/

https://github.com/features/actions

https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/

https://www.jenkins.io/

https://www.travis-ci.com/

Jenkins and GitLab are software solutions that you can use to run
your own CI server where the latter offers limited free features.

https://www.appveyor.com/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://bitbucket.org/product/features/pipelines
https://circleci.com/
https://github.com/features/actions
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://www.jenkins.io/
https://www.travis-ci.com/

CONTINUOUS INTEGRATION (CI)
What steps are performed in a CI build?

The following may deviate slightly depending on the CI provider. From the bird's eye
perspective they implement the same.

Your CI builds run inside a virtual environment (e.g. a docker container). Some
con�guration is usually needed to set them up before running the build.

A build consists of the following:
1. The CI process clones your VCS repository into the container and switches to the corresponding commit

to be tested.

2. Compile and/or install your software project. This process should be supported by a
 of your choice. Examples are make , cmake , meson or setuptools or anything else that supports

PEP517/518 for python speci�c projects.

build automation
system

3. De�ne a dependency chain of jobs that will run the built or installed software. Independent jobs may run
in parallel while others depend on completion of preceding jobs. A build is considered successful if all jobs in
the chain exit with success.

4. Post-processing depending on success or failure of the job chain. (This could include deploying releases to
 for example.)PyPI

https://en.wikipedia.org/wiki/List_of_build_automation_software
https://pypi.org/

CI EXAMPLE: TRAVIS-CI
Many CI providers require a con�guration �le in your project root. In there you
de�ne the rules and job chains you want to execute.

For our example cs107_package (Lecture 08), a con�guration could look like this
(inside a .travis.yml �le for TravisCI):

This runs two jobs in parallel, one for python3.6 and another for python3.8 .

The installation of our package is trivial since we use setuptools via PEP517/518.

Configuration file for TravisCI builds
language: python
jobs:
 include:
 - name: "Python 3.8.0"
 python: 3.8
 - name: "Python 3.9.0"
 python: 3.9

These packages we only want in our CI builds (for building our package)
before_install: python -m pip install build

This installs our project in the running container, convenient with PEP517 and
setuptools (Lecture 08). We can do this local as well, without uploading to PyPI first
install: (python -m build --wheel && python -m pip install dist/*)

Run the tests defined in the package
script: (cd tests && ./run_tests.sh) # run tests

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

CI EXAMPLE: TRAVIS-CI
For our example cs107_package (Lecture 08), a con�guration could look like this (inside
a .travis.yml �le for TravisCI):

The installation of our package is trivial since we use setuptools via PEP517/518 (see
Lecture 8). We have a build dependency on the build package which we resolve with
the before_install rule.

These packages we only want in our CI builds (for building our package)
before_install: python -m pip install build

This installs our project in the running container, convenient with PEP517 and
setuptools (Lecture 08). We can do this local as well, without uploading to PyPI first
install: (python -m build --wheel && python -m pip install dist/*)

Run the tests defined in the package
script: (cd tests && ./run_tests.sh) # run tests

1
2
3
4
5
6
7
8
9

If the package has runtime dependencies, declare them in the setup.cfg �le:

You do not need a fragmented requirements.txt �le when using PEP517.

install_requires =
 numpy # if the package depends on numpy declare it here

[options]1
package_dir =2
 = src3
packages = find:4
python_requires = >=3.65

6
7

The last script: line executes a test suite in all jobs we de�ned earlier.

TESTING
Testing in the CI containers happens when this line is executed in the .travis.yml �le.

This is how the directory structure of our cs107_package looks today (compare with
Lecture 8: we have added incomplete tests here):

Run the tests defined in the package
script: (cd tests && ./run_tests.sh) # run tests

1
2

└── tests
 ├── run_coverage.sh
 ├── run_tests.sh
 └── subpkg_1
 └── test_module_1.py

cs107_project/1
├── LICENSE2
├── pyproject.toml3
├── README.md4
├── setup.cfg5
├── src6
│ └── cs107_package7
│ ├── __init__.py8
│ ├── __main__.py9
│ ├── subpkg_110
│ │ ├── __init__.py11
│ │ ├── module_1.py12
│ │ └── module_2.py13
│ └── subpkg_214
│ ├── __init__.py15
│ ├── module_3.py16
│ ├── module_4.py17
│ └── module_5.py18

19
20
21
22
23

TESTING
Testing your code gives you con�dence that the expected behavior is observed
without side-effects.

Nobody (sane) will look or even use your code if there are no tests associated
with your work. Science is rigorous, show your peer that you mean business!

What should you test then?

Recall: OOP is about data encapsulation, inheritance and polymorphism. These
are the internals (implementation) which are accessible through interfaces.

Typically the requirements on interfaces are speci�ed in a
. (Recall the discussion about explicit software

design and implicit duck-typing. The SRS is explicit, it establishes a contract with
your customer(s).)

Software
Requirements Speci�cation (SRS)

Your test suites must ensure that the software requirement speci�cations are
met according to the contract.

https://en.wikipedia.org/wiki/Software_requirements_specification

TESTING
Example for interfaces:

Assume you are working on a library for complex numbers.

There are three interfaces in the code above:

1. The import statement

2. Instance creation of Complex type (__init__)

3. The multiplication operator (__mul__)

The import statement will be tested implicitly when you use it in your test
suites. The __init__ and __mul__ interfaces must be tested explicitly.

>>> from your_library import Complex
>>> z1 = Complex(1, 1)
>>> z2 = Complex(2, 2)
>>> z3 = z1 * z2

1
2
3
4

TESTING
How to write tests?

You can write your tests in two ways:

1. Write the tests �rst (according to the requirements in the SRS) and then
the implementation of your interfaces (black box tests).

2. Write the implementation of your interfaces (according to the
requirements in the SRS) and then the tests (white box tests).

Are there problems associated with either of the two? How are duck-typing
and white box tests related?

 (TDD) is a manifestation of black box testing. It is a software
design strategy that relies on a SRS being developed �rst (explicit design) and tests are

written following the SRS before you start with the implementation.

Test-Driven Development

https://en.wikipedia.org/wiki/Test-driven_development

TESTING
There are different levels of testing:

Unit tests: these are the smallest tests applied to classes and functions in a module
and sometimes a module itself. Can be black box tests, often realized as white box tests.

Integration tests: these tests combine different units that have a dependency on each
other. Unit tests alone can not guarantee a correct interdependency among units.

Regression tests: after integration testing (and possibly �xing errors) regression tests
are conducted which re-run the unit tests to ensure that integration did not break
any of the core functionalities.

System and Acceptance tests: these are usually larger tests that take place upon
multi-module completion which compose a part or the whole of a software system.
Acceptance tests involve the customer who provides feedback on the test results.
Acceptance tests should be carried out early on to account for customer feedback
iteratively (customers are demanding). System and acceptance tests should be black
box based on the SRS.

TESTING
What to test?

Test simple (and often trivial) parts with unit tests.

Add integration tests when there are dependencies among units.

Your system and acceptance tests will fail at the beginning (if they would not it
means your work is complete).

Make sure your unit and integration tests are executed in your CI builds.

Whenever you �x integration tests, re-run your tests locally to enforce regression.
Frequent committing will also trigger regression through the CI.

Program defensively: add test code that handles the "can't happen" case. This is
what is meant by "trivial" in the �rst item. Even if you think it is nonsensical to test a
trivial statement, Murphy's law will prove you wrong! Examples are zero-length
arrays or integer over�ow.

Test code at its boundaries: this is where most errors happen. Examples include
empty inputs, too many inputs or wrong input types.

TESTING IN python
python provides a few packages in the standard library
() that are useful for testing:

: unit testing framework

: a test module that utilizes doc-strings for testing. (Doc-
strings are covered in the following section.)

: a useful testing framework outside the python standard
library. It is compatible to run tests written with the
package.

development tools section

unittest

doctest

pytest
unittest

https://docs.python.org/3/library/development.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html
https://docs.pytest.org/en/6.2.x/
https://docs.python.org/3/library/unittest.html

unittest
The framework is a simple python package that uses a

set of that you use for testing your code.

(For C++ good testing frameworks are , or).

unittest
assert methods

googletest catch2 doctest (for small projects)

Anatomy of a python unittest :

Recall: a unit test is small and addresses functions, classes and
interfaces. It is a good idea to write these tests for individual modules
in your code.

How you organize your tests is up to your liking. You should have them
separate from your source code.

For our example toy project:
cs107_project/
├── src
└── tests
 ├── run_tests.sh
 └── subpkg_1
 └── test_module_1.py

1
2
3
4
5
6

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html#assert-methods
https://github.com/google/googletest
https://github.com/catchorg/Catch2
https://github.com/onqtam/doctest

unittest
For our example toy project:

Convention: name your tests as your modules and prepend the �le name with
" test_ ".

I have chosen to organize the tests using the same directory structure as in the
source code. How you organize your tests is entirely up to you. Be reasonable.

cs107_project/
├── src
└── tests
 ├── run_tests.sh
 └── subpkg_1
 └── test_module_1.py

1
2
3
4
5
6

Use a simple driver script that runs all your tests. Ideally you want it adaptive
such that you can exploit multiple testing facilities offered by python with one
driver script only.

When you deploy a production release to your customer or to , test cases and
other development related data are not shipped with the release. When you order a
carrot salad in a restaurant, the chef will not serve you the peel. (If your project is
open-source, this data is always accessible through your public git repository.)

PyPI

https://pypi.org/

unittest
How to run tests?

Entirely up to you! You have some powerful tools in your backpack now to
realize a test driver.

You want �exibility:

1. It should be easy to add new tests or quickly comment tests out. Keyword
here is modularity.

2. You may want to be generic with your driver script, such that you can wrap
multiple tools around it.

3. Your driver script must run on your local development platform, but also in
a CI container.

A shell script can work perfectly for this task. But be careful with zsh or
other shells here because some CI containers may not like it. Use sh or bash
compatible scripts (those have stood the test of time).

unittest
Example: how to run tests?

Contents of ./tests/run_tests.sh (recall: we have con�gured our .travis.yml
CI builds to execute this driver):

#!/usr/bin/env bash

list of test cases you want to run
tests=(
 # test_other_things_on_root_level.py
 subpkg_1/test_module_1.py
 # subpkg_2/test_module_3.py
)

decide what driver to use (depending on arguments given)
unit='-m unittest'
if [[$# -gt 0 && ${1} == 'coverage']]; then
 driver="${@} ${unit}"
elif [[$# -gt 0 && ${1} == 'pytest'*]]; then
 driver="${@}"
else
 driver="python ${@} ${unit}"
fi

we must add the module source path because we use `import cs107_package` in our test suite and we
want to test from the source directly (not a package that we have (possibly) installed earlier)
export PYTHONPATH="$(pwd -P)/../src":${PYTHONPATH}

run the tests
${driver} ${tests[@]}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

unittest
Example: how to run tests?

When we run this script without arguments it will execute

The same syntax as you would execute other python packages.
This runs test cases for module_1.py (recall: convention for naming
test cases start with test_)

$ python -m unittest subpkg_1/test_module_1.py1

Running the test driver gives:

Two tests have been run, let's look at them.

$./run_tests.sh
..
--
Ran 2 tests in 0.000s

OK

1
2
3
4
5
6

./tests/subpkg_1/test_module_1.py

(The last two lines allow you to execute your test module as a standalone program.)

See this link for the python conventions on test discovery:

In unittest 's you create
class es that inherit from
unittest.TestCase .

You can use these classes
to organize your tests.

unittest
"""
This test suite (a module) runs tests for subpkg_1.module_1 of the cs107_package.
"""
import unittest # python standard library

project code (import into this namespace)
from cs107_package.subpkg_1.module_1 import *

class TestTypes(unittest.TestCase):
 def test_class_Foo(self):
 """
 This is just a trivial test to check that `Foo` is initialized
 correctly. More tests associated to the class `Foo` could be written in
 this method.
 """
 f = Foo(1, 2)
 self.assertEqual(f.a, 1)
 self.assertEqual(f.b, 2)

class TestFunctions(unittest.TestCase):
 def test_function_foo(self):
 """
 This is just a trivial test to check the return value of function `foo`.
 """
 self.assertEqual(foo(), "cs107_package.subpkg_1.module_1.foo()")

if __name__ == '__main__':
 unittest.main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

https://docs.pytest.org/en/6.2.x/goodpractices.html#conventions-for-python-test-discovery

Each class de�nes methods
for the tests. They must
again start with test_ .
The class type must start
with Test .

You test your code by
calling different

 methods
(inherited).
self.assert*

The two tests ran before
correspond to the test_*
methods in each of the two
classes.

https://docs.pytest.org/en/6.2.x/goodpractices.html#conventions-for-python-test-discovery
https://docs.python.org/3/library/unittest.html#assert-methods

pytest
The unittest package works well as a general testing framework.

You are somewhat limited to writing your tests in classes and you have
to remember the various self.assert* methods. See

 for a
list.

The package can be an alternative for testing:

Instead of self.assert* , pytest just uses the default python
assert statement for all tests.

It is compatible with tests written using the unittest package.

You can test standalone functions or group tests into TestClasses
like we do for unittest .

Install: python -m pip install pytest

https://docs.python.org/3/library/unittest.html#assert-methods

pytest

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.pytest.org/en/6.2.x/

pytest
We create a new test module: ./tests/subpkg_1/test_module_2.py

"""
This test suite (a module) runs tests for subpkg_1.module_2 of the cs107_package.
"""
import pytest # these tests are designed for pytest

project code
from cs107_package.subpkg_1.module_2 import *

class TestFunctions:
 """We do not inherit from unittest.TestCase for pytest's!"""
 def test_bar(self):
 """
 This is just a trivial test to check the return value of function `bar`.
 """
 assert bar() == "cs107_package.subpkg_1.module_2.bar()"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

 16
def example_function():17
 """If you have code that raises exceptions, pytest can verify them."""18
 raise RuntimeError("This function should not be called")19
 20
def test_example_function():21
 with pytest.raises(RuntimeError):22
 example_function()23

def example_function():
 """If you have code that raises exceptions, pytest can verify them."""
 raise RuntimeError("This function should not be called")

def test_example_function():
 with pytest.raises(RuntimeError):
 example_function()

"""1
This test suite (a module) runs tests for subpkg_1.module_2 of the cs107_package.2
"""3
import pytest # these tests are designed for pytest4
 5
project code6
from cs107_package.subpkg_1.module_2 import *7
 8
class TestFunctions:9
 """We do not inherit from unittest.TestCase for pytest's!"""10
 def test_bar(self):11
 """12
 This is just a trivial test to check the return value of function `bar`.13
 """14
 assert bar() == "cs107_package.subpkg_1.module_2.bar()"15
 16

17
18
19
20
21
22
23

"""
This test suite (a module) runs tests for subpkg_1.module_2 of the cs107_package.
"""
import pytest # these tests are designed for pytest

project code
from cs107_package.subpkg_1.module_2 import *

class TestFunctions:
 """We do not inherit from unittest.TestCase for pytest's!"""
 def test_bar(self):
 """
 This is just a trivial test to check the return value of function `bar`.
 """
 assert bar() == "cs107_package.subpkg_1.module_2.bar()"

def example_function():
 """If you have code that raises exceptions, pytest can verify them."""
 raise RuntimeError("This function should not be called")

def test_example_function():
 with pytest.raises(RuntimeError):
 example_function()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

pytest
And add the new test module in: ./tests/run_tests.sh

#!/usr/bin/env bash

list of test cases you want to run
tests=(
 subpkg_1/test_module_1.py
 subpkg_1/test_module_2.py
)

1
2
3
4
5
6
7

Running the tests with our driver script:
$./run_tests.sh pytest -v
============================ test session starts ============================
platform linux -- Python 3.9.7, pytest-6.2.5, py-1.10.0, pluggy-0.13.1
cachedir: .pytest_cache
rootdir: /home/fabs/harvard/CS107/cs107_project/tests
plugins: cov-2.12.1, anyio-3.3.2
collected 4 items

subpkg_1/test_module_1.py::TestTypes::test_class_Foo PASSED [25%]
subpkg_1/test_module_1.py::TestFunctions::test_function_foo PASSED [50%]
subpkg_1/test_module_2.py::TestFunctions::test_bar PASSED [75%]
subpkg_1/test_module_2.py::test_example_function PASSED [100%]
============================= 4 passed in 0.02s =============================

1
2
3
4
5
6
7
8
9

10
11
12
13

Note: the new test module that we just created is designed for pytest . Running ./run_tests.sh
(defaults to python -m unittest) will only run 2 out of the 4 total tests. If you combine

unittest 's and pytest 's, always run them with pytest .

doctest
The unittest and pytest packages are the ones you should build
your tests upon.

's are small scale tests that you can integrate in the
docstring 's of your python code.

They are useful for providing examples in your documentation and
serve as a conceptual test at the same time.

A doctest can not accurately capture all corner cases without
cluttering your documentation. Use them appropriately to indicate
use cases and adhere to unittest and/or pytest for proper test
suites.

doctest

https://docs.python.org/3/library/doctest.html

doctest
Example: assume we have this content in ./src/cs107_package/subpkg_2/module_3.py
"""
This is the docstring for ./subpkg_2/module_3.py. This module provides one
function `baz`. Example usage is:

>>> baz(0)
0
"""

def baz(x):
 """
 Return the input x if it is an int or float.

 Arguments:
 x : input argument

 Returns:
 x if it is of type int or float

 Examples:
 >>> baz(0)
 0
 >>> baz(0.0)
 0.0
 >>> baz('a string')
 Traceback (most recent call last):
 ...
 ValueError: x must be int or float
 """
 if not isinstance(x, (int, float)):
 raise ValueError('x must be int or float')
 return x

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

doctest
Example: assume we have this content in ./src/cs107_package/subpkg_2/module_3.py

You can run the doctest for this module using:
python -m doctest [-v] src/cs107_package/subpkg_2/module_3.py

Or you can use pytest and let it auto discover:
pytest --doctest-modules [-v] src/

"""
This is the docstring for ./subpkg_2/module_3.py. This module provides one
function `baz`. Example usage is:

>>> baz(0)
0
"""

def baz(x):
 """
 Return the input x if it is an int or float.
 """
 if not isinstance(x, (int, float)):
 raise ValueError('x must be int or float')
 return x

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ASSESSING THE QUALITY OF TESTS
Once you have written tests, how sure can you be that your tests cover all
the source lines of code () in your code base?

Code coverage (or test coverage) is a metric that expresses how much of
your code base is executed by running your test suite(s).

SLOC

The metric usually expresses a percentage of covered code based on:

Function/method coverage: has each function or method in the program been called?

Line coverage: has each SLOC in the program been executed?

Branch coverage: has each branch path in the program been executed?

Often line coverage is the most interesting.

Code coverage tools simply generate the data that is then converted into a
readable format like HTML or command line output.

Code coverage can easily be integrated in the CI pipeline where each build
generates data that can be uploaded to a service to track the history of
code coverage.

https://en.wikipedia.org/wiki/Source_lines_of_code

CODE COVERAGE IN python
Generating coverage reports in python is easy.

Two prominent tools for this task are

1. coverage ()

2. pytest-cov (a plugin for pytest)

https://pypi.org/project/coverage/

https://pypi.org/project/pytest-cov/

Generating coverage reports involves the following steps:

1. Instrumenting the code for coverage. If the program is compiled, a
special binary is produced for this task.

2. Running the test suites with the instrumented code/binary. This will
result in a database of raw coverage data.

3. Post-processing of the database allows to extract several statistics and
reports.

https://pypi.org/project/coverage/
https://pypi.org/project/pytest-cov/

CODE COVERAGE IN python
We use pytest here, examples for coverage can be found at

We can compute the coverage of our package with

where the --cov argument speci�es the python package we want to cover and it should
report the lines that we do not cover.

https://coverage.readthedocs.io/en/6.0.1/

$ pytest --cov=cs107_package --cov-report=term-missing1

For this to work you must make sure PYTHONPATH is set correctly. As we already did this in
our test driver we can just wrap around it:

$./run_tests.sh pytest --cov=cs107_package --cov-report=term-missing
============================ test session starts ==================================
----------- coverage: platform linux, python 3.9.7-final-0 ------------------------
Name
 Stmts Miss Cover Missing

cs107_project/src/cs107_package/__init__.py 3 0 100%
cs107_project/src/cs107_package/__main__.py 3 3 0% 1-4
cs107_project/src/cs107_package/subpkg_1/__init__.py 3 0 100%
cs107_project/src/cs107_package/subpkg_1/module_1.py 6 0 100%
cs107_project/src/cs107_package/subpkg_1/module_2.py 4 0 100%
cs107_project/src/cs107_package/subpkg_2/__init__.py 2 0 100%
cs107_project/src/cs107_package/subpkg_2/module_3.py 4 1 75% 31
cs107_project/src/cs107_package/subpkg_2/module_4.py 1 1 0% 1
cs107_project/src/cs107_package/subpkg_2/module_5.py 1 1 0% 1

TOTAL
 27 6 78%
============================= 4 passed in 0.07s ===================================

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

https://coverage.readthedocs.io/en/6.0.1/

CODE COVERAGE IN python
To integrate code coverage in our CI pipeline, we can simply extend our .travis.yml �le to run
our tests with coverage enabled:

Note: we now also need the pytest and pytest-cov packages in our build environment. We
also write the report to a xml �le instead of stdout .

These packages we only want in our CI builds
before_install: python -m pip install build pytest pytest-cov

Run the tests defined in the package
script: (cd tests && ./run_tests.sh pytest --cov=cs107_package --cov-report=xml)

1
2
3
4
5

The data in the xml �le can now be uploaded to a server that will keep track of the coverage
history for the code base. This can be a self-hosted service or hosted services like or

 (free for open-source projects).
coveralls.io

codecov.io

An example to upload our coverage reports to codecov.io from a TravisCI build could look like
this in the .travis.yml �le:

The �rst line downloads the upload tool into the CI container (
), the second line needs no explanation and the third line executes the upload tool using

a secret token obtained from an environment variable.

Upload the coverage report to codecov
after_success:
 - curl -Os https://uploader.codecov.io/latest/linux/codecov
 - chmod +x codecov
 - ./codecov -t ${CODECOV_TOKEN}

1
2
3
4
5

do not use the deprecated bash
uploader!

https://coveralls.io/
https://about.codecov.io/
https://docs.codecov.com/docs/about-the-codecov-bash-uploader

CODE COVERAGE IN python
An example to upload our coverage reports to codecov.io from a TravisCI build could look like
this in the .travis.yml �le:

The �rst line downloads the upload tool into the CI container (
), the second line needs no explanation and the third line executes the upload tool using

a secret token obtained from an environment variable.

The CODECOV_TOKEN is like a password, it tells codecov.io to which project this upload belongs.
You should not expose such sensitive data in your git repository (even if it is private).

Upload the coverage report to codecov
after_success:
 - curl -Os https://uploader.codecov.io/latest/linux/codecov
 - chmod +x codecov
 - ./codecov -t ${CODECOV_TOKEN}

1
2
3
4
5

do not use the deprecated bash
uploader!

https://docs.codecov.com/docs/about-the-codecov-bash-uploader

CODE COVERAGE IN python
The CODECOV_TOKEN is like a password, it tells codecov.io to which project this upload belongs.
You should not expose such sensitive data in your git repository (even if it is private).

De�ne an environment variable in your TravisCI project settings instead:

CODE COVERAGE IN python
The CODECOV_TOKEN is like a password, it tells codecov.io to which project this upload belongs.
You should not expose such sensitive data in your git repository (even if it is private).

De�ne an environment variable in your TravisCI project settings instead:

CODE COVERAGE IN python

DOCUMENTATION
Finally, promotion of a program to a programming product

requires its thorough documentation, so that anyone may use
it, �x it, and extend it. As a rule of thumb, I estimate that a

programming product costs at least three times as much as a
debugged program with the same function.

Frederick Brooks, The Mythical Man-Month

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

DOCUMENTATION
Documentation is an integral part of any software project and must follow the
Software Requirements Speci�cation (your contract with the customer).

Once the Software Requirements Speci�cation (SRS) is written and approved,
the interfaces are de�ned and remain invariant.

The implementation of such invariants (e.g. interfaces or other requirements in
the SRS that must not change) is a detail and may change between different
releases of the software.

The best place to put documentation is right next to the code that it
documents.

We can document in two ways:

1. By commenting code (intended for the developer/maintainer)

2. In-source tools for documentation:

python : docstrings following , type hinting (since python3.5),

C++ : ,

PEP257 sphinx

doxygen breathe

https://www.python.org/dev/peps/pep-0257/
https://pypi.org/project/Sphinx/
https://www.doxygen.nl/index.html
https://breathe.readthedocs.io/en/latest/

DOCUMENTATION: COMMENTS
Writing good comments is an art like writing good commit messages.

Following (founder of):

1. The value of a comment is directly proportional to the distance
between the comment and the code.

2. Comments with complex formatting cannot be trusted.

3. Don't include redundant information in the comments.

4. The best kind of comments are the ones you don't need.

The last item refers to self-documenting code. Attempt to write simple
code where possible that can easily be understood by itself.

Jeff Atwood Stack Over�ow

https://blog.codinghorror.com/when-good-comments-go-bad/
https://stackoverflow.com/

The documentation is very extensive
and split into several sections. (Some
content is stripped on the left.)

The docstring for any object is stored in
the __doc__ attribute.

DOCUMENTATION: python DOCSTRINGS
The conventions for python docstrings are outlined in .

Example:

PEP257

numpy.dot
def dot(a, b, out=None):
 """
 dot(a, b, out=None)

 Dot product of two arrays.
 <skipping some documentation for brevity>

 Parameters

 a : array_like
 First argument.
 b : array_like
 Second argument.
 out : ndarray, optional
 Output argument. This must have the exact kind that would be returned
 if it was not used.

 Returns

 output : ndarray
 Returns the dot product of `a` and `b`. If `a` and `b` are both
 scalars or both 1-D arrays then a scalar is returned; otherwise
 an array is returned.

 Raises

 ValueError
 If the last dimension of `a` is not the same size as
 the second-to-last dimension of `b`.

 Examples

 >>> np.dot(3, 4)
 12

 Neither argument is complex-conjugated:

 >>> np.dot([2j, 3j], [2j, 3j])
 (-13+0j)
 """

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

python documentation is accessible
through the :

or in code via

pydoc module
$ pydoc numpy.dot
Help on function dot in numpy:

numpy.dot = dot(...)
 dot(a, b, out=None)
...

1
2
3
4
5
6

import pydoc
import numpy
pydoc.doc(numpy.dot)

1
2
3

https://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/v1.21.2/numpy/core/multiarray.py#L737
https://docs.python.org/3/library/pydoc.html

DOCUMENTATION: python DOCSTRINGS
Once you have written the documentation of your code, you can use to

generate online documentation for your project, for example on .

Example:

sphinx
readthedocs.org

numpy.dot
def dot(a, b, out=None):
 """
 dot(a, b, out=None)

 Dot product of two arrays. Specifically,

 - If both `a` and `b` are 1-D arrays, it is inner product of vectors
 (without complex conjugation).

 - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
 but using :func:`matmul` or ``a @ b`` is preferred.

 - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply
 and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred.

 - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
 the last axis of `a` and `b`.

 - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
 sum product over the last axis of `a` and the second-to-last axis of `b`:

 dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

 Parameters

 a : array_like
 First argument.
 b : array_like
 Second argument.
 out : ndarray, optional
 Output argument. This must have the exact kind that would be returned
 if it was not used. In particular, it must have the right type, must be
 C-contiguous, and its dtype must be the dtype that would be returned
 for `dot(a,b)`. This is a performance feature. Therefore, ...
 """

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://github.com/numpy/numpy/blob/v1.21.2/numpy/core/multiarray.py#L737

RECAP
Continuous Integration (CI) in Software Development

Testing your code and verifying the quality of your tests

Documentation

